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INTRODUCTION TO STRUCTURAL DYNAMICS

This textbook provides the student of aerospace, civil, or mechanical engi-
neering with all the fundamentals of linear structural dynamics and scattered
discussions of nonlinear structural dynamics. It is designed to be used primar-
ily for a first-year graduate course. This textbook is a departure from the usual
presentation of this material in two important respects. First, descriptions of
system dynamics throughout are based on the simpler-to-use Lagrange equa-
tions of motion. Second, no organizational distinction is made between single
and multiple degree of freedom systems. In support of those two choices,
the first three chapters review the needed skills in dynamics and finite ele-
ment structural analysis. The remainder of the textbook is organized mostly
on the basis of first writing structural system equations of motion, and then
solving those equations. The modal method of solution is emphasized, but
other approaches are also considered. This textbook covers more material
than can reasonably be taught in one semester. Topics that can be put off for
later study are generally placed in sections designated by double asterisks
or in endnotes. The final two chapters can also be deferred for later study.
The textbook contains numerous example problems and end-of-chapter
exercises.

Bruce K. Donaldson was first exposed to aircraft inertia loads when he was a
carrier-based U.S. Navy antisubmarine pilot. He subsequently worked in the
structural dynamics area at the Boeing Co. and at the Beech Aircraft Co., both
in Wichita, Kansas, before returning to school and then embarking on an aca-
demic career in the area of structural analysis. At the University of Maryland
he became a professor of aerospace engineering and then a professor of
civil engineering. Professor Donaldson is the recipient of numerous teaching
awards and has maintained industrial contacts, working various summers at
government agencies and for commercial enterprises, the last being Lockheed
Martin in Fort Worth, Texas.

i



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

ii



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

INTRODUCTION TO

Structural
Dynamics
BRUCE K. DONALDSON, Ph.D.
Department of Civil and Environmental Engineering
University of Maryland, College Park

iii



cambridge university press
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge cb2 2ru, UK

First published in print format

isbn-13 978-0-521-86574-6

isbn-13 978-0-511-25067-5

© Bruce K. Donaldson 2006

2006

Information on this title: www.cambridge.org/9780521865746

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

isbn-10 0-511-25067-3

isbn-10 0-521-86574-3

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)

eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521865746


P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

To Matteo, Olivia, and Bridget

Spiego, cosı̀ imparo

v



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

vi



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

Contents

Preface for the Student page xi
Preface for the Instructor xv
Acknowledgments xvii
List of Symbols xix

1 The Lagrange Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction 1
1.2 Newton’s Laws of Motion 2
1.3 Newton’s Equations for Rotations 5
1.4 Simplifications for Rotations 8
1.5 Conservation Laws 12
1.6 Generalized Coordinates 12
1.7 Virtual Quantities and the Variational Operator 15
1.8 The Lagrange Equations 19
1.9 Kinetic Energy 25
1.10 Summary 29
Chapter 1 Exercises 33
Endnote (1): Further Explanation of the Variational Operator 37
Endnote (2): Kinetic Energy and Energy Dissipation 41
Endnote (3): A Rigid Body Dynamics Example Problem 42

2 Mechanical Vibrations: Practice Using the Lagrange Equations . . . . . . . . 46

2.1 Introduction 46
2.2 Techniques of Analysis for Pendulum Systems 47
2.3 Example Problems 53
2.4 Interpreting Solutions to Pendulum Equations 66
2.5 Linearizing Differential Equations for Small Deflections 71
2.6 Summary 72
2.7 **Conservation of Energy versus the Lagrange Equations** 73
2.8 **Nasty Equations of Motion** 80
2.9 **Stability of Vibratory Systems** 82
Chapter 2 Exercises 85

vii



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

viii Contents

Endnote (1): The Large-Deflection, Simple Pendulum Solution 93
Endnote (2): Divergence and Flutter in Multidegree of Freedom,

Force Free Systems 94

3 Review of the Basics of the Finite Element Method for
Simple Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.1 Introduction 99
3.2 Generalized Coordinates for Deformable Bodies 100
3.3 Element and Global Stiffness Matrices 103
3.4 More Beam Element Stiffness Matrices 112
3.5 Summary 123
Chapter 3 Exercises 133
Endnote (1): A Simple Two-Dimensional Finite Element 138
Endnote (2): The Curved Beam Finite Element 146

4 FEM Equations of Motion for Elastic Systems . . . . . . . . . . . . . . . . . . 157

4.1 Introduction 157
4.2 Structural Dynamic Modeling 158
4.3 Isolating Dynamic from Static Loads 163
4.4 Finite Element Equations of Motion for Structures 165
4.5 Finite Element Example Problems 172
4.6 Summary 186
4.7 **Offset Elastic Elements** 193
Chapter 4 Exercises 195
Endnote (1): Mass Refinement Natural Frequency Results 205
Endnote (2): The Rayleigh Quotient 206
Endnote (3): The Matrix Form of the Lagrange Equations 210
Endnote (4): The Consistent Mass Matrix 210
Endnote (5): A Beam Cross Section with Equal Bending and Twisting

Stiffness Coefficients 211

5 Damped Structural Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.1 Introduction 213
5.2 Descriptions of Damping Forces 213
5.3 The Response of a Viscously Damped Oscillator

to a Harmonic Loading 230
5.4 Equivalent Viscous Damping 239
5.5 Measuring Damping 242
5.6 Example Problems 243
5.7 Harmonic Excitation of Multidegree of Freedom Systems 247
5.8 Summary 248
Chapter 5 Exercises 253
Endnote (1): A Real Function Solution to a Harmonic Input 260

6 Natural Frequencies and Mode Shapes . . . . . . . . . . . . . . . . . . . . . . 263

6.1 Introduction 263



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

Contents ix

6.2 Natural Frequencies by the Determinant Method 265
6.3 Mode Shapes by Use of the Determinant Method 273
6.4 **Repeated Natural Frequencies** 279
6.5 Orthogonality and the Expansion Theorem 289
6.6 The Matrix Iteration Method 293
6.7 **Higher Modes by Matrix Iteration** 300
6.8 Other Eigenvalue Problem Procedures 307
6.9 Summary 311
6.10 **Modal Tuning** 315
Chapter 6 Exercises 320
Endnote (1): Linearly Independent Quantities 323
Endnote (2): The Cholesky Decomposition 324
Endnote (3): Constant Momentum Transformations 326
Endnote (4): Illustration of Jacobi’s Method 329
Endnote (5): The Gram–Schmidt Process for Creating

Orthogonal Vectors 332

7 The Modal Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

7.1 Introduction 334
7.2 Initial Conditions 334
7.3 The Modal Transformation 337
7.4 Harmonic Loading Revisited 340
7.5 Impulsive and Sudden Loadings 342
7.6 The Modal Solution for a General Type of Loading 351
7.7 Example Problems 353
7.8 Random Vibration Analyses 363
7.9 Selecting Mode Shapes and Solution Convergence 366
7.10 Summary 371
7.11 **Aeroelasticity** 373
7.12 **Response Spectrums** 388
Chapter 7 Exercises 391
Endnote (1): Verification of the Duhamel Integral Solution 396
Endnote (2): A Rayleigh Analysis Example 398
Endnote (3): An Example of the Accuracy of Basic Strip Theory 399
Endnote (4): Nonlinear Vibrations 400

8 Continuous Dynamic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

8.1 Introduction 402
8.2 Derivation of the Beam Bending Equation 402
8.3 Modal Frequencies and Mode Shapes for Continuous

Models 406
8.4 Conclusion 431
Chapter 8 Exercises 438
Endnote (1): The Long Beam and Thin Plate Differential Equations 439
Endnote (2): Derivation of the Beam Equation of Motion Using

Hamilton’s Principle 442



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

x Contents

Endnote (3): Sturm–Liouville Problems 445
Endnote (4): The Bessel Equation and Its Solutions 445
Endnote (5): Nonhomogeneous Boundary Conditions 449

9 Numerical Integration of the Equations of Motion . . . . . . . . . . . . . . . 451

9.1 Introduction 451
9.2 The Finite Difference Method 452
9.3 Assumed Acceleration Techniques 460
9.4 Predictor-Corrector Methods 463
9.5 The Runge-Kutta Method 468
9.6 Summary 474
9.7 **Matrix Function Solutions** 475
Chapter 9 Exercises 480

Appendix I. Answers to Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Chapter 1 Solutions 483
Chapter 2 Solutions 486
Chapter 3 Solutions 494
Chapter 4 Solutions 498
Chapter 5 Solutions 509
Chapter 6 Solutions 516
Chapter 7 Solutions 519
Chapter 8 Solutions 525
Chapter 9 Solutions 529

Appendix II. Fourier Transform Pairs . . . . . . . . . . . . . . . . . . . . . . . . . 531

II.1 Introduction to Fourier Transforms 531

Index 537



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17

Preface for the Student

No actual structure is rigid. All structures deform under the action of applied loads.
When the applied loads vary over time, so, too, do the deflections. The time-varying
deflections impart accelerations to the structure. These accelerations result in body
forces1 called inertial loads. Since these inertia loads affect the deflections, there
is a feedback loop tying together the deflections and at least the inertial load part
of the total loads. When the applied loads result from the action of a surrounding
liquid, then the deflections determine all the applied dynamic loads. Therefore, unlike
static loads (i.e., slowly applied loads), differential equations based on Newton’s laws
are required to mathematically describe time-varying load–deflection interactions.
Inertial loads can also have the importance of being the largest load set acting on
parts of a structure, particularly if the structure is quite flexible.

In order to appreciate how significant time-varying forces can be, consider, for
example, the time-varying loads that act on a typical large aircraft. After the aircraft
starts its engines, it generally must taxi along taxiways to a runway and then travel
along the runway during its takeoff run. Taxiways and runways are not perfectly flat.
They have small alternating hills and valleys. As will be examined in a simplified form
later in this book, these undulations cause the aircraft to move up and down and rock
back and forth on its landing gear, that is, its suspension system. Since the aircraft
structure is not rigid, this vibratory motion of the aircraft as a whole leads to the
flexing of the major parts of the aircraft, particularly the wings. The relative defor-
mations between various parts of the wing structure are, of course, conveniently
described as strains. The strains go hand in hand with stresses, and these stresses
can be the maximum stresses for the aircraft structure. For example, the maximum
in-flight gross weight of many large aircraft is greater than the maximum takeoff
gross weight. (In-flight refueling makes possible these different gross weights.) The
up-and-down inertial loads induced by the design values for the anticipated wavi-
ness of the taxiway are often responsible for the lesser value of the takeoff gross
weight.

1 All structural engineering forces are either contact forces or body forces. Contact forces are simply the
result of one mass system abutting another. Body forces are the result of a force field, such as a gravity
or magnetic field.

xi
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Once the aircraft has taken off, it generally climbs to the desired altitude by using
full power or at least higher values of engine thrust. This type of power plant operation
often produces the worst-case acoustical (high-frequency) loading on the aircraft
structure adjacent to the power plant. That noise, a high-frequency vibration, is
of concern because it can induce acoustical fatigue, as well as be bothersome to
passengers and crew. Each time the aircraft maneuvers during its flight, the control
system alters the so-called g-loads (another name for inertia loads) distributed over
the aircraft structure. For those types of aircraft, such as fighter aircraft, for which
rapid maneuvers are important, it is easy to imagine that the maneuver loads could
be, for the most part, the dominant load set. It is also possible that the critical loads
occur when a large aircraft is flying straight and level if the aircraft is subjected to
substantial vertically directed wind gusts. Such gusts can add considerable bounce to
the flight, with considerable flexing of the aircraft’s major components. If the flight
goes well, eventually the aircraft will land, and that landing will create another set of
important dynamic loads as a result of the impact of the aircraft’s landing gear with the
runway. A landing on an aircraft carrier in particular requires careful estimation of
the distributed inertial loads along the wing as the wing tips bend toward the carrier
flight deck immediately after the landing gear impacts on the flight deck. All the
above-described situations generally result in an initial structural motion and a snap-
back motion; that is, a vibration that is now defined as any back-and-forth motion
of the structure. Again, those motions result in inertial loads that, when combined
with other loads, can cause the critical stresses within the aircraft structure. Thus the
importance of vibrations for aircraft structural engineers is clear. Similar scenarios
are possible for other types of vehicles: land, sea, air, or space. The structure does not
have to be that of a vehicle to be endangered by time-varying loads. Time-varying
wind gust and earthquake loads must be considered in the design and analysis in
many civil engineering structures.

If the possibility of dynamic loads providing the maximum stresses is not enough
of a reason for structural engineers to study vibrations, then there is the matter of the
dynamic instabilities that are possible. In bridges and aircraft, these critical instabili-
ties are grouped mostly under the heading “flutter.” The general concept of flutter is
familiar to anyone who has ever watched a ribbon tied to a fan or observed Venetian
blinds lowered over an open window in a mild breeze. There are two possible sources
of difficulty. One type of problem is where, perhaps because of a nonlinearity, the
vibration amplitude is limited but nevertheless maintained at large deflection ampli-
tudes. In such circumstances, there is the threat of a rapid fatigue failure. The second
type of problem is where the combination of aerodynamic, inertial, and elastic loads
produces vibrations whose amplitudes continue to increase. When the amplitudes
of the vibration steadily increase, the strains and stresses also steadily increase until
structural failure occurs. These dynamic instabilities generally result from the same
combination of elastic, inertial, and applied loads that are present in any structural
dynamics problem. Moreover, there is also the aircraft phenomenon called propeller
whirl that, in addition to depending on aerodynamic, inertial, and elastic forces,
depends on the gyroscopic forces of the rotating propeller.

The above brief discussion is intended to support two facts of engineering practice.
The first fact is that particularly for land, sea, air, and space vehicles, the dynamics of
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Preface for the Student xiii

the structure are important, often critically important. The second fact is that for an
engineering analyst to prepare an adequate mathematical description of a structural
dynamics problem, that analyst needs a certain understanding of dynamics as well as
of structural analysis. This textbook first focuses on providing the student with all the
information on the dynamics of solids that the student needs for such analyses. The
textbook then explains how to use the commonplace finite element stiffness method
to create those matrix differential equations that adequately describe the structural
dynamics problem. The remainder of the textbook discusses solution techniques,
principally the technique called the modal method.

For a student to succeed in using this book, he or she should have already stud-
ied some applications of Newton’s laws and have studied structural mechanics to
the point of being reasonably comfortable with elementary beam theory. Chapter 3
provides a sufficient and self-contained explanation of structural modeling using the
finite element method to the extent of structures composed of such structural ele-
ments as beams, bars, and springs. An attempt has been made to illustrate all aspects
of the presented theory by providing numerous example problems and exercises at
the end of each chapter. The answers to the exercises are found in Appendix I.
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Preface for the Instructor

This textbook is designed to be the basis for a one-semester course in structural
dynamics at the graduate level, with some extra material for later self-study. Using
this text for senior undergraduates is possible also if those students have had more
than one semester of exposure to rigid body dynamics and are well versed in the
basics of the linear, stiffness finite element method. This textbook is suitable for
structural dynamics courses in aerospace engineering and mechanical engineering.
It also can be used in civil engineering at the graduate level when the course focus is
on analysis rather than earthquake design. The first two chapters on dynamics should
be particularly helpful to civil engineers.

This textbook is a departure from the usual presentation of this material in two
important ways. First, from the very beginning, descriptions of system dynamics are
based on the simpler-to-use Lagrange equations. To this end, the Lagrange equa-
tions are derived from Newton’s laws in the first chapter. Second, no organizational
distinctions are made between multidegree of freedom systems and single degree
of freedom systems. Instead, the textbook is organized on the basis of first writing
structural system equations of motion and then solving those equations mostly by
means of a modal transformation. Beam and spring stiffness finite elements are used
extensively to describe the structural system’s linearly elastic forces. If the students
are not already confident assemblers of element stiffness matrices, Chapter 3 pro-
vides a brief explanation of that material. One of the advantages of this textbook is
that it provides practice in the hand assembly of system stiffness matrices. Otherwise
the student is expected only to bring to this study topic the usual calculus and differ-
ential equation skills developed in an accredited undergraduate curriculum. The one
exception with respect to math skills occurs in Chapter 8, a wholly optional chapter,
which deals with continuous mass models. There a couple of Bessel equations are
used to describe nonuniform, vibratory systems. These tapered-beam examples just
push that topic to its limits and thus easily can be skipped.

The traditional textbook and course material organization starts with an exhaustive
study of single degree of freedom systems and only then proceeds to multidegree
of freedom systems. The author’s departure from this customary organization is
prompted by his experience that this usual material organization leaves little time at
the end of the semester for students to obtain a comfort level with the use of the modal

xv



P1: JZP
0521865743pre CUFX001/Donaldson 0 521 86574 3 August 28, 2006 13:17
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transformation. Furthermore, the present organization provides more and better
opportunities to apply the superior Lagrange equations and beam stiffness matrices
to multidegree of freedom systems. This advantage in turn allows consideration of
example structural systems that actually look like models for small structures as
opposed to collections of rigid masses on wheels connected by elastic springs. Thus
the vital link between structural analysis and structural dynamics is both maintained
and evident.

The following are details of the textbook’s organization. Chapters 1 and 2 provide a
brief overview, or review, of only that portion of rigid body dynamics that is necessary
to understand structural dynamics. Chapters 3 and 4 deal with writing the matrix
equations of motion for undamped, discrete mass structural systems. Again, the
elastic forces are described using mostly beam stiffness finite elements. Chapters 6
and 7 focus primarily on the modal method for solving those equations. Chapter 8
considers continuous mass structural systems as a means for providing further insight
into discrete systems and as a means for demonstrating the serious difficulties often
associated with continuous mass models. Numerical integration techniques, with or
without modal transformations, are presented in Chapter 9.
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List of Symbols

. each dot placed above a symbol indicates one total differentiation with
respect to time.

, a comma as part of a subscript indicates partial differentiation with respect
to all the variables that follow the comma.

′ each prime indicates one differentiation with respect to the single variable
of the equation, usually a spatial variable.

[ ] a square or rectangular matrix.

{ } a column matrix.

� � a row matrix; i.e., the transpose of a column matrix.

[\ \] a diagonal (square) matrix.

a, b with a single subscript, a coefficient of a power series expansion of
(usually) a deflection function for a structural element.

a, b, c general lengthwise dimensions or proportionality factors.

a general acceleration vector. A subscript indicates the acceleration of a
particular mass particle.

c a general damping coefficient such that the damping coefficient multiplied
by the corresponding velocity produces a damping force. In brackets, the
damping matrix.

c a flexibility coefficient, which in general terms, is the inverse of a stiff-
ness coefficient; with square brackets, a flexibility matrix; and with two
subscripts, the row and column entry of that matrix identified by the sub-
scripts.

c an airfoil chord length; i.e., the streamwise distance between the airfoil
leading edge and the airfoil trailing edge.

d various distances.

e subscript or superscript refers to an individual structural finite element.

e eccentricity of an ellipse or an offset distance of a lumped mass from a
finite element model node.

xix
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e j position vector of the jth mass particle relative to the center of mass of
the mass system.

f the frequency of a vibration measured in hertz (Hz; cycles per second).
This is not to be confused with the circular frequency, ω, which has units
of radians per second.

f a general mathematical function of engineering interest.

f a force per unit length acting along the length of a beam or a friction force.

g the acceleration of gravity.

g with an argument, the step response function. See Section 7.5.

g a fictitious material damping factor distinguished from the actual material
damping factor symbolized by γ .

h the vertical translation of a wing segment.

h with an argument, the impulse response function. A subscript indicates
the associated natural mode.

h, k with subscripts, increments in deflection and velocity for various numer-
ical methods of integrating differential equations.

i, j, k fixed unit vectors aligned with the Cartesian coordinate system.

i, j, k positive integer indices.

k a stiffness coefficient for a single coiled spring or, more generally, an entry
in the stiffness matrix of a spring or a more complicated structural element
such as a beam or plate. In square brackets, a stiffness matrix.

l, � generally a beam segment length.

m mass. A subscript indicates a particular mass particle or mass at the ith
finite element node. In square brackets, a mass matrix.

m, n positive integer indices.

p in braces, the vector of modal deflections; with a subscript, an entry of
such a vector.

p, q orthogonal unit vectors in the z plane that, depending on the subscripts,
rotate (positive counterclockwise) with either the center of mass of
the mass system or a particular mass particle of the mass system. See
Figure 1.4.

q general symbol for a generalized coordinate (degree of freedom). In
braces, a vector of generalized coordinates.

r a position vector; i.e., a vector that locates the position [x(t), y(t), z(t)] of a
mass or mass particle. In the latter case there is a subscript that indicates
which mass particle.

r a radial polar coordinate.

r with a subscript, the ramp response function for the mode indicated by
the subscript.
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r in brackets, a rotation matrix that is part of the Jacobi method or a varia-
tion on the Jacobi method.

s entries in the “sweeping” matrix that relates (1) the generalized coordi-
nate vector constrained to be orthogonal to the lower numbered mode
shapes to (2) the unconstrained generalized coordinate vector.

s with a subscript, the sine response function for the mode indicated by the
subscript.

sgn( ) a function that has the value positive 1.0 when the argument is positive
and the value negative 1.0 when its argument is negative.

stp( ) the Heaviside step function. See Section 7.5.

t time.

t the thickness of a thin beam cross section.

u, v, w translational deflections in the x, y, z directions, respectively. With sub-
scripts, such translations at the nodes of a finite element model.

v general velocity vector.

x, y, z Cartesian coordinates.

A a beam cross-sectional area.

A in braces or within row matrix symbols, an eigenvector of the amplitudes
of the natural vibration.

A0 an aerodynamic coefficient equal to 1/2 Clα ρS.

A, B, C constants of integration or unknown amplitudes of a vibratory motion.

B a general matrix or a coefficient matrix for the column matrix of gen-
eralized coordinates that yields the strains appropriate to the finite
element.

BCs abbreviation for boundary conditions.

Cl an airfoil lift coefficient. See Eq. (7.16).

C(κ) The Theodorsen function. See the explanation following Eq. (7.20).

CG abbreviation for center of gravity, which here is the same as center of
mass.

D a plate stiffness factor. See Example 8.8.

D with a single subscript, a term associated with an initial deflection vector.

D in brackets, a material stiffness matrix for an elastic material; i.e., a coef-
ficient matrix for strains that yields the corresponding stresses.

D in brackets, the system dynamic matrix; i.e., the product of the inverse
of the stiffness matrix premultiplying the mass matrix when it is nonsym-
metrical or the result of a transformation using a Cholesky decomposition
when it is symmetrical.

DOF abbreviation for degrees of freedom.
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xxii List of Symbols

E Young’s modulus; i.e., the slope of the straight-line portion of the stress–
strain curve for a structural material loaded in tension or compression.

E error term.

� total mechanical energy of a structural system.

F general force vector. An ex superscript indicates forces external to the
mass system under consideration. An in superscript indicates forces inter-
nal to the mass system. A subscript indicates a force acting on a particular
mass particle.

F the magnitude of an impulse; i.e., the integral of a short duration force
over time.

F, G general mathematical functions of engineering interest.

G the shear modulus; i.e., the slope of the straight-line portion of the stress–
strain curve for a structural material subjected to a shear loading.

G the universal gravitational constant.

H a general symbol for mass moment of inertia of a mass system about a
point or an axis indicated, respectively, by the single or double subscript.
As a “second moment,” it is the sum of each mass particle or differential
sized mass multiplied by the square of the distance from the point or axis
indicated to the mass particle or differential mass.

H with a subscript, the complex frequency response function associated with
the mode indicated by the subscript.

I a general symbol for the area moment of inertia of a beam cross section.
Double subscripts indicate the centroidal axis about which the second
moment of area is calculated. A p subscript indicates a polar moment of
inertia.

I the value of an integral that is to be optimized or evaluated.

I in brackets, the identity matrix.

J for a beam cross section, the St. Venant constant for uniform torsion. It is
equal to the cross-sectional area polar moment of inertia only in the case
of circular and annular cross sections.

J with a subscript and an argument, a Bessel function of the first kind. A
subscript indicates the order.

K in brackets, the stiffness matrix for an entire structural system that is
composed of the compatible sum of the stiffness matrices of the individual
structural elements. With subscripts, a submatrix of the total stiffness
matrix.

K a torsional spring constant; i.e., the proportionality factor multiplying the
twist in the spring that yields the moment necessary to achieve that twist.

L a general symbol for length, usually the length of a beam or beam segment.

L in brackets, the lower (or left) triangular matrix of a Cholesky decompo-
sition.
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List of Symbols xxiii

L general angular momentum (moment of momentum) vector. Subscripts
can indicate the point about which the moment arm is measured, or the
mass particle under consideration.

L an aerodynamic lift force.

M an externally applied moment, or the internal moment stress resultant for
a beam cross section.

M In brackets, a mass matrix.

M an aerodynamic moment; i.e., the moment acting on a wing segment
because of the surrounding airflow.

M general moment vector.

N the axial force in a beam or a bar of a truss.

N with a single subscript, a “shape function” that, together with a general-
ized coordinate of a finite element, describes the deflections of the finite
element associated with that generalized coordinate.

O[ ] order of magnitude of the quantity within the brackets.

P in braces, the vector of applied modal forces; with a subscript, an entry of
such a vector.

P general momentum vector equal to the scalar mass value multiplied by
the velocity vector.

Q general symbol for a generalized force. Subscripts often indicate the cor-
responding generalized coordinate.

R general symbol for a support reaction, either a force reaction or a moment
reaction.

R in brackets, a right triangular matrix of a Cholesky decomposition.

R in brackets, a coefficient matrix that relates one set of generalized coor-
dinates to a second set of generalized coordinates that is rotated through
one or more angles relative to the first set of generalized coordinates.

R a principal radius of curvature of a curved beam.

S the planform area of a wing segment.

S in brackets, a “sweeping” matrix that removes the presence of lower num-
bered modes from the system dynamic matrix.

T kinetic energy.

T the time period of one vibratory cycle.

T a matrix that transforms one set of generalized coordinates into another
set of generalized coordinates.

U strain energy; i.e., the recoverable energy stored in an elastic system
because of the deformation of that system.

U, V, W with an argument, a vibration amplitude function of a system with a con-
tinuous mass distribution.
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xxiv List of Symbols

V a general potential energy other than strain energy.

V the shearing force acting on a beam cross section. Subscripts indicate the
direction and lengthwise position of the shearing force.

V with a single subscript, a term associated with a system initial velocity
vector.

V the airspeed of the airfoil.

W work, either the product of force acting through a translational displace-
ment or moment acting through a rotational displacement. Superscripts
and subscripts indicate the type of forces or moments doing the work,
such as internal or external to the mass system, or energy conservative or
nonconservative.

X the x Cartesian coordinate nondimensionalized by division by the length
of a beam segment.

X, Y the horizontal and vertical components of an internal bar force.

Y with a subscript and argument, a Bessel function of the second kind.

α an alternate polar coordinate.

α, β various angles, parameters, or proportionality factors.

γ general symbol for angular or shearing strain, positive when the refer-
ence right angle decreases. Two differing Cartesian coordinate subscripts
indicate the two coordinate axes forming the original right angle.

γ nondimensional material damping factor.

γ when used as a multiplier of an area term, an area correction factor that
attempts to account for the variation of shearing stresses and strains over
a beam cross section.

δ the variational operator which (here) always precedes a function of deflec-
tions. When applied to quantities of engineering interest, such as work
W, the resulting engineering interpretation is that of a “virtual” quantity,
which in this case is virtual work.

δ the Dirac delta function, which always has an associated spatial or tempo-
ral argument. The argument is always the difference between the variable
and a related parameter. The latter is sometimes zero, in which case the
argument contains only the variable. See Section 7.5.

ε general symbol for normal strains (changes in length because of defor-
mation divided by the original length). Two repeated subscripts indicate
the direction in which the strain is measured. Elongations are positive.

ζ a nondimensionalized value of the damping coefficient.

θ various angles or an angular generalized coordinate at the node of a finite
element model.

κ the “reduced frequency”; a nondimensional frequency or nondimensional
airspeed equal to c ω/(2 V), where c is the airfoil chord length.
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List of Symbols xxv

λ a general symbol for an eigenvalue or, occasionally, a parameter having
the same units as the system eigenvalues.

µ coefficient of Coulomb friction, a mass ratio, or a coefficient of Duffing’s
equation.

ν Poisson’s ratio.

ρ mass density; i.e., mass divided by volume.

ρ an alternate polar coordinate.

σ general symbol for both normal and shearing stresses. The same double
subscripts indicate a normal stress in that Cartesian coordinate direction,
whereas the first of two unlike subscripts indicates the plane on which the
shearing stress acts, and the second of the two unlike subscripts indicates
the direction in which the shearing stress acts.

τ a value of the time variable different from another measure of time, t.
Usually used as a parametric value.

φ, ψ various angles or finite element nodal rotations.

ω a given angular velocity, or more commonly here, a circular frequency of
vibration having the units of radians per second, and therefore equal to
2π f , where f is the frequency of the vibration measured in units of cycles
per second.

Γ with a subscript, the participation factor for the mode shape indicated by
the subscript.

∆ an operator that indicates a small increment in the quantity to which it is
applied.

Θ the fixed amplitude of the vibratory generalized coordinate θ .

Λ a general symbol for the matrix of eigenvalues of another matrix or the
vibratory system.

Π the magnitude of an impulsive force expressed in modal coordinate terms.

Υ an amplitude of a forced motion.

Φ a matrix of all, or selected, eigenvectors.

Ω the ratio of a forcing frequency to a natural frequency where the sub-
script indicates which natural frequency. Without a subscript, the natural
frequency is the first natural frequency.
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1 The Lagrange Equations of Motion

1.1 Introduction

A knowledge of the rudiments of dynamics is essential to understanding structural
dynamics. Thus this chapter reviews the basic theorems of dynamics without any con-
sideration of structural behavior. This chapter is preliminary to the study of structural
dynamics because these basic theorems cover the dynamics of both rigid bodies and
deformable bodies. The scope of this chapter is quite limited in that it develops only
those equations of dynamics, summarized in Section 1.10, that are needed in subse-
quent chapters for the study of the dynamic behavior of (mostly) elastic structures.
Therefore it is suggested that this chapter need only be read, skimmed, or consulted
as is necessary for the reader to learn, review, or check on (i) the fundamental equa-
tions of rigid/flexible body dynamics and, more importantly, (ii) to obtain a familiarity
with the Lagrange equations of motion.

The first part of this chapter uses a vector approach to describe the motions of
masses. The vector approach arises from the statement of Newton’s second and
third laws of motion, which are the starting point for all the material in this text-
book. These vector equations of motion are used only to prepare the way for the
development of the scalar Lagrange equations of motion in the second part of
this chapter. The Lagrange equations of motion are essentially a reformulation of
Newton’s second law in terms of work and energy (stored work). As such, the
Lagrange equations have the following three important advantages relative to the
vector statement of Newton’s second law: (i) the Lagrange equations are written
mostly in terms of point functions that sometimes allow significant simplification
of the geometry of the system motion, (ii) the Lagrange equations do not nor-
mally involve either external or internal reaction forces and moments, and (iii) the
Lagrange equations have the same mathematical form regardless of the choice of the
coordinates used to describe the motion. These three advantages alone are sufficient
reasons to use the Lagrange equations throughout the remaining chapters of this
textbook.

1
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1.2 Newton’s Laws of Motion

Newton’s three laws of motion can be paraphrased as (Ref. [1.1]):

1. Every particle continues in its state of rest or in its state of uniform motion in a
straight line unless it is compelled to change that state by forces impressed upon it.

2. The time rate of change of momentum is proportional to the impressed force, and
it is in the direction in which the force acts.

3. Every action is always opposed by an equal reaction.

These three laws are not the only possible logical starting point for the study of the
dynamics of masses. However, (i) these three laws are at least as logically convenient
as any other complete basis for the motion of masses, (ii) historically, they were the
starting point for the development of the topic of the dynamics, and (iii) they are
the one basis that almost all readers will have in common. Therefore they are the
starting point for the study of dynamics in this textbook.

There are features of this statement of Newton’s laws that are not immediately
evident. The first of these is that these laws of motion are stated for a single particle,
which is a body of very, very small spatial dimensions, but with a fixed, finite mass.
The mass of the jth particle is symbolized as mj . The second thing to note is that
momentum, which means rectilinear momentum, is the product of the mass of the
particle and its instantaneous velocity. Of course, mass is a scalar quantity, whereas
velocity and force are vector quantities. Hence the second law is a vector equation.
The third thing to note is that the second law, which includes the first law, is not
true for all coordinate systems. The best that can be said is that there is a Cartesian
coordinate system “in space” for which the second law is valid. Then it is easy to
prove (see the first exercise) that the second law is also true for any other Cartesian
coordinate system that translates at a constant velocity relative to the valid coordinate
system. The second law is generally not true for a Cartesian coordinate system that
rotates relative to the valid coordinate system. However, as a practical matter, it
is satisfactory to use a Cartesian coordinate system fixed to the Earth’s surface if
the duration of the motion being studied is only a matter of a few minutes. The
explanation for this exception is that the rotation of the Cartesian coordinate system
fixed at a point on the Earth’s surface at the constant rate of one-quarter of a degree
per minute, or 0.0007 rpm, mostly just translates that coordinate system at the earth’s
surface in that short period of time. See Figure 1.1(a).

As is derived below, when Newton’s second law is extended to a mass m of finite
spatial dimensions, which is subjected to a net external force of magnitude1 F, then
Newton’s second law can be written in vector form as follows:

F = dP
dt

= m
dv

dt
= ma, (1.1)

where P = mv is the momentum vector, v is the velocity vector of the total mass m
relative to the valid coordinate origin, t is time, and a is the acceleration vector, which
of course is the time derivative of the velocity vector. The velocity vector is not the

1 Vector quantities are indicated by the use of italic boldface type.
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Valid coordinate
system at time t

Valid coordinate
system at time zero

Invalid coordinate
system at large
time t

(a)

z

x

y

α

M

Fr

(b)

Figure 1.1. (a) Valid and invalid coordinate systems for Newton’s second law, both moving at
constant speed. (b) Illustration of the right-hand rule for r × F = M = r F sin αn.

velocity of all points within the mass mrelative to the valid coordinate system. Rather,
it is the velocity of the one point called the center of mass, which is defined below.
Further, note that the mass of the system of particles whose motion is described by
this equation is the mass of a fixed collection of specific mass particles. Hence, even
though the boundary surface that encloses these specified mass particles may change
considerably over time, the mathematical magnitude of the mass term is a constant.
Those mass particles that are included within the mass, or alternately, enclosed by
the boundary surface of the mass system, are defined by the analyst as the “mass
system under study.”

The above basic result, Eq. (1.1), can be derived as follows. Consider a collection
of, that is, a specific grouping of, N particles of total mass m = ∑

mj , where all
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such sums run from j = 1 to j = N, where N can be a very large number. Again, it
is not essential that there be any particular geometric relationship between the N
particles. Newton’s second law applies to each of these N particles. To write Newton’s
second law in a useful way, let each of these N particles be located by means of
its own position vector r j(t) originating at the origin of a valid coordinate system.
Note that if the time-varying spatial position of the ith particle in terms of the valid
Cartesian coordinates is [xi (t), yi (t), zi (t)], then the position vector can be written
as r i (t) = xi (t)i + yi (t) j + zi (t)k. Since the differential quantity dr i is tangent to the
path of the ith particle, the velocity vector is always tangent to the particle path.
However, because the forces applied to the particle are not necessarily tangent to
the particle path, neither is the acceleration vector, d 2r/dt 2. Thus the path of the
particle need not be straight.

The statement of the second law for the individual ith particle now can be written
as

F ex
i + F in

i = mi r̈ i , (1.2)

where F ex
i is the vector sum of all the forces acting on the ith particle that originate

from sources outside of this collection of N particles (to be called the net external
force acting on the ith particle), and F in

i is the vector sum of all the forces acting
on ith particle that originate from interactions with the other N − 1 particles (i.e.,
the net internal force acting on the ith particle). From Newton’s third law, each of
the N − 1 components of the net internal force acting on the ith particle can be
associated with an equal and opposite force acting on one of the other particles in
the collection of N particles. Hence, summing all such Eqs. (1.2) for the N particles
leads to the cancellation of all the internal forces between the N particles, with the
result ∑

mj r̈ j =
∑

F ex
j ≡ F ex ≡ F.

Again, the total mass m is defined simply as the scalar sum of all the mi . That is
m = ∑

mj . The location of the center of mass of the total mass m is identified by
introducing the center of mass position vector, r(t) (without a subscript). Since this
position vector goes from the coordinate origin to the center of mass, this vector
alone fully describes the path traveled by the center of mass as a function of time.
The center of mass position vector r at any time t is defined so that

mr ≡
∑

mir i .

This definition means that the center of mass position vector is a mass-weighted
average of all the mass particle position vectors. This definition can also be viewed as
an application of the mean value theorem. Differentiating both sides of the definition
of the center of mass position vector with respect to time twice and then substituting
into the previous equation immediately yields Eq. (1.1): F = m r̈ ≡ ma. Again, the
force vector F, without superscripts and subscripts, is the sum of all the external
forces. Note that external forces can arise from only one of two sources: (i) the direct
contact of the boundary surface of the N particles under study with the boundary of
other masses or (ii) the distant action of other masses, in which case they are called
field forces. Gravitational forces are an example of the latter type of action.
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1.3 Newton’s Equations for Rotations

A knowledge of the motion of the center of mass can tell the analyst a lot about
the overall motion of the mass system under study. However, that information is
incomplete because it tells the analyst nothing at all about the rotations of the mass
particles about the center of mass. Since rotational motions can be quite important,
this aspect of the overall motion needs investigation.

Just as the translational motion of the center of mass can be viewed as determined
by forces, rotational motions are determined by moments of forces. Recall that the
mathematical definition of a moment about a point, when the moment center is the
origin of the valid coordinate system, is

M ≡ r × F.

Recall that reversing the order of a vector cross product requires a change in sign
to maintain an equality. Further note that it is immaterial where this position vector
intercepts the line of action of the above force vector because the product of the
magnitude of the r vector and the sine of the angle between the r and F vectors is
always equal to the perpendicular distance between (i) the line of action of the force
and (ii) the moment center.

Structural engineers are more familiar with moments about Cartesian coordinate
axes than moments about points. The relation between a moment about a point and a
moment about such an axis can be understood by reference to Figure 1.1(b). This fig-
ure illustrates that the moment resulting from the cross product of the r vector and the
F vector, by the rules of vector algebra, is in the direction of the unit vector n, which
is perpendicular to the plane formed by the r and F vectors. The positive direction of
n is determined by the thumb of the right hand after sweeping the other four fingers
of the right hand from the direction of r, the first vector of the cross product, through
to the direction of F. In terms of α, the angle between these two vectors in the plane
formed by the two vectors

M ≡ r × F ≡ Fr sin α n.

Like any other vector, the vector M has components along the Cartesian coordinate
axes. In terms of the components of the force F and the position vector r, the moment
about a point can be written, using vector algebra, as follows:

M = r × F = (xi + y j + zk) × (Fxi + Fy j + Fzk)

= (yFz − zFy)i + (zFx − xFz) j + (xFy − yFx)k

= Mxi + My j + Mzk.

Considering the last equation, it is clear that moments about axes are simply com-
ponents of moments about points.

When describing the rotation of the mass m, it is often convenient to consider a
reference point P that is other than the valid coordinate origin, which is here called
the point O. See Figure 1.2. Let the this new reference point P move in an arbitrary
fashion relative to the coordinate origin, point O, in a fashion defined by the position
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O

P

C.G.

mj, the jth
particle of the total

mass m

rp

rj

r

(rj  – rp)

ej

Figure 1.2. Vectors relevant to the rotational motion of a mass. Point P has an arbitrary motion
relative to point O.

vector rP(t). Introduce the vector quantity LPj (t) which is to be called the angular
momentum about point P, or, more descriptively, the moment of momentum of the
mass particle mj about the arbitrary point P. That is, the angular momentum about
point P of the jth mass particle is defined as the vector cross product of (i) the position
vector from point P to the particle mj and (ii) the momentum vector of mj where
the associated velocity vector is that relative to point P rather than the origin of the
coordinate system, point O. Thus, in mathematical symbols, relative to point P, the
angular momentum of the jth particle, and the angular momentum of the total mass
m are, respectively,

LPj ≡ (rj − rP) × mj (ṙj − ṙP) and LP ≡
∑

LPj .

Differentiating both sides of the total angular momentum with respect to time, and
noting that the cross product of the relative velocity vector (ṙ j − ṙ P) with itself is
zero, yields the following result:

dLP

dt
= 0 +

∑
[(rj − rP) × mj (r̈j − r̈P)].

From the original statement of Newton’s second law, it is possible to substitute
in the above equation the net external and internal forces on the jth particle for
mj (d 2/dt 2)r j. The result is

dLP

dt
=

∑ [
(rj − rP) × (

F ex
j + F in

j

) − mj (rj − rP) × r̈P
]
.

The term involving the net internal forces sums to zero because all the component
internal forces are not only equal and oppositely directed, but, by the strong form of
Newton’s third law, they are also collinear. See Exercise 1.1. The remaining portion
of the first term, that involving the net external forces on the N particles, sums to
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MP, called the moment about point P of all the external forces acting on the mass m.
The last term in the above sum can be simplified by noting that∑

mi (r i − rP) × r̈P = −
[
rP

∑
mi −

∑
mir i

]
× r̈P

= −[mrP − mr ] × r̈P

= + m(r − rP) × r̈P.

Thus the final result for the time derivative of the angular momentum of the mass
m is

dLP

dt
= MP − m(r − rP) × r̈P. (1.3a)

In other words, with reference to Figure 1.2,

dLP/dt = MP − m ∗ (position vector from P to the center of mass)

∗ (acceleration vector of point P relative to point O).

Clearly, if point P is coincident with the center of mass (called the center of mass or
CG case, where rP = r), or if the relative position vector rP − r and the acceleration
vector (d 2/dt2)rP are collinear (unimportant because it is unusual), or if point P is
moving at a constant or zero velocity with respect to point O (called, for simplicity,
the fixed point or FP case), then the rotation equation reduces to simply

dLP

dt
= MP if P is a “fixed” point or located at the center of mass. (1.3b)

Note that the above vector equation is the origin of the static equilibrium equations,
which state that “the sum of the moments about any axis is zero.” That is, when the
angular momentum relative to the selected point P is zero or a constant, then the
three orthogonal components of the total moment vector of the external forces acting
on the system about point P are zero. These three orthogonal components are the
moments about any three orthogonal axes.

The above rotational motion equation, Eq. (1.3b) is not as useful as Eq. (1.1), the
corresponding translational motion equation. In Eq. (1.1), the three quantities force,
mass, and acceleration are individually quantifiable. In Eq. (1.3b), while the moment
term is easily understood, the time rate of change of the angular momentum needs
further refinement so that perhaps it too can be written as some sort of fixed mass type
of quantity multiplied by some sort of acceleration. Recall that for the mass system m,
the total angular momentum relative to point P, is defined as the sum of the moments
of the momentum of all the particles that comprise the mass m. That is, again

LP =
∑

(r i − rP) × mi (ṙ i − ṙP).

From the previous development, that is, Eqs. (1.3a,b), there are two simplifying
choices for the reference point P: the FP (so-called fixed point) case and the CG
(center of mass) case, where the time derivative of the angular momentum is equal
to just the moment about point P of all the external forces. First consider the FP case,
where point P has only a constant velocity relative to the coordinate origin, point O.
Then, from Exercise 1.1, either point P or point O is the origin of a valid Cartesian



P1: JZP
0521865743c01 CUFX001/Donaldson 0 521 86574 3 September 6, 2006 10:23

8 The Lagrange Equations of Motion

coordinate system. Since these two points are alike, for the sake of simplicity, let the
reference point P coincide with the origin of the coordinate system, point O. Again,
this placement of point P at point O does not compromise generality within the FP
case because when point P is only moving at a constant velocity relative to point O,
point P can also be an origin for a valid coordinate system. Then with rP = 0, and
because the ei vectors of Figure 1.2 originate at the center of mass, the total angular
momentum becomes

LF P =
∑

r i × mi ṙ i =
∑

(r + ei ) × mi (ṙ + ėi )

= r × ṙ
(∑

mi

)
+ r ×

(∑
mi ėi

)
+

(∑
mi ei

)
× ṙ +

∑
(ei × mi ėi )

= r × m ṙ +
∑

(ei × mi ėi ). (1.4a)

To explain why the second and third terms of the above second line are zero, recall
the definition of the center of mass position vector, r. That mean value definition
is mr ≡ ∑

mir i . Since r i = r + ei , mr ≡ ∑
mir+

∑
mi ei . Since r is not affected by

the summation over the N particles, it can be factored out of the first sum on the
above right-hand side. The result is mr ≡ mr+

∑
mi ei or 0 = ∑

mi ei . Furthermore,
because the mass value of each particle is a constant, the time derivative of this last
equation shows that 0 = ∑

mi ėi . This is just an illustration of the general fact that
first moments, that is, multiplications by distances raised to the first power, of mass
or area, or whatever, about the respective mean point are always zero. Multiplica-
tions of mass by distances with exponents other than one lead to terms which are
generally not zero.

In the above FP equation, Eq. (1.4a), for the angular momentum, the first term
depends only on the motion of the center of mass relative to the Cartesian coordinate
origin. Even if the mass is not rotating relative to the Cartesian coordinate origin,
this term is generally not zero. The second part of the angular momentum exists even
if the center of mass is not moving. This second part accounts for the spin of the mass
about its own center of mass.

The CG case is where the reference point P is located at the center of mass, point C,
rather than at the coordinate origin, point O, as in the FP case. In this CG case, r = r P

and r i − rP = ei . Substituting these vector relationships into the expression for LP

immediately leads to the same result for the angular momentum, as was obtained for
the FP case, except that the first of those two terms is absent. Hence the mathematics
of the CG case are included within that of the FP case, and therefore the CG case
does not need a parallel development.

1.4 Simplifications for Rotations

Since Newton’s second law is a vector equation, it has been convenient to derive its
rotational corollaries by use of vector algebra in three-dimensional space. However,
it is no longer convenient to pursue the subject of rotations using three-space vector
forms because, in general, the rotations themselves about axes in three dimensions
(as opposed to moments about axes in three dimensions) are not vector quantities.
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+

+

=

=

Figure 1.3. Proof that, generally, rotations are not vectors because the order of the rotations
is not irrelevant.

For a quantity be classified as a vector, the order of an addition has to be immaterial;
that is, it is necessary that A+ B = B + A, which is called the commutative law for
vector addition. In contrast, as Figure 1.3 illustrates, the order of addition of rota-
tions in three-space can greatly change the final orientation of the mass whenever
the rotational angles involved are large, like the 90◦ angles selected for Figure 1.3.
There are two simple ways of circumventing this difficulty. The first simplifying
approach is to restrict the rotational motion equations to a single plane. In a sin-
gle plane, all rotations simply add or subtract as scalar quantities. This is a wholly
satisfactory approach for most of the illustrative pendulum problems considered in
the next chapter. The second option for simplification is to retain rotations about
more than one orthogonal axis but limit all those rotations to being small. Here
“small” means that the tangent of the angle is closely approximated by the angle
itself.2 As is explained in Ref. [1.2], p. 271, in contrast to larger angles, angles about
orthogonal axes of these small magnitudes can be added to each other as vector
quantities. This approach of restricting the rotations to either being small or lying in
a single plane would not be adequate for formulating a general analysis of the motion
of bodies of finite size, which is not a present concern. However, this is a satisfactory
approach for almost all structural dynamics problems because structural rotations
due solely to the vibrations of a flexible structure are almost always less than 10◦

or 12◦. Therefore, to repeat and thus underline this important point, for the present
purposes of structural dynamics, it is often satisfactory only to look at rotations in a
single plane or restrict the analysis to small rotations, which can be added vectorially.

To further the discussion, consider all rotations confined to a single plane that,
for the sake of explicitness, is identified as the z plane. To reflect the change from
three to two dimensions, the notation FP for a fixed point in three-dimensional space,
transitions to FA for a fixed axis perpendicular to the zplane. This simplification from
a general state of rotations to those only about an axis paralleling the zaxis allows the
introduction of a pair of convenient unit vectors in the z plane called p1 and q1 such
that p1 is directed from the origin toward the center of mass and q1 is rotated 90◦

counterclockwise from p1. These two unit vectors rotate in the z plane as the center

2 For example, 10◦ (expressed in radians) and the tangent of 10◦ differ by only 1%.
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Figure 1.4. (a) The relationship between the rotating unit vectors and the fixed unit vectors,
i and j. (b) Use of unit vectors to locate the ith mass particle.

of mass moves in that plane. In terms of the fixed-in-space Cartesian coordinate unit
vectors, i, j, as shown in Figure 1.4(a),

p1 = +i cos φ1 + j sin φ1

q1 = −i sin φ1 + j cos φ1.

Again, even though p1 and q1 have a fixed unit length, they have time derivatives
because their orientation in the z plane varies with time as the angle φ changes
with time. The above equations show that the time derivatives of these rotating unit
vectors are

ṗ1 = φ̇1q1 q̇1 = −φ̇1 p1.

This unit vector pair p, q can be used with both the position vector for the center
of mass and the vector from the center of mass to the ith mass particle. That is, as
illustrated in Figure 1.4(b),

r = r p1 and ei = ei p2i .
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As the final limitation on the dynamics equations to be developed, let the geometry
of the total mass be restricted to small changes in overall shape so that the rotation
angle for the jth mass about the center of mass differs so little from that average
rotation that the average rotation φ2 can be used as the rotation angle about the
center of mass for all the mass particles that are included within the boundary of the
total mass. This is a rather minor limitation, if any at all, for almost all structures.

With this preparation for the general FA case (i.e., when point P is at point O), it
is now possible to write the expression for the angular momentum, Eq. (1.4), for this
special case of rotations only about the z axis, as follows:

LF A = r × m ṙ +
∑

(ei × mi ėi )

= r p1 × m
d
dt

(r p1) +
∑

ei p2i × mi
d
dt

(ei p2i )

= r p1 × m(ṙ p1 + r φ̇1q1) +
∑

ei p2i × mi (ėi p2i + ei φ̇2q2i )

= (mr2) φ̇1k +
(∑

mi e2
i

)
φ̇2k

= [(mr2) φ̇1 + HCGφ̇2]k,

where the definition of HCG, the second moment of the mass about the center of
mass, is readily apparent. If the values of r and HCG are near to being constants,
where the latter restriction is consistent with the previous approximation that the
shape of the mass changes only slightly as the mass moves, then differentiating with
respect to time leads to the good approximation that

MF A = (mr2) φ̈1 + HCGφ̈2. (1.4b)

The above result is valid for any type of body undergoing no changes or only negligibly
small changes in shape and distance from the fixed axis. Again, although HCG has a
fixed value for a rigid body, this quantity varies with the displacements of a deformable
body. However, the displacements of a flexible structural body are usually quite small
relative to the overall dimensions of the body. In such cases, it is a good approximation
to regard HCG as a constant, using the undeformed value. Indeed, in the case of many
vibrations, the undeformed value is an average value. Moreover, when the distance
r from the coordinate system origin to the center of the mass under consideration is
very close to being a fixed distance, and when φ1 equals φ2, then the two right-hand
side terms in Eq. (1.4b) may be combined. The sum mr2 + HCG can be defined as
HF A. This definition is the parallel axis theorem for mass moments of inertia. Thus
in the case where the distances r and ei are very nearly constants, and when the
two rotational angles are equal, the rotation in a plane is governed by the following
simple equation:

HF A θ̈ = MF A, (1.5a)

where point P equals point O. This equation provides the desired form that parallels
the original form of Newton’s second law; that of a mass term multiplied by an
acceleration term equaling an applied load term.
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Turning now from the FP/FA case where point P is the same as point O (r P = 0),
and turning to the CG case where point P is at the center of mass, C, so that r = r P

and r i − r P = ei , the angular momentum about point P or C is simply

L =
∑

ei × mi ėi =
∑ (

mi e2
i

)
p2 × φ̇2q2 = HCGφ̇2k.

Substituting into Eq. (1.3) yields the simple result for the mass of a structural body

HCGφ̈ = MCG, (1.5b)

where point P equals point C. Equations (1.5a) and (1.5b) are particularly useful in
the analysis of pendulums, which are studied in the next chapter for the sole purpose
of practicing using the equations derived in this chapter.

1.5 Conservation Laws

Note that if the sum of all the forces external to the mass system, F, is zero throughout
the time period of study, then MP is also zero. Then, in this case, there are two imme-
diate corollaries of Eqs. (1.1) and (1.3b), which are that P and LP, the momentum
and angular momentum respectively, are constants. These theorems of constant (or
conservation of) momentum and constant (or conservation of) angular momentum
can be quite useful when dealing with isolated system models such as those of some
spacecraft. In general, when they apply, conservation of energy equations have an
advantage over Newton’s second law in its original or equivalent forms because these
conservation equations essentially accomplish the first and more difficult integration
of the otherwise required two integrations for a solution. However, the conserva-
tion of energy theorem is generally not recommended for use in structural dynamics
problems because it is often more useful to employ all energy quantities within the
context of the Lagrange equations (soon to be derived) and certainly more likely to
avoid those deceptive situations where, despite the fact that there is no dissipation of
energy incorporated in the system analytical model, the energy is nevertheless not
a constant except in an average sense. An example of such a deceptive situation is
considered in the next chapter.

1.6 Generalized Coordinates

Before deriving the Lagrange equations, it is necessary to introduce the concept of
generalized coordinates. Generalized coordinates, also referred to as degrees of free-
dom (DOF), are instantaneous measures of the deflected position of the dynamical
system relative to a reference or datum position. In the case of structures subjected
to static loads, the datum position is usually the undeflected position. In the case
of loads that vary significantly with time, the datum is usually the static equilibrium
position (to be explained later). Regardless of the datum,

Generalized coordinates are the independent time functions that specify the
instantaneous position of all the mass particles of the system without ambiguity
and without redundancy.
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Figure 1.5. Generalized and other coordinates for a flat ruler moving in the plane of the paper.

It is important to note from this definition that it is the motions of the system mass,
not those of, say, elastic elements, that are described by the generalized coordinates.

In contrast to generalized coordinates, spatial coordinates only perform the duty of
merely distinguishing between different material points (particles) within the system
under study. In other words, the spatial coordinates may merely name the particle
by naming the point where the particle is located, say, before deformation or move-
ment of the whole body. The following example clarifies the concept of generalized
coordinates and the distinction between generalized coordinates and ordinary spatial
coordinates.

Consider a flat ruler sliding on a tabletop. See Figure 1.5. Model the flat ruler
as being a rigid body because its deformations due to its motion3 are very small
compared to its overall motion, and those deformations are of no present interest.
Therefore a Cartesian system attached to, and thus moving with, the ruler is a coor-
dinate system that identifies material points in the ruler by identifying their fixed
location relative to the material point where this Cartesian coordinate system origi-
nates in the ruler. However, let the quantities u, v, and θ be as indicated in the figure.
Since the ruler is modeled as rigid, the position of every mass particle in the ruler
is exactly specified relative to its starting position when the values of u, v, and θ are
specified and vice versa. Thus u, v, and θ are one possible set of generalized coordi-
nates for all of the many mass particles contained in the ruler. There are many other
possible sets of generalized coordinates for this ruler. For example, instead of using
the Cartesian type coordinates u, v to locate the center of mass, two polar coordi-
nate type coordinates would be equally effective. However, no matter what specific
choices are made for this ruler, any valid set of generalized coordinates will consist
of three, and only three, such coordinates. Therefore this dynamic system is called
a three degree of freedom system. It is important to understand that the number of
degrees of freedom is an inherent characteristic of the system mathematical model.

3 Any motion of a mass that involves accelerations, by virtue of Newton’s second law, creates (inertial)
forces that in turn produce deformations. Thus there is feedback because the deformations affect the
accelerations that may be thought of as starting the chain of consequences. The structural dynamics
feedback loop must be described by differential equations.
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Note that the definition of generalized coordinates is quite broad. Although dis-
tances and angles are almost always the most convenient choices for generalized
coordinates, they are not the only possibilities. As a pathological example of other
possibilities, note that the position of the center of mass of the ruler could also be
located in the following manner. Let there be a linear, stationary temperature gradi-
ent from one edge of the rectangular tabletop to the opposite edge. Let the friction
between the ruler and the tabletop be so small as to not affect this temperature gra-
dient. Let there also be a prism and a light source that causes a rainbow of color
to spread over the tabletop between the two other opposite edges. Then the ruler’s
center of mass could be unambiguously located by specifying the two generalized
coordinates of tabletop temperature and light wavelength.

Reconsider the above ruler and, for example, the following three candidate gen-
eralized coordinates: u, v as previously discussed and a coordinate v2 for the zero
length end of the ruler, as is also shown in Figure 1.5. This set of three coordinates is
not a valid set of generalized coordinates. The reason that these three are not valid
is that specifying these coordinates does not distinguish between two possible posi-
tions for the ruler. One possible location for the ruler is the original position shown
in Figure 1.5. The other possible location is that where the ruler is pivoted about a
fixed center of mass (i.e., fixed u, v) so as to place the zero-inch mark to the right of
the center of mass and, of course, a distance v2 above the horizontal datum. By their
definition, such an ambiguity is not permissible for generalized coordinates. Thus
u, v, v2 are not a valid set of generalized coordinates.

The following are some further examples of identifying generalized coordinates
and establishing the number of DOF associated with a mass system. In the case of
the arbitrary motion in the z plane of a single mass particle, only two generalized
coordinates, such as the polar coordinates r and θ , are required to totally specify the
position of the mass particle. This is so because geometrically the particle is only a
point. Six generalized coordinates are necessary to specify the position of all the mass
particles of a rigid body of finite size moving arbitrarily in three-dimensional space.
A possible choice for those six DOF are three Cartesian type coordinates to locate
the center of mass and pitch, roll, and yaw angles in a prescribed order. A butterfly
with a rigid body to which are hinged two rigid wings (like a door is hinged to its
frame) is an eight-DOF system. That is, first of all, the butterfly body would have the
same six DOF that any such rigid body has. There would be an additional (angular)
DOF for the location of each wing relative to fixed axes in the body for the total
of eight DOF. A circular cylinder rolling in one direction without slipping on a flat
tabletop has only one DOF. This is so because the zero-slip condition mandates that
the distance moved by the line of contact between the cylinder and tabletop is the
same as the length of the circumferential arc between the original line of contact (at
zero distance) and the instantaneous line of contact. A more complicated rigid body
situation is that of a thin hoop that remains vertical while rolling without slipping
on a flat tabletop. A total of four DOF are required to specify the position of all the
mass particles of the hoop. Two DOF can be used on the tabletop to locate the point
of contact between the hoop and the tabletop. Another DOF is needed to locate
the rotation of the plane of the hoop relative to a fixed plane perpendicular to the
tabletop. A fourth DOF is needed to locate on the hoop the point of contact between
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the hoop and the tabletop. This latter DOF could be the arc length of the path taken
by the nonslipping hoop or it could be more simply a circumferential arc length in
a specified diection between a fixed point on the hoop and the point of contact. To
understand why this latter DOF is necessary to avoid an ambiguity, picture the point
of contact and any other point on the hoop. This other point can be made into the
point of contact, with the first three DOF values unchanged in the final configuration,
by rolling the hoop around a circle whose circumference is the arc length between
these two circumferential points, the original point of contact and the newly desired
point of contact. Examples and exercises provide other examples.

1.7 Virtual Quantities and the Variational Operator

Before deriving the Lagrange equations, it is also necessary to briefly review the
concept of virtual quantities and introduce the variational operator. A virtual dis-
placement may be defined as any displacement of arbitrarily small magnitude that
does not violate the constraints of the system. A virtual displacement may be a real
displacement (a rare choice) or entirely a figment of the imagination of the ana-
lyst. An arbitrary, and therefore imaginary, small displacement is the usual case for
a virtual displacement because generally it is a more useful choice than an actual
displacement.

Again consider the ruler of Figure 1.5, all of whose mass particles are completely
located by the three generalized coordinates u, v, and θ . These three generalized
coordinates are to be viewed as the real displacements of the ruler since the ruler
began its travels in the z plane from the location where all three generalized coordi-
nates have zero values. A virtual displacement in the vertical direction, symbolized
as δv, would be positive in the upward vertical direction because v is positive in
the upward direction.4 Thus a positive δv would be any small, imagined, exclusively
upward deflection beyond the real upward deflection v. Of course the ruler (in the
analyst’s imagination) would remain parallel to the position it had before this virtual
displacement because at this point there are no virtual changes in the other two gener-
alized coordinates. If a positive δθ were the only virtual displacement, the ruler would
in the analyst’s imagination, rotate through a small angle, counterclockwise about
the point located by the u and v generalized coordinates. See Figure 1.6(a). Of course,
all three generalized coordinates, symbolized generally as qj , where j = 1, 2, 3, could
be simultaneously augmented by virtual displacements, symbolized in general as δqj.

The lowercase δ is the prefix that identifies all types of virtual quantities. Finally, an
example of a prohibited displacement, imagined or real, would be any movement of
the ruler off the z plane because such a motion would violate the constraints of the
mathematical model. Thus there generally would not be a virtual deflection away
from the z plane.

If there are (real) forces and moments5 acting on the mass system, then, just as
real increments in the displacements, dqi, give rise to real work done on the mass

4 In contrast, the symbol dv is always to be interpreted as a small and real increment to the vertical
displacement.

5 Except for one endnote in Chapter 3, there is no need to consider virtual forces or virtual moments in
this textbook.
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Figure 1.6. (a) Illustration of two (much exaggerated) virtual displacements. (b) Loads acting
on the flat ruler moving in the plane of the paper.

system, virtual displacements give rise to virtual work done on the mass system.
Virtual work is defined as real forces and moments moving through virtual displace-
ments that are, respectively, distances and rotations. In mathematical terms, just as
the standard definition for real work is dW = F · dr , the definition for virtual work
is δW = F · δr . Again the δ as opposed to the d, is used to distinguish between virtual
and real quantities. It is vital to understand that in the expression for virtual work,
the magnitudes and directions of the real forces are, of course, entirely unaffected
by the virtual displacements and therefore to be regarded as constants when calcu-
lating the virtual work.

Consider, as an example for calculating virtual work, Figure 1.6(b), where the real
forces and moments acting on the ruler are displayed. Following the definition above,
the virtual work done by these (external) forces and moments is obtained by simply
considering each virtual displacement in turn and paying attention to whether the
force components move in the positive or negative direction as a result of the virtual
displacement. The result for this example is

δW = (F3 − F1 sin θ + F2 sin θ)δu + (F1 cos θ − F2 cos θ)δv

+ (M1 − aF1 − aF2 + aF3 sin θ)δθ.

As is true in any virtual work expression, the coefficients of the virtual displacements
are called generalized forces. The generalized force corresponding to the generalized
displacement δqi (i.e., the coefficient of) is symbolized as Qi . In the above expression
the generalized forces are the quantities within the parentheses. That is, in general

δW ≡
∑

Qiδqi

so here

Qu = (F3 − F1 sin θ + F2 sin θ) Qv = (F1 cos θ − F2 cos θ)

Qθ = (M1 − aF1 − aF2 + aF3 sin θ).
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Note that when the virtual displacement has the units of radians, the generalized
force has the units of moment.

Calculating the virtual work of external forces acting on flexible bodies is just as
straightforward as it is for rigid bodies. If, for example, a simply supported beam
whose elastic axis is in the x direction is loaded by a single concentrated force of
magnitude F acting in the positive z direction at x = a, then the total external virtual
work is δWex = Fδw(a), where w(x) is the beam’s elastic axis deflection in the posi-
tive z direction.6 The vertical support reactions do no virtual (or real) work because
the constraints on this beam mathematical model are that there are no lateral deflec-
tions at the beam support reactions. If in addition to the above-cited concentrated
force there were an additional loading consisting of an externally applied force per
unit length, f (x), acting in the negative z direction, then the additional external
virtual work would be

δWex = −
right end∫

left end

f (x) δw(x) dx.

The virtual work or real work done by the internal forces of the above-discussed
rigid ruler or any other rigid mass is always zero because the rigidity of the body
requires all of those equal and opposite internal force pairs to move together in
lockstep. That is, because these paired internal rigid body forces move through the
same distances, together they do virtual work or real work of equal magnitude but
opposite sign, and thus all such work cancels. However, if the body is elastically or
plastically deformable, the virtual work or real work of the internal forces is generally
not zero. This is so because, the virtual or real deformations of the body allow those
equal and opposite forces to move closer together to, or further away from, each
other. In either case, the net work is generally neither zero nor insubstantial.

Before introducing the variational operator, it is important to recall that a point
function is a mathematical function whose value only depends on the instantaneous
values of its argument. Perhaps the most important aspect of point functions is that
the integral of the differential of a point function is not path dependent. Examples
of point functions are (i) a generalized coordinate, qi (t); (ii) for a continuum, a
temperature change distribution, ∆T(x, y, z); and (iii) for a continuum, the vector
field of x-component displacements from an original location to another location,
u (x, y, z, t). Examples of a path-dependent function are (i) W(s), the work done on
a wood block by the friction force as it slides over a tabletop; (ii) W(s), the work
done by a force whose point of application and line of action is fixed relative to a
body that translates and rotates; and (iii) σ (ε), the stress, as a function of strain, in
a metal after the yield point has been passed and plastic strains and deformations
begin. A work function is a point function if and only if the forces contributing to
the work are “energy conservative”; that is, when the forces themselves are point
functions.

6 The symbols for the Cartesian components of the total displacement or deflection vector used here are
u for the x direction, v for the y direction, and w for the z direction.
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The distinction between point functions and path-dependent functions is necessary
because they require different mathematical treatment. For example, if f (x) is a point
function, as before, then the value of its integral depends on only the initial and final
points of the integration interval. If f (x) is path dependent, then its integration
between initial and final points must be line integration where a specific path is
specified. The value of the line integral between the fixed points changes when the
path changes.

Let f be a point function. Then, in this case, the d of the symbol df may be
regarded separately from the remainder of the differential symbol, f . The d is called
the differential operator. That is, df = d( f ). (The chain rule result of the application
of the differential operator to a point function is reviewed below.) If f were not a
point function, then the d and the f cannot be separated; that is, df is merely a single,
infinitesimal quantity.

It is also useful to permit the δ of δf to be separated from the point function f . The
separated δ is called the variational operator. In brief, the rules for the application of
the variational operator are the same as those for the differential operator (meaning
that the calculus already learned by the reader is fully applicable here), with just
one exception. That exception is that the result of applying the variational operator
to any independent variable is zero. This selectivity with regard to dependent and
independent functions arises from the fact that, for example, the virtual displacement
δv(t) can happen without any sort of change in the time variable, and similarly for
some function G(x), there can be a δG(x) without there being a corresponding
δx. Therefore the variational or δ operator is more selective than the differential
operator in somewhat the same way as partial differentiation is more selective than
total differentiation.

In general, which variables are to be classified as independent, and which are to
be classified as dependent, follows from the analyst’s choice among a force, a dis-
placement, or a hybrid-type analysis. All routine structural dynamics analyses are
displacement-type analyses. Thus in this textbook all displacement-type quantities
(such as deflections and strains) are classified as dependent quantities; that is, depen-
dent on the applied loads, time, and so on. As such, the displacements and strains
always have nonzero variations that can be written, respectively, as δq and δε. How-
ever, all force-type quantities, such as forces, moments, and stresses, are classified
as independent variables and their variations are zero. Furthermore, spatial coordi-
nates, time, and temperature (if not used as a generalized coordinate) are always to
be considered as independent variables and thus also always have zero variations.
For example, consider a point function of the form f (F, u, ∂u/∂x, x, t), where F is a
force, u is a displacement, x is a spatial coordinate, and t is time. By the calculus, where
the combination of a comma and a variable subscript indicates partial differentiation
with respect to that subscripted variable (e.g., u,x ≡ ∂u/∂x),

df = ∂ f
∂ F

dF + ∂ f
∂u

du + ∂ f
∂u,x

du,x + ∂ f
∂x

dx + ∂ f
∂t

dt ,

but, by the rules for the variational operator, where only the dependent variables
have nonzero variations,

δ f = ∂ f
∂u

δu + ∂ f
∂u,x

δu,x. (1.6)
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A justification for the rule that the variational operator ignores independent variables
while acting only on dependent variables is offered in Endnote (1). The reader may
also consult Ref. [1.3], Chapter 2, or Ref. [1.2], Chapter 17, for further discussion and
explanation of the variational operator.

An important pair of rules for the use of the variational operator are that the
order of the application of variational operator with both derivatives and definite
integrations is interchangeable. (When the order of multiplication of two quantities
is interchangeable, those quantities are called multiplicatively commutative.) That
is, it is always possible to write the following types of interchanges, where the deriva-
tive interchange is accepted as part of the definition of the variational operator,
whereas the integration interchange is proven in Endnote (1).

δu,x ≡ δ

(
∂u
∂x

)
= ∂

∂x
(δu) δ

∫ ∫ ∫
u,x d(vol) =

∫ ∫ ∫
δu,x d(vol ). (1.7)

1.8 The Lagrange Equations

Now that generalized coordinates, virtual work, and the variational operator have
been introduced, the Lagrange equations can be derived, via Hamilton’s principle,
for a collection of particles. The choice of a collection of particles as the mass system
to be studied is prompted by the original formulation of Newton’s laws and the above
development of its corollaries. The final step of the derivation of Hamilton’s principle
is to suggest that the collection of particles can be made so large and so dense as to be
any continuum7 model of interest, such as a structure composed of beams and other
structural elements. This questionable approach to a limit is valid in this case because
the exact same final result also can be obtained starting with an arbitrary continuum
as the structural body of interest, and using the equations of solid mechanics. See
Ref. [1.2], p. 514.

Consider a specific grouping of N particles that comprise a deformable body of
arbitrary shape and, in the above sense of a limit, represent any structural material.
Newton’s second law applies to each of the N particles. Let F ex

i be the sum of all the
forces acting on the ith particle that originate from sources outside of this collection
of particles (to be called the net external force acting on the ith particle). Let F in

i

be the sum of all the forces acting on the ith particle that originate from interactions
with the other N − 1 particles (i.e., the net internal force acting on the ith particle).
Then, with r i being the position vector for the mass mi , Newton’s second law applied
to only the ith mass is

mi r̈ i = F ex
i + F in

i . (1.2)

Transpose the right-hand side of Eq. (1.2), and dot-multiply the result by an (arbi-
trary) virtual displacement for the ith mass to obtain one form of d’Alembert’s
principle (

mi r̈ i − F ex
i − F in

i

)
· δr i = 0. (1.8a)

7 A continuum is a material that can be endlessly subdivided, and regardless of how small the material
sample, it will still exhibit the material properties of the material as a whole. Continuums are convenient
fictions for structural analysis.
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Again sum over all the N particles.∑ (
mi r̈ i − F ex

i − F in
i

)
· δr i = 0. (1.8b)

Note that the sum involving the net internal force terms is not zero in this equation
because each of these equal and opposite forces that is a component of a net internal
force is multiplied by a generally different virtual displacement. To illustrate this
point, for simplicity, consider a deformable “body” that includes only two mass par-
ticles. In this case of just two particles, there is only one internal force acting on each
particle. Of course, these forces are of equal magnitude, but are oppositely directed.
Since the body is deformable, the position of the first particle can be fixed in space
while the second particle moves toward the first particle. When the moving particle
approaches the stationary particle, the internal force acting on the moving particle
moves as well. The result of the internal force moving through an actual distance is
(actual) work that is called the internal work. What can be true for the actual dis-
placements also can be true for the virtual displacements because there are no rigid
body constraints that prohibit the particles from virtual movement toward, or away
from, each other.

From the definition of virtual work, the second and third sums in the above equa-
tion, respectively, are identified as the virtual work done on the mass system by the
external forces, δWex, and the virtual work done on the mass system by the internal
forces, δWin. Hence the above equation can be rewritten as∑

mi r̈ i · δr i = δWex + δWin. (1.9)

Using the product rule for differentiation in the form uDv = D(uv) − vDu, which is
as valid for the variational operator as it is for the differential or derivative operator,
rewrite the left-hand side as follows:∑

mi r̈ i · δr i =
∑ [

mi
d
dt

(ṙ i · δr i ) − mi ṙ i · δṙ i

]
.

The second term on the right-hand side can be rewritten as∑
mi ṙ i · δṙ i = δ

∑
(1/2 mi ṙ i · ṙ i ) ≡ δ

∑
(Ti ) ≡ δT,

where each of the time-varying, velocity-dependent functions Ti , defined above,
is called the kinetic energy of the ith particle, and, of course, T is the (system or
total) kinetic energy. It can be seen from the second of the above equations that
(i) the kinetic energy is always a positive quantity whenever the velocity is not zero;
and (ii) because r i (t) is a point function (dependent only on spatial position and
time), so too is the kinetic energy. Since each of the kinetic energy expressions
is a point function, the variational operator can be separated from kinetic energy
expressions. The knowledge that the kinetic energy of a system of masses is a point
function, and thus dependent only on the current position of the masses relative to
the datum, will make calculating kinetic energy expressions a much easier task than
it would be otherwise. This is so because, as illustrated in the next chapter, it will
not be necessary to determine the actual trajectories of the masses, but only their
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velocities at the initial and end points of those trajectories. Substituting the above
results into Eq. (1.8b), that equation can be rewritten as

δT + δWex + δWin =
∑

mi
d
dt

(ṙ i · δr i ).

Since each of the particle mass values is a constant, the derivative operator acting
on the right-hand side of the above equation may be placed at the beginning of the
summation. The next step of the derivation of Hamilton’s principle is to integrate
both sides of the above equation over a time interval defined by the arbitrary time
limits t1 and t2. Recall that, as is true for real displacements over time, the virtual
displacements of each of the mass particles, δr i , must be a smooth function of time.
That is, the virtual displacements must abide by the constraint applied to the real
displacements that they be smoothly continuous over time. It is now convenient to
require that all these arbitrary virtual displacements have zero values at the two
end points of the arbitrary time interval of integration, t1 and t2. Then, because the
right-hand side is the definite integral of an exact differential, it can be integrated
immediately with a zero result at the two arbitrary time limits. The result is Hamilton’s
principle:

t2∫
t1

(δT + δWex + δWin) dt = 0. (1.10)

An important point about Hamilton’s principle is that in its derivation there are
no restrictions placed on either the external forces or the material represented by the
internal forces of the N particles. Specifically, these internal or external forces can
be either energy conservative or energy nonconservative because nowhere has the
variational operator, δ, been separated from the W on the presumption that work
was a point function.

It is a short series of steps from Hamilton’s principle to the Lagrange equations.
Like the flat ruler used in a previous example in this chapter (and like the structural
models that are developed in later chapters), the motion of a collection of N mass
particles (or M rigid or near rigid masses) can be described in terms of n general-
ized coordinates, qj , j = 1, 2, . . . , n. Since the position vector and the generalized
coordinates both locate the position of mi , there must be a functional relationship
between the position vectors and the generalized coordinates. Of course, like the
position vectors, the generalized coordinates are also implicit functions of time. It is
also possible for the position vector to be an explicit function of time, as can be seen
from the following example. Consider a pea (a particle) moving on the upper surface
of a computer’s hard disk as the disk rotates at a constant angular velocity ω. Let the
generalized coordinates of the pea be the polar coordinates8 r(t) and θ(t), where θ

is measured from a radial line fixed on the disk. Since that rotating fixed line on the
upper disk surface cannot be expected to be part of a valid coordinate system, let the
rotated position of the hard disk be measured relative to the front of the computer,
which is stipulated to move uniformly relative to a valid coordinate system whose

8 Here scalar r is not the magnitude of the soon-to-be-discussed position vector, vector r .
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fixed unit vectors are i and j. Then the position vector for the pea relative to the valid
coordinate system is

r(r, θ ; t) = [r cos(θ+ωt)]i + [r sin(θ + ωt)] j.

Now that, by illustration, the validity of the functional form r i = r i (qj , t) has been
established, the chain rule for differentiation leads to the following conclusion:

dr i

dt
≡ ṙ i =

n∑
j=1

∂r i

∂qj
q̇ j + ∂r i

∂t
.

Since the velocity vector ṙ i is clearly a function of the time derivatives of the gener-
alized coordinates, which are called the generalized velocities, so too is the kinetic
energy T. This example illustrates that the kinetic energy may also, through the
agency of the above partial derivatives, be a function of the generalized coordinates
themselves and an explicit function of time itself. Thus, in general, the kinetic energy
can be written in functional form as T = T(q̇i, qi, t). Then application of the varia-
tional operator as per Eq. (1.6), where, as always, δt = 0, yields

δT =
∑ [(

∂T
∂q̇i

)
δq̇i +

(
∂T
∂qi

)
δqi

]
. (1.11)

As discussed above, unlike the kinetic energy, the work functions can be path
dependent. Again, as previously illustrated, regardless of the nature of those associ-
ated actual forces, it is always possible to write

δWex =
∑

Q ex
i δqi and δWin =

∑
Q in

i δqi . (1.12a)

The general validity of, say, the first of these previously introduced equations can be
now deduced by using the chain rule with the variational operator as follows:

δWex =
∑

i

F ex
i · δr i =

∑
i

F ex
i ·

∑
j

∂r i

∂qj
δqj

=
∑

j

(∑
i

F ex
i · ∂r i

∂qj

)
δqj =

∑
j

Qex
j δqj .

Again, the quantity Qex
j is called the jth generalized external force in keeping with

the concept that force times displacement equals work. Be sure to note that the
above equation for generalized forces is not nearly as efficient a way of determining
the values of generalized forces as that previously illustrated. Recall that the more
efficient approach was simply taking, in turn, positive variations in the generalized
coordinates and calculating the work done by the applied forces and moments with
each such virtual displacement.

When a generalized force of the summation is known to be energy conservative,
such as an external generalized force resulting from a gravitational field, it is usually
convenient to go one step further by introducing a potential (point) function that is
associated with the energy conservative work done by such a force. In the case of
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the external work, let the potential function be written as V = −Wex. Then, by use
of the chain rule for partial differentiation

δV(qi ) =
n∑

i=1

∂V
∂qi

δqi = −δWex = −
n∑

i=1

Qiδqi . (1.12b)

Since each of the generalized coordinates is independent of the other generalized
coordinates, so too are the variations on the generalized coordinates. Then by setting
all but one of the varied generalized coordinates equal to zero, it is possible to
conclude that the external generalized force is obtained from this potential point
function by differentiation; that is, Qj = −∂V/∂qj . Note that here and from here on,
the superscript ex for the external forces will be dropped because the other forces,
the internal forces, will generally be only expressed in terms of a similar potential
function as explained in the next paragraph.

From this point on, consider that the N particles constitute a continuum, and,
unless otherwise stated, let that continuum be an elastic body. An elastic body or an
elastic material is an ideal where all work done on the body is stored without energy
loss, and thus can be fully recovered, say, by allowing the body to snap back to its
original size and shape. In other words, elastic bodies are idealizations that ignore the
internal friction, and hence energy loss, that occurs when real bodies are deformed.
Furthermore, elastic bodies have infinite viscosity. This means that elastic bodies do
not over time continue to deform under load, the phenomenon called creep. (Since
rubber does creep, it is not an elastic material.)

The work or energy stored in an elastic body is called the elastic strain energy.
Unfortunately, the above derivation of Hamilton’s principle based on a collection of
N particles is utterly useless for deducing a mathematical description of the strain
energy. It is necessary to resort to the ideas and descriptions of solid or continuum
mechanics where it is possible to talk about stresses and strains. From Ref. [1.3],
Chapter 1, or Ref. [1.2], Chapter 17, the strain energy for an elastic body of volume
vol is

U = 1
2

∫ ∫ ∫
[σxxεxx + σyyεyy + σzzεzz + σxyγxy + σxzγxz + σyzγyz]d(vol ),

where each stress is possibly a function of all the strains. Since the strains are functions
of the relative displacements, and the displacements of a solid body system, even a
flexible one, can be described by the generalized coordinates of the system, the strain
energy can be expressed in terms of the generalized coordinates. The details of those
steps in the general context of the finite element method (FEM) are explained,
for example, in Ref. [1.2], p. 711ff. The application of the FEM is described in
Chapter 3.

In summary, if the external virtual work is separated into its energy conservative
and energy nonconservative components, and the energy conservative components
are written in terms of appropriate potential energies, whereas the nonconservative
components are left in terms of generalized forces, then it is possible to write

δWex + δWin = −δV − δU +
∑

Qjδqj

=
∑ [(

∂V
∂q j

)
δqj +

(
∂U
∂qj

)
δqj − Qjδqj

]
, (1.13)
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where Qj now represents just those external generalized forces that are chosen not
to be, or, because they are not energy conservative, cannot be, included in the exter-
nal potential energy expression. Hence, substituting Eqs. (1.11) and (1.13) into Eq.
(1.10), and interchanging the order of the finite integration and the finite summa-
tion, a step that is always possible because the sum is a finite sum and the limits
of integration are also finite, yields the following elaborated form of Hamilton’s
principle:

∑ t2∫
t1

[(
∂T
∂q̇ j

)
δq̇ j +

(
∂T
∂qj

)
δqj −

(
∂V
∂qj

)
δqj −

(
∂U
∂qj

)
δqj + Qjδqj

]
dt = 0.

(1.14)

The first term has as a factor the quantity δ(dqj/dt), whereas all the other terms have
as a factor the term δqj. Again, because the variational operator and the derivative
operator are commutative, that is, because

δq̇ j ≡ δ

(
dq j

dt

)
= d

dt
(δqj ),

these two terms, the varied generalized coordinate and varied generalized velocity,
are not independent of each other. The first term can be changed to have simply δqi

as its factor by integrating by parts. The result for the typical ith term is
t2∫

t1

(
∂T
∂q̇i

)
δq̇i dt =

t2∫
t1

− d
dt

(
∂T
∂q̇i

)
δqi dt +

(
∂T
∂q̇i

)
δqi

∣∣∣∣
t2

t1

.

Recall the requirement stated before Eq. (1.10) that all virtual displacements, includ-
ing the δqi, are to be zero at the end points of this arbitrary time interval of integration.
Thus the second term on the right-hand side disappears. Substituting this result into
Eq. (1.14) yields

∑ t2∫
t1

[
− d

dt

(
∂T
∂q̇i

)
+ ∂T

∂qi
− ∂V

∂qi
− ∂U

∂qi
+ Qi

]
δqi dt = 0. (1.15)

The final argument begins by noting that all the virtual displacements δqi within
the open interval (t1, t2) are smoothly varying over time but otherwise arbitrary. In
other words, they are what the analyst wishes them to be. It is now convenient to
choose the following values for the virtual displacements. Let all but one, say δqj,
of the virtual displacements be zero. The result of this choice is that the summation
symbol in Eq. (1.15) disappears, and all the i summation subscripts change to a specific
j subscript. The integral that is left has an integrand that has two factors. The first
factor is enclosed within brackets, and the second factor is δqj. Recall that inside
the limits of integration the value of this single nonzero virtual displacement is not
restricted in any way other than that it must be small and, of course, that it must be a
continuous function of time. In other words, δqj(t) can be positive, negative, or both
inside the time interval of integration. Whatever values are chosen for continuous
time function δqj, the value of the one remaining integral remains fixed at zero. The
only way the integral can be zero, regardless of the choice for the values of the virtual
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displacement, is for the quantity in brackets to always be zero. Hence the conclusion
is the jth Lagrange equation:

d
dt

(
∂T
∂q̇ j

)
− ∂T

∂qj
+ ∂(U + V )

∂qj
= Qj . (1.16)

There are n of these equations, one for each virtual displacement. Since there are also
n unknown displacement functions of time, the qi , there are the proper number of
equations for the number of unknowns. Recall that this result began with Newton’s
second law. Hence the Lagrange equations are Newton’s second law in energy and
generalized coordinate form utilizing Euler’s concept of virtual work.

The examples in the early chapters of this textbook illustrate various applications
of the Lagrange equations. In particular, these chapters review the calculation of
the system kinetic energy, the calculation of the system virtual work to obtain the
generalized forces, Qi , and the construction of the potential functions V and U. A
guide for writing kinetic energy expressions is presented below. Most applications
are straightforward. However, an occasional application requires a familiarity with
the derivation of these equations and a knowledge of Newton’s laws from which
Hamilton’s principle and thus the Lagrange equations are derived as above.

1.9 Kinetic Energy

To conveniently elaborate the kinetic energy expressions, consider a rigid body or a
flexible body that is only undergoing negligibly small geometric changes over time.
Let the body be moving in three-dimensional space as pictured in Figure 1.2. From
the definition of the kinetic energy term in the derivation of the Lagrange equation:

T = 1/2
∑

mi ṙ i · ṙ i = 1/2
∑

mi (ṙ + ėi ) · (ṙ + ėi )

= 1/2
(∑

mi

)
ṙ · ṙ + ṙ ·

(∑
mi ėi

)
+ 1/2

∑
mi ėi · ėi

= 1/2 m(CG velocity)2 + 0 + 1/2
∑

mi ėi · ėi .

Let u, v, w be the three Cartesian components of the displacement vector for the
system center of mass from, say, its at rest position to its time-varying position. In
other words, let r = ui + v j + wk. Then the time derivative of the center of mass
position vector is ṙ = u̇i + v̇ j + ẇk. Hence, one possible and often convenient way
of writing the first part of the kinetic energy, that part directly related to the motion
of the center of mass, for vibrating mass systems is

Tcg = 1/2 m ṙ · ṙ = 1/2 m(u̇ 2 + v̇ 2 + ẇ 2).

This result can be viewed as a manifestation of the Pythagorean theorem; that is,
the square of the total velocity is the sum of the squares of the three orthogonal
components of the total velocity.

The second part of the kinetic energy is the part associated with the spin about the
center of mass because it involves the time derivatives of the ei vector. The length of
the ei vector changes very little as a structural body moves and flexes. Thus the great
majority of the time change of the ei vector is associated with its change of orientation,
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Figure 1.7. Setup for calculating rectilinear velocities u̇, v̇, ẇ at mi due solely to the three
angular velocities at the CG, where ei = xi i + yi j + zk.

that is, its spin. The kinetic energy associated with the spin of a structural body can
be detailed in the following way. Consider Cartesian coordinate axes originating at
the center of mass of the body and that have any fixed orientation with respect to the
constant mass and (very closely) constant geometry of the body. Such a coordinate
system is called body fixed. See Figure 1.7, where the ith mass particle is located by
the position vector

ei = xi i + yi j + zi k.

Let the components of the angular velocity about the arbitrarily selected x axis be
designated as θ̇ x, and so on,9 which are positive according to the right-hand rule
about the positive coordinate axes. The additional velocities at mi because of the
small rotations about the x, y, and z axes, labeled u̇i , v̇i , and ẇi in the figure, can
be deduced from Figure 1.7 by using the right-hand rule for the angular velocities
θ̇ x, θ̇ y, θ̇ z, along with the perpendicular offset distances from the CG to mi . Thus the
total velocity vector at mi is, again, for small rotations

ėi = u̇i i + v̇i j + ẇi k = (zi θ̇ y − yi θ̇ z)i + (xi θ̇ z − zi θ̇ x) j + (yi θ̇ x − xi θ̇ y)k,

which is nothing but the cross product of the angular velocity vector and ei . It is
valid to sum these three angular velocity terms in this way because, as previously
discussed, small angles, and hence their time derivatives (the angular velocities), can
be treated as vector quantities even though larger angles, in general, cannot be so
described. When the “spin” kinetic energy of the ith particle is summed with that

9 These body-fixed Cartesian axes rotate relative to the valid Cartesian coordinate system, and thus it is
not valid to write Newton’s laws or their corollaries in this coordinate system. However, it is valid to
use relative velocities in this system.
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of all other such particles to obtain the spin kinetic energy for the entire body, the
result is

Tspin =
∑

Ti,spin = 1/2
∑

mi ėi · ėi

= 1/2
∑

mi

[(
z2

i θ̇
2
y + y2

i θ̇2
z − 2yi zi θ̇ yθ̇ z

)
+ (

x2
i θ̇2

z + z2
i θ̇

2
x − 2xi zi θ̇ x θ̇ z

) + (
y2

i θ̇2
x + x2

i θ̇2
y − 2xi yi θ̇ x θ̇ y

) ]
.

For this case of a rigid or a near rigid body, that is, where there are a great many
particles packed into a fixed or very nearly fixed, closed, boundary surface, the above
summations over the mass particles are conveniently restated as three-dimensional
integrals that sum over differential masses mi → dm. This transition from a collection
of particles to a continuum prompts the introduction of the mass density, ρ, where
dm = ρd(vol) = ρ dx dy dz. Then the summations found in the above spin kinetic
energy expression can be written in terms of the angular velocities and the following
integral forms suitable for any slightly deformed body

Hxx =
∫ ∫ ∫

ρ(y 2 + z 2) d(vol) Hxy = −
∫ ∫ ∫

ρ x y d(vol)

Hyy =
∫ ∫ ∫

ρ(x 2 + z 2) d(vol) Hxz = −
∫ ∫ ∫

ρ x z d(vol)

Hzz =
∫ ∫ ∫

ρ(x 2 + y 2) d(vol) Hyz = −
∫ ∫ ∫

ρ y z d(vol).

The next organizing step is to arrange the previously stated “spin” kinetic energy for
this single finite body in matrix form as

Tspin = 1/2�θ̇�[H ]{θ̇},
where

{θ̇}t = �θ̇ x θ̇ y θ̇ z�
is called the angular velocity vector (row matrix) and where

[H ] =

 Hxx Hxy Hxz

Hxy Hyy Hyz

Hxz Hyz Hzz




is called the mass moment of inertia matrix. Therefore the total kinetic energy of the
single rigid or near rigid shaped body is as follows:

T = 1/2� u̇ v̇ ẇ�

 m 0 0

0 m 0
0 0 m







u̇
v̇

ẇ


 + 1/2�θ̇�[H ]{θ̇}. (1.17)

Specifically, the second moments of mass for a continuum, such as Hxx, with two
identical subscripts, are called mass moments of inertia. The quantity Hxx is spoken
of as the mass moment of inertia “about the x axis” because its integrand factor
y2 + z2 is the squared distance from the x axis to the ith particle or, in this case, the
equivalent infinitesimal mass dm = ρd(vol). Mass moments of inertia are measures
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of the dispersal of the body mass from the center of mass much like the statistical
variance.

Second moments of mass such as Hxy, with subscripts that are not the same, are
called mass products of inertia. Note that the order of the subscripts is immaterial.
Products of inertia are measures on the nonsymmetry of the mass distribution. If, for
example, for each x plane through the body, the mass is distributed symmetrically
with respect to either the y or z axis, then Hyz = 0. The zero value is a result of the
fact that for this symmetry, every dm that has a positive value of the product yzdm,
there will be another dm with a equal but negative value of yzdm.

Note that when the mass moments of inertia are arranged as above in a three by
three matrix where mass moment terms with an x subscript are placed in the first
row and column, those with a y subscript are placed in the second row and column,
and so on, the matrix [H ] is a symmetrical matrix just as is the three by three matrix
[m] that just has the value of the mass as its diagonal terms.

The symbol H was chosen to be very clear about the distinction among mass
moments of inertia, area moments of inertia for beams, and the St. Venant constant
for uniform torsion for beams (another area distribution measure related to the
twisting of beams). Their respective basic symbols in this textbook are H, I, and J,
with appropriate subscripts on the first two.

Recall that the triple matrix product involving the angular velocities and [H ] are
calculated relative to arbitrarily chosen, body-fixed Cartesian coordinate axes. This
calculation can be simplified by choosing that unique body-fixed Cartesian coordinate
system where [H ] is a diagonal matrix; that is, where all the products of inertia are
zero. The Cartesian coordinates for which [H ] is a diagonal matrix are called the prin-
cipal mass axes, and the corresponding mass moments of inertial are called the prin-
cipal mass moments of inertia. In many cases it is a simple matter to identify the
principal mass axes. If the body has an axis of symmetry with respect to both body
geometry and mass distribution, then that axis of symmetry is always one of the three
principal axes. If the principal axes are not evident, then the location of the principal
mass axes and the magnitudes of the principal mass moments of inertia can be calcu-
lated by solution of the same matrix eigenvalue problem used, for example, to extract
the principal stresses at any point in a continuum from the three by three general
stress matrix. See, for example, Ref. [1.3], Chapter 1. It is also worth noting that just
as there are invariants associated with the stresses, there are invariants associated
with moments of inertia. As an example of this parallel between stress and moment
of inertia invariants (with respect to coordinate axis rotation), note that just as

σxx + σyy + σzz = σXX + σYY + σZZ

where capital letter subscripts indicate principal axes, then

Hxx + Hyy + Hzz = HXX + HYY + HZZ.

Finally, from Eq. (1.17), when the motion is confined to a single plane, say the
z plane, the kinetic energy in terms of the center of mass rectilinear and angular
velocities is simply

T = 1/2 m(u̇ 2 + v̇ 2) + 1/2HCGθ̇
2
CG, (1.18)
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where HCG is the mass moment of inertia about an axis perpendicular to the z plane.
Endnote (2) offers an immediate, although peripheral, example of the use of kinetic
energy in a structural context.

1.10 Summary

For structural engineers to comprehend the rich and diverse history of structural
analysis, a knowledge of the dynamics of rigid and flexible bodies is essential. For
example, one of the four classical methods of analysis10 in the theory of elastic stabil-
ity is the dynamic method. See Chapter 1 in Ref. [1.4]. One example of the need for
the dynamic method for solving an elastic stability problem is the seemingly static
problem called Beck’s problem, where a fixed magnitude compressive force acts at
the end of a long beam and remains parallel to the beam axis (making it a non-
conservative force) as the beam buckles. Newer developments such as the discrete
element method, Refs. [1.5,1.6,1.7], which has been applied to the collapse and post-
collapse histories of structures, also require a knowledge of structures and dynamics.
However, because of the general limitation of the material discussed in this textbook
to small angles of rotation in three-dimensional space, the knowledge of dynamics
required for this textbook is limited to the basic equations summarized below, where
the emphasis is on the use of the Lagrange equations.

1. Newton’s second law of motion for a mass m of finite spatial dimensions, and
velocity v at its center of mass, subjected to a net (external) force of magnitude F is

F = m
dv

dt
. (1.1)

2. The rotational motion θ(t)of a mass m about an axis parallel to a fixed z axis, or
about a z axis passing through the center of mass, for both small and large angles in
the single plane of motion, are respectively described in terms of external moments
by

HF A θ̈ = MF A (1.5a)

and

HCG θ̈ = MCG. (1.5b)

3. The jth Lagrange equation in terms of the jth DOF qj is

d
dt

(
∂T
∂q̇ j

)
− ∂T

∂qj
+ ∂(U + V)

∂qj
= Qj . (1.16)

4. The total kinetic energy of a rigid or near rigid body is

T = 1/2�u̇ v̇ ẇ�[\m\]




u̇
v̇

ẇ


 + 1/2�θ̇�[H ]{θ̇}. (1.17)

10 The other three methods are the adjacent equilibrium method, the imperfection method, and the
energy method.
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The three angles in the above angular velocity vector are limited to being angles
small enough that the angle (in radians) is a good approximation to the tangent of
the angle because the second triple product of this kinetic energy expression involves
the addition of angles from different orthogonal planes.

In this textbook, after preliminary use of the force and moment equations,
Eqs. (1.1) and (1.5), the focus is entirely on the easier to use Lagrange equations,
Eq. (1.16), using the description of the kinetic energy that is set forth in Eq. (1.17).
The potential functions in the Lagrange equation, Vand U, are discussed at greater
length. The mathematical description of the strain energy U is further developed in
Chapters 3 and 4. The following two example calculations hopefully will shed further
light on the fourth component of the Lagrange equations, the generalized forces.

EXAMPLE 1.1 (a) Consider the system of two rigid bodies connected by a single,
massless elastic spring, sketched in Figure 1.8(a). The rigid bodies roll on the rigid
surface without friction. This is a two-DOF system. Select the generalized coordinates
q1 and q2 to locate the position of each mass particle in the system. The task is to
calculate the virtual work resulting from the presence of the externally applied force
F(t), and thereby deduce the values of the generalized forces associated with each
of the generalized coordinates q1 and q2. Hint: Give each generalized coordinate a
small variation in turn and calculate the virtual work that arises from those virtual
displacements. Focus here only on the external force F(t). The virtual work of the
internal forces such as those associated with the elastic spring are taken up in part
(c) of this example problem.

F(t) m2

m1

q2(t)

q1(t)

Massless
spring

(a)

z, w(x, t)

F2(t)

F1(t)

L
3

L
3

2L
3

x

(b)

Figure 1.8. (a) Example 1.1. (b) Example 1.2.



P1: JZP
0521865743c01 CUFX001/Donaldson 0 521 86574 3 September 6, 2006 10:23

1.10 Summary 31

(b) Repeat the above problem, but this time use as the two generalized coordinates
q1 and q3, where q3 specifies the relative motion between the two masses and is
positive when the horizontal distance between the right-hand ends of the two masses
increases.

(c) Repeat part (a), but this time include the internal forces of the elastic spring.
(Including the internal elastic forces in the virtual work expression is an alternative
to describing those same elastic forces using the strain energy potential function.)
Recall that the spring force is the spring stiffness factor, k, multiplied by the relative
deflection of the spring attachment points.

SOLUTION (a) Fix the value of the time, and give the nonzero value of q1 a small,
positive increment, δq1. Observe what work is done by the external force F(t). Since
the nonzero value of q2 has been unchanged, neither the upper mass moved nor
the force F(t) moved. Thus the virtual work associated with δq1 is zero. Now incre-
ment q2 and observe the work done. This time the force F(t) moves in its positive
direction a distance δq2, and the virtual work is Fδq2. Thus the total virtual work
is δW = 0δq1 + Fδq2. Since the generalized forces are simply the coefficients of the
virtual displacements, Q1 = 0, and Q2 = +F(t).

(b) Again give q1 a small increment δq1, keeping q3 fixed. With q3 fixed, the upper
mass moves through the same distance that the lower mass moves, δq1. Hence the
external force F(t) moves through that same distance and does virtual work equal
to Fδq1. Now increment q3 while fixing q1. Since any increase in q3 when q1 is fixed
results in the externally applied force F(t) moving opposite to is own direction, the
virtual work done is −Fδq3. Therefore, the generalized forces are Q1 = +F(t), and
Q3 = −F(t).

(c) All equal and opposite pairs of internal forces acting on the mass particles of
the rigid bodies move together and thus do no virtual work. As previously discussed,
such is not true for flexible bodies. From the original derivation of virtual work, note
that the only forces to be considered are those that act on mass particles. Thus the
only elastic forces to be considered are those acting on the two rigid masses, that is,
those at the spring ends. Without loss of generality, let q1 > q2. In this case, the spring
transmits a tensile force k(q1 − q2) that acts to the right on mass two and to the left
on mass one. Hence, following the above outlined procedure, the virtual change in
the generalized coordinates produce virtual work equal to

δW = −k(q1 − q2)δq1 + [F + k(q1 − q2)]δq2.

The generalized forces are, as always, merely the coefficients of their respective
virtual displacements. You should confirm that if the original choice was q1 < q2, the
result still would be the same.

The generalized forces that are internal to an elastic mass system are much more
easily obtained by resorting to their potential, the strain energy. In this textbook,
that is what is done routinely in later chapters. ★
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EXAMPLE 1.2 The time-varying deflection in the z direction of the axis of the
simply supported beam shown in Figure 1.8(b), symbolized as w(x, t), is (crudely)
approximated by the following two-term series. The quantities q1 and q2 are gener-
alized coordinates because their specification precisely locates (as far as this simple
mathematical model is concerned) every mass particle along the length of the beam
within the limits of engineering beam theory.

w(x, t) = q1(t) sin
πx
L

+ q2(t) sin
2πx

L
.

Calculate the generalized forces associated with these two generalized coordinates,
q1 and q2.

COMMENT These generalized coordinates are examples of what are called dis-
tributed coordinates, or sometimes Fourier coefficients, in that they provide an ampli-
tude for a fixed spatial distribution. Later in this text, such coordinates are used
extensively. Note that the two selected spatial distributions are the first two terms of
a Fourier sine series. The use of only two such terms generally would not produce
a reasonable approximation for the deflections along the length of the beam. How-
ever, commonly, six to ten such terms of a Fourier series would produce a very good
approximation.

SOLUTION In this example problem, note that the deflections w(x, t) are
positive upwards, and simply write the basic virtual work expression δW =
−F1δ w(L/3, t) + F2δw(2L/3, t). Note that the support reactions do no work or
virtual work because they are constrained to have zero real deflections, and virtual
deflections are not allowed to violate constraints. Now it is just a matter of substitut-
ing the given deflection approximation into the above virtual work expression. Thus
δW = −F1[δq1sin(π/3) + δq2sin(2π/3)] + F2[δq1sin(2π/3)+ δq2sin(4π/3)]. Hence,
after regrouping terms around the virtual displacements, Q1 = √

3/2(F1 − F2) and
Q2 = −√

3/2(F1 + F2).
Note that, as in the above virtual work expression, if there is a variational operator

present in one term of an equation, then every term on both sides of the equation
must also involve a variational operator. Note that in this problem there is a pos-
sibility of confusion regarding terms. Although δw is a varied deflection (a virtual
deflection), the term virtual displacement is always reserved for variations on the
generalized coordinates. In this case the virtual displacements are δq1 and δq2, and
not δw. Generalized forces are associated only with virtual displacements.

Although generalized coordinates are always functions of time, generalized coor-
dinates are also dependent on the time-varying loads acting on the mass system.
Both the loads and time are independent variables and as such they have no varia-
tion. Therefore it is not possible to use, for example, the chain rule and the variational
operator to write virtual displacements as functions of other varied (independent)
quantities because those other variations must be zero. The virtual displacements
are essentially indivisible, basic quantities. ★

It is emphatically not the purpose of this textbook to deal with rigid body dynam-
ics. However, one nonnumerical, rigid body dynamics analysis of historic interest is
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presented as Endnote (3) just to present one problem that makes use of the above
material. Although this example problem is another demonstration of the use of the
Lagrange equations, its main purpose is to suggest that rigid body dynamics can be
very challenging, which in turn underlines the simplicity of most of the dynamics
associated with structural analyses, the focus of this textbook. This problem also
provides a small insight into the genius of Newton.
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CHAPTER 1 EXERCISES (answers in Appendix I)

1.1 (a) Use a vector approach to prove that if F = m(dv/dt) is true for a mass
moving with an arbitrary (i.e., nonconstant) velocity relative to a “fixed” Cartesian
coordinate system, the exact same form of force–acceleration equation applies in
any other Cartesian coordinate system that translates at a constant velocity relative
to the first Cartesian coordinate system.

(b) Show that the time rate of change of the angular momentum (i.e., moment of
momentum) of a collection of particles is zero whenever all of the particles are moving
at a constant velocity relative to the valid coordinate system.

(c) Show that the sum of the moments about an arbitrary point of two collinear
forces of equal magnitudes, but oppositely directed, is zero.

(d) Show that if a rigid body is in static equilibrium, any virtual displacement leads
to zero virtual work.

(e) Show that if, in connection with an arbitrary virtual displacement, the virtual
work of a rigid body is zero, then that body is in static equilibrium.

1.2 Evaluate the mass moment of inertia at the center of mass about the z axis for
a constant density, rectangular parallelepiped whose x, y, z uniform dimensions are,
respectively, a, b, c. Hint: Multiple integration is expected.

1.3 How many degrees of freedom are necessary for the following rigid body
systems?
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(a) A cylinder rolling and slipping on a plane in one direction.

(b) A sphere rolling with or without slipping on a plane.

(c) A straight rod leaning against, and sliding down, a wall and across the floor, only
up to the point where the long, thin rod becomes horizontal and in full contact with
the floor. Let the motion of the rod be confined to a single plane perpendicular to the
wall, and let the rod not rotate about its own longitudinal axis. Realize that at some
point in its downward, rotating motion, the upper end of the rod will lose contact
with the wall. Of course, the lower end of the rod will remain in contact with the
floor.

(d) A circular pendulum; that is, a bar of finite dimensions that can pivot in all
angular directions about its connection at one end to a universal joint.

(e) A bead moving along a wire of arbitrary shape in a three-dimensional space.

1.4 (a) The lateral deflection w(x) (in the z direction) of a uniform, symmetric
cross-section beam element of length � subjected to a uniform lateral force per unit
length, fz, in terms of the applied load and the beam element end point generalized
coordinates, w1 through θ2, is

w(x) = fz�
4

24EI
(X4 − 2X3 + X2) + (2X3 − 3X2 + 1)w1

+ �(X3 − 2X2 + X )θ1 + (−2X3 + 3X2)w2 + �(X3 − X2)θ2,

where X = x/� is the nondimensional beam spanwise, spatial coordinate. The use of
the virtual strain energy for analyzing this beam segment requires the calculation of
δw(X). Determine that variation of the lateral deflection.

(b) A horizontal, rigid bar of length L is supported by a vertical spring at each of its
ends. The bar can only move vertically, and while doing so, it can undergo only small
rotations in the plane of the paper. Let the two DOF for this system be q1(t), which
measures the upward deflection at the left end of the bar, and q2(t), which measures
the upward deflection at the right end. The only applied load is an upwardly directed
force F(t) acting at the right end. Calculate the virtual work for this system.

(c) A simply supported (flexible) beam of length L is loaded over its span by
a downwardly directed, uniform load per unit length, f0(t). Let the positive
upward deflections of this beam be approximated by the two-term series w(x, t) =
q1(t) sin(πx/L) + q2(t) sin(2πx/L). Calculate the virtual work done on the beam by
the applied distributed forces when this beam undergoes a virtual deflection in accor-
dance with the given series approximation for the beam deflections. Determine the
values of the generalized forces.

1.5 Use the Lagrange equations to derive the polar coordinate forms of Newton’s
second law that describe the planar (z-plane) motion of the center of mass of body
of mass m. That is, let the two generalized coordinates of the CG of the mass m be r
and θ , and let the forces acting at the CG be Fr and Fθ .

1.6 (a) Let X and Y be Cartesian coordinates in the Earth’s equatorial plane and
fixed to the Earth’s surface. See Figure 1.9. With respect to the X, Y coordinate
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Figure 1.9. Exercise 1.6.

system, let u, v be the displacements of a particle whose motion is confined to that
equatorial plane. Using a valid coordinate system fixed in space at the Earth’s center,
show that the equations of motion for the particle are

FX = m(ü + 2v̇ω − uω2)

FY = m(v̈ − 2u̇ω − v̇ω2 − Rω2),

where ω is the Earth’s angular velocity about its polar axis and R is the Earth’s radius.

(b) In terms of the usual spherical coordinates (q1 = r , the radial distance from the
Earth’s center; q2 = φ, the colatitude angle from the north pole; and q3 = θ , the east
longitude angle from the prime meridian, where all three references, the Earth’s
center, the north pole, and the prime meridian are only translating, approximately,
with respect to the valid coordinate axes), use the Lagrange equations to write the
equations of motion of a particle of mass m moving above the Earth’s surface. The
particle is subjected to the total force components Fr , Fφ , and Fθ . Hint: To obtain
r(t), which can be differentiated to obtain the total velocity vector necessary for
describing the kinetic energy of the particle, as per Figure 1.10, set up the follow-
ing three orthogonal unit vectors corresponding to the three spherical coordinates:
p(t) in the r direction, q(t) in the direction of increasing φ, and s(t) in the direc-
tion of increasing θ . (These are the same directions as the three force components
mentioned above.) Then write r = r p. Also introduce Earth-centered, space-fixed
Cartesian unit vectors such that i, j are in the Earth’s equatorial plane such that
i is also in the plane of the space-fixed prime meridian and k points in the direc-
tion of the north pole. Since these Cartesian unit vectors are “fixed in space,” they
are not functions of time. In terms of the Cartesian unit vectors, the spherical unit
vectors are

p = (sin φ cos θ)i + (sin φ sin θ) j + (cos φ)k

q = (cos φ cos θ)i + (cos φ sin θ) j − (sin φ)k

s = −(sin θ)i + (cos θ) j,
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θ

Figure 1.10. (a) The genaralized coordinates r, φ, and θ for the particle of mass m. (b) The ori-
entation of the moving spherical coordinate system unit vectors relative to the fixed Cartesian
unit vectors such that r(t) = r p.

hence

ṗ = φ̇ q + θ̇ sin φs.

(c) Repeat part (b), but this time, instead of using polar coordinate references that
are fixed in space, use polar coordinate references that are fixed with respect to the
Earth rotating about its polar axis.
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Figure 1.11. Exercise 1.3(c) and Exercise 1.7.

1.7 Using the generalized coordinates q1 = ψ , and q2 = u, where ψ is the angle
between the rod and the floor and u is the horizontal motion of the top end of the
rod of length L, as shown in Figure 1.11, write the equations of motion of the rod.
Let both the wall and the floor be frictionless.

1.8 Show that when T = T(q̇, q, t), the order of differentiation in the first term of
the Lagrange equation cannot be reversed. That is, prove

d
dt

∂T
∂q̇


= ∂

∂q̇
dT
dt

.

COMMENT As any calculus book will explain, it is perfectly permissible to reverse
the order of partial differentiation with respect to two different variables whenever
either (1) the first-order derivatives are differentiable, or (2) the first- and second-
order derivatives are continuous. However the implied qualification for these two
theorems is that the two variables of differentiation are independent of each other,
such as are the x and y Cartesian coordinates in two-space. When the two coordinates
are not independent of each other, the reversal of the order of differentiation is not
always valid. For example, with x, y being Cartesian coordinates and r, θ being polar
coordinates, it is not generally correct to say

∂2 F
∂r∂x

= ∂2 F
∂x∂r

. (not so)

ENDNOTE (1): FURTHER EXPLANATION OF THE VARIATIONAL OPERATOR

Preparatory to further discussion of the variational operator, it is useful to review
Taylor’s series in terms of more than one variable. As representative of the multivari-
able case, let α and β be any two parameters and consider the function f (α + x, β + y).
In this form it is convenient to consider the parameters α and β to be fixed values
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of the variables x and y, respectively. As is typical of functions useful in structural
modeling, let f be what is called an analytical function, which is a function that is
infinitely differentiable. Such functions can be written as an infinite series of polyno-
mial terms with positive integer exponents. That is, for such a function it is always
possible to write

f (α + x, β + y) = a0 + a1x + a2 y + a3x2 + a4xy + a5 y2 + a6x3 + · · ·,

where the coefficients of this infinite series presumably involve the parameters α and
β. The precise values of those coefficients are determined rather simply. To determine
a0, it is necessary only to set both variables, x and y, equal to zero. Then it is clear
a0 = f (α, β). The coefficient a1 is determined by partial differentiating this series
with respect to x and then, again, setting both x and y equal to zero. The result of
that pair of steps is

a1 = ∂ f
∂x

∣∣∣∣
x=y=0

≡ ∂ f (α, β)
∂x

.

The remaining coefficients can be determined in exactly the same way. For example,

a2 = ∂ f
∂y

∣∣∣∣
x=y=0

≡ ∂ f (α, β)
∂y

a3 = 1
2

∂ f 2(α, β)
∂x2

a4 = ∂ f 2(α, β)
∂x∂y

and so on. Sinceα, β, x, and y can have any values whatever, choose the set x, y, dx, dy
for α, β, x, and y, respectively. For this choice, the above series expansion for the
function f becomes

f (x + dx, y + dy) = f (x, y) + ∂ f (x, y)
∂x

dx + ∂ f (x, y)
∂y

dy

+ 1
2

∂ f 2(x, y)
∂x2

(dx)2 + ∂ f 2(x, y)
∂x∂y

(dx)(dy)

+ 1
2

∂ f 2(x, y)
∂y2

(dy)2 + 1
3!

∂ f 3(x, y)
∂x3

(dx)3 + · · ·

= f (x, y) +
∞∑

n=1

[
1
n!

(
∂

∂x
+ ∂

∂y

)n

f (x, y)
]

.

Having achieved the above, the various differentials of the function f can now be
defined as follows, where d(T) f = f (x + dx, y + dy) − f (x, y) is called the total
differential of f , and d(1) f is called the first differential of f , and so on.

d (T) f = d (1) f + d (2) f + d (3) f + · · ·
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or, respectively,

[ f (x + dx, y + dy) − f (x, y)]

=
[
∂ f (x, y)

∂x
dx + ∂ f (x, y)

∂y
dy

]

+
[

1
2

∂ f 2(x, y)
∂x2

(dx)2 + ∂ f 2(x, y)
∂x∂y

(dx)(dy) + 1
2

∂ f 2(x, y)
∂y2

(dy)2
]

+
[

1
3!

∂ f 3(x, y)
∂x3

(dx)3 + · · ·
]

. . . .

Since differentials are only useful when they are very small, the second differential,
third differential, and so on, can be discarded as inconsequential. Thus the total
differential is very well approximated by the first differential. Since d(T) f = d(1) f ,
there is no point in qualifying the sole remaining differential with a superscript. Thus
all that remains is the chain rule for differentials

df = ∂ f
∂x

dx + ∂ f
∂y

dy.

The same thing that was done for differentials can now be done for variations. Going
back to the above general form for Taylor’s series, let α, β, x, and y have the respective
values u, v, δu, and δv, where u and v can be thought of as deflections. Then, from
Taylor’s series

δ(T) f = δ(1) f + δ(2) f + δ(3) f + · · · (1.19a)

or

[ f (u + δu, v + δv) − f (u, v)]

=
[
∂ f (u, v)

∂u
δu + ∂ f (u, v)

∂v
δv

]

+
[

1
2

∂ f 2(u, v)
∂u2

(δu)2 + ∂ f 2(u, v)
∂u∂v

(δu)(δv) + 1
2

∂ f 2(u, v)
∂v2

(δv)2
]

+
[

1
3!

∂ f 3(u, v)
∂u3

(δu)3 + · · ·
]

.

Unlike the differential, the higher order variations such as δ(2) f can have importance
because in certain circumstances the lower ordered variations are zero valued. For
example, the higher ordered variations can be useful in energy-based stability analy-
ses. Let the symbol δ f is to be understood to mean simply δ(1) f , the first variation of f .
From the above, after comparison of the quantities df and δf , the very important con-
clusion can be drawn that the differential operator and the variational operator follow
the same rules of calculus. However, they are not quite the same. To understand the
difference between the two, consider a function with a greater variety of terms in its
argument. Consider, in the light of virtual work, the function V(u, ε, σ, F, t), where u
is any deflection, ε is any strain (a derivative of a deflection), σ is any stress (an inter-
nal force dependent quantity), M is any internal stress resultant (like a moment),
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and t is time. Then, first, the differential of V, also known as the total change in V,
depends on the changes in its argument. That is, from the above derived chain rule

dV(u, ε, σ, M, t) = ∂V
∂u

du + ∂V
∂ε

dε + ∂V
∂σ

dσ + ∂V
∂ε

dε + ∂V
∂ M

dM + ∂V
∂t

dt.

However, in this case where the argument of the function v involves more than just
deflection quantities such as u and ε the variation of V is only

δV = ∂V
∂u

δu + ∂V
∂ε

δε.

The reason for this difference goes back to the original definition of virtual work
as real forces moving through virtual displacements (virtual deflections). In virtual
work, only the deflections are given (possibly imaginary) variations. Although actual
forces generally change when a body undergoes actual deflections, actual forces are
always wholly unchanged by imaginary deflections. Since (i) there are no variations
for force type quantities, (ii) time is an arbitrary fixed value for virtual displacements,
and (iii) constant geometric and material properties will not be varied here, then the
rule for variations to be used here is

The variational operator follows the same rules of calculus as the differential
operator except that it only acts on deflections and deflection-type quantities,
such as strains.

In this textbook, except for one endnote, forces, time, and the usual constants of a
structural analysis have zero variations. The above rule can be generalized for all
textbooks by saying only those quantities that the analyst designates as dependent
functions have nonzero variations. All quantities the analyst designates as indepen-
dent quantities have zero variations. In other words, in this textbook the viewpoint is
that the forces cause the deflections, so the deflections are dependent and the forces
are arbitrary and hence independent. To see why, for example, strains have variations,
whereas stresses do not, consider the simple example of a uniform bar of length Land
cross-sectional area A subjected to a uniform tensile force F . Let the total extension
of the bar be called u0. Then, from their basic definitions, the stress in the bar is (F/A),
and the strain in the bar is (u0/L). Thus it is clear that stress is directly dependent
on the external force, and if the force has a zero variation, so too does the stress.
However, because the strain is directly dependent on the deflection, the strain has a
nonzero variation because the deflection has a nonzero variation. Note that if the bar
material is unidentified, as is the case here, it is not possible to write a mathematical
relationship between stress and strain, a relationship that might cause confusion.

EXAMPLE 1.3 Prove that the variational operator is commutative with definite
integration typified by an integral over a fixed volume. (Recall the commutativity
of the variational operator and a derivative operator is part of the definition of the
variational operator.)

SOLUTION Let F(u, ∂u/∂x) represent a typical point function of deflection type quan-
tities. Consider the following integral over a fixed volume:

I =
∫ ∫ ∫

F
(

u,
∂u
∂x

)
dx dy dz.
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Then, from the first part of Eq. (1.19b) where f (u + δu, v + δv) = f (u, v) + δ f (u, v),

I + δI =
∫ ∫ ∫

F
[

u + δu,
∂u
∂x

+ δ

(
∂u
∂x

)]
dx dy dz.

Subtracting I from I + δI simply yields δI on the left-hand side. On the right-hand
side, the two volume integrals have the same limits. Therefore the difference of the
two integrals is the integral of the difference of their two integrands. That is, again
using the first part of Eq. (1.19b),

δI =
∫ ∫ ∫ [

F
(

u + δu,
∂u
∂x

+ δ
∂u
∂x

)
−F

(
u,

∂u
∂x

)]
dx dy dz

=
∫ ∫ ∫

δF
(

u,
∂u
∂x

)
dx dy dz ★

ENDNOTE (2): KINETIC ENERGY AND ENERGY DISSIPATION

One direct use of the concept of kinetic energy in structural applications is in com-
bination with energy dissipation in crash safety analyses. The basic idea is simply
that the kinetic energy of the vehicle at crash impact needs to be dissipated through
plastic deformations of a buffer structure before, say, the passenger compartment
undergoes plastic deformations. Consider the greatly simplified situation where the
entire structure, buffer structure, passenger compartment, and whatever else is a
single, short rod. The rod is restricted to be short so that buckling of the rod need
not be considered here. Let the rod move with a constant velocity v0 in a direction
paralleling its longitudinal axis. Let the rod impact, head on, a nearly rigid mass of
such a relatively large mass that this target mass hardly moves in response to the
impact of the rod. A single short rod is chosen here because the sole stress and sole
strain are both longitudinal and simply related and can be approximated as uniform
over the rod’s cross section. A rigid mass representing the passenger compartment
could be attached to the end of the rod without complicating the analysis. However,
this additional mass would neither add anything insightful to the explanation nor
make the model much more realistic.

If the rod’s mass density, cross-sectional area, and length are, respectively, ρ , A,
and L, then the kinetic energy to be dissipated is 1/2ρ ALv

2
0. Since significant energy

dissipation is only possible when the stresses due to the impact reach the yield stress
of the rod’s material, σy, let that be the case. Consider the simplified, bilinear stress
strain curve shown in Figure 1.12. The area beneath the load path curve represents
work done on the material. This is so because stress is equal to force over cross-
sectional area, whereas strain is equal to change in length over length where this
length is perpendicular to the cross-sectional area. Thus the product of a unit of
stress and a unit of strain, which represents a unit of area under the stress–strain
curve, is

F
A

∆�

�
= work

volume
.

Again, when the strain is a fully plastic strain as represented by the horizontal portion
of the stress–strain curve, the work done on the material is not recoverable because
of the unloading curve being as shown. That is the same as saying that the work
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Figure 1.12. Endnote (1) simplified material behavior model.

done on the material is energy dissipated in deforming the material. In this case,
the energy dissipated is the product of the yield stress, the magnitude of the plastic
strain, and the volume of the rod. That is, the total dissipated energy under these
simplifying assumptions is equal to σyεpAL.Equating the kinetic energy to the energy
dissipated allows a solution for the magnitude of the required plastic strain, which is
εp = (ρv2

0)/(2σy). The permanent shortening of the rod axis is approximated by the
product of this plastic strain and the rod length.

Of course, the above analysis is quite crude. In addition to the presumptions of
a perfect in-line impact and no rod bending, the rod’s entire end cross-sectional
area is assumed to make an instantaneous flat contact with the immovable obstruc-
tion producing a uniform state of stress and strain over the end cross section. Fur-
thermore, that initially uniform stress state is presumed to propagate down the
length of rod. In fact, the friction of contact between the rod and the immovable
object will restrict the lateral, Poisson-effect expansion of the end cross section,
causing the rod to deform into a barrel shape that indicates a more complex stress
state.

A more realistic crash safety analysis would involve the plastic bending of not
necessarily straight beams and beam-columns. In this case, it would be necessary
to identify those segment lengths of the beam that were undergoing fully elastic
bending (no energy dissipation), partially plastic bending, and fully plastic bending.
Although the bookkeeping is more complicated and requires a digital computer, the
basic concepts are the same.

ENDNOTE (3): A RIGID BODY DYNAMICS EXAMPLE PROBLEM

EXAMPLE 1.4 (a) Use the Lagrange equations to write the equations of motion
that determine the planar path traced by a single planet orbiting a much more massive
star.

(b) Solve those equations and demonstrate that the path of the planet is elliptical.
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SOLUTION (a) As shown in Figure 1.13, choose the polar coordinates r(t) and θ(t)
as the two generalized coordinates of the planet CG relative to the star CG. It is
assumed that the star is moving at a constant velocity (at least approximately so for
the time duration of one planetary orbit) and, thus, from Exercise 1.1(a), can be
considered to be stationary for the application of the equations of motion. Recall
from physics that the gravitational attraction between two bodies with masses M and
m is equal to the force GMm/r2, where G is the universal gravitational constant.
Since the planet has orthogonal velocity components ṙ and rθ̇

T = 1
2

m(ṙ2 + r2θ̇2) U = V = 0 δW = −GMm
r2

δr.

Hence

Qr = −GMm
r2

Qθ = 0.

Substituting the kinetic energy and the generalized forces into the Lagrange equa-
tions yields the following coupled, nonlinear, ordinary differential equations for the
generalized coordinates:

r̈ − r θ̇2 + GM
r2

= 0
d
dt

(r2θ̇) = 0.

(b) The second of the above equations is integrated immediately to obtain r2θ̇ = C1

where C1 is simply a constant of integration. This result that (r2dθ)/dt is a constant is
Kepler’s second law, which is often stated as the radius vector of each planet passes
over equal areas (1/2r2dθ) in equal intervals of time (dt). Substitution of this result
into the first equation of motion to eliminate the θ variable leads to the following:

r̈ + GM
r2

− C2
1

r3
= 0.

The first integration of this second-order ordinary differential equation is accom-
plished by first rewriting the second derivative term using the chain rule for deriva-
tives

r̈ = dṙ
dt

= dṙ
dr

dr
dt

= ṙ
dṙ
dr

.

Now it is possible to separate the radial velocity and radius variables so as to obtain,
after carrying out the integration,

ṙ2 = −C2
1

r2
+ 2GM

r
+ C2.

Since a direct relationship between the two polar coordinates in the form of r(θ) or
θ(r) is desired rather than the parametric solution pair r(t) and θ(t), divide the above
equation by the previous result r2θ̇ = C1, squared, to obtain

(dr)2

(dθ)2
= r2

[
−1 + 2GM

C2
1

r + C2

C2
1

r2
]

.
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In[1]: = <<Graphics 'Graphics'

In[2]: = r[t_]=1/(2 + Cos[t])

Out[2] =     1
2 + Cos[t]

In[3]:= PolarPlot[r[t],{t,0,2Pi}]

Out[3] =  -Graphics-

In[7]:= PolarPlot[r [z],{z,0,2 Pi}]
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(b)

In[6]:= r[t_] = 1/(2 − Sin[t]])

Out[6]=     1
2 − Sin[t]

Figure 1.13. Example 1.4.
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After taking the square root of both sides, the variables can be separated. Consulting
a table of integrals yields the following result:

θ + C3 = arcsin


 GMr − C2

1

r
√

G2 M2 + C2
1C2




or

r = A
B − sin(θ + C3)

.

The easiest way to see that this relationship between variables describes an ellipse
is to choose values for A, B, and C3, such as 1, 2, and zero, and computer plot the
result as shown in Figure 1.13. The result is an ellipse with foci at (0,0) and (0,2/3).
The more rigorous approach to showing that the above solution is indeed an ellipse
is, for example, to transform the x, y equation for an ellipse, (x/a)2 + (y/b)2 = 1,
into polar coordinates ρ , φ. That is, where ρ , φ are measured from the center of the
ellipse, use the transformation x = ρ cos φ and y = ρ sin φ to obtain

a2

ρ2
= 1 + e2

b2
sin2φ.

To convert this equation into one only involving the r, θ of the above analysis, which
have their origin at one focus of the ellipse, write, from a diagram of the ellipse,
ρ cos φ = e + r cos θ and ρ sin φ = r sin θ , where e, the eccentricity of the ellipse is
related to the major axis lengths as e2 = a2 − b2. After some algebra, the result is

r = −b/e
(a/e) − cos θ

.

This is the same result as above when the phase angle in the above sine function is
taken to be π/2, a rotation of 90◦.
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2 Mechanical Vibrations: Practice Using
the Lagrange Equations

2.1 Introduction

The focus of this textbook is on the vibrations of engineering structures, not mech-
anisms. However, this chapter focuses on pendulums as representative of mecha-
nisms. Pendulums are rarely a part of an engineering structure.1 However, because
the motions of pendulums are familiar to everyone, they do provide a comparatively
simple means for both visualizing and explaining some basic aspects of more general
vibratory systems. Pendulums also provide an opportunity to consolidate the lessons
on dynamics set forth in the first chapter without the complication of dealing with
flexible structures. As an aside, pendulums also provide a relatively simple introduc-
tion to the quite challenging topic of nonlinear vibrations. Thus, despite their limited
relevance to engineering structures in general, this introductory study of structural
dynamics begins with the study of the back-and-forth motion of pendulums.

The static equilibrium position (SEP) of any dynamical system is the deflected
position of that system in response to all the applied static loads and their support
reactions, if any. A stable pendulum system is defined as any system that, when dis-
placed from its static equilibrium position, tends to return to that SEP as a result of
the presence of a gravitational force field or other force field. An example of body
forces other than gravitational forces that stabilize a structural system is the centrifu-
gal force field acting on a rotating helicopter blade. Consider a rotating helicopter
blade that is unrestrained at its outer end and has a single, horizontal hinge line that
is located at the end of the blade adjacent to the blade’s vertical axis of rotation.
The hinge allows the blade to flap up and down something like a bird wing. For a
viewer rotating with the blade, the undisturbed blade will have a near-horizontal SEP
resulting from the balance between the blade’s distributed weight forces, lift forces,
and centrifugal forces. If a disturbance causes the rotating blade to flap upward, the
outwardly directed centrifugal forces acting along the length of the blade produce a

1 There are exceptions. Pendulums have been used for the gravity gradient stabilization of orbiting
satellites and also as vibration dampers for structures and rotary machinery. As shown shortly, helicopter
blades can also be classified as pendulums.

46
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moment about the horizontal hinge axis that causes the blade to rotate downward.
Similarly, if the blade undergoes a disturbance that initially causes the blade to rotate
downward from its near-horizontal SEP, then the centrifugal forces along the blade
immediately produce a moment that causes the blade to move upward. Thus, in either
the presence or absence of aerodynamic forces and a gravitation field, a rotating heli-
copter blade is a stable pendulum because there is an associated centrifugal force
field that always tends to return the helicopter blade to its SEP after a disturbance
moves the blade away from the SEP.

An unstable pendulum system tends to move away from its SEP under the action
of whatever body forces are inherent to that system. An example of an unstable
pendulum could be a sharpened pencil standing on its point in a normal gravitational
field. The (unstable) static equilibrium position is the vertical line upward from the
pencil point tip. Stability itself is a secondary issue for this textbook because all but
one of the example applications of structural dynamics analysis to be discussed in this
chapter are of unconditionally stable systems (within the limits of the mathematical
model). The one example problem that is the exception is discussed in Section 2.10
of this chapter (followed by Exercise 2.11). There is also a brief overview of stability
presented in Endnote (1).

A mechanical system can merit the description of being a pendulum system even
though there are significant external forces other than restorative or destabilizing
forces acting on the system. All that is necessary for a system to be classified as a
pendulum system is that the field forces make a significant (big enough to be included
in the descriptive equations) contribution to either stabilizing or destabilizing the
motion of the mechanical system.

2.2 Techniques of Analysis for Pendulum Systems

One basic choice for structural dynamics analyses is between force methods of analy-
sis and energy methods of analysis. Force methods are grounded on Newton’s second
and third laws. Those two laws involve the vector quantities of force, displacement,
velocity, and acceleration. Recall that energy, in all its various forms, is the capac-
ity for doing work. All work/energy expressions have the advantage of being scalar
quantities. One form of an energy method of analysis is the writing of conservation
of energy equations. This chapter points out both the usefulness and the danger of
energy conservation equations. Another energy approach is to write the Lagrange
equations of motion, which can be viewed as a restatement of Newton’s second
law in terms of energy quantities. One objective of this chapter is to convince the
reader that, relative to Newton’s force equations of motion, the Lagrange equations
are generally the much more convenient analytical tool, particularly if there is any
complexity to the system being studied.

As a first explanatory analysis, consider the simple mechanical system of Fig-
ure 2.1(a), which is restricted to move in the plane of the paper. In this simplified
mathematical model, the rod that connects the bob mass m to the pivot is modeled as
massless. That is, all the mass of the system is concentrated in the bob at the bottom
of the rod. (This apparently crude type of modeling is justified later.) In this case, the
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Figure 2.1. (a) Displaced system. The single generalized coordinate θ fully locates the position
of every mass particle in the system. (b) A general shape pendulum system whose equation of
motion is exactly the same as the system in Figure 2.1(a). (c) The system’s actual displacement
augmented by a positive virtual displacement (shown as greatly exaggerated) causing the
gravitational force to do negative (ficticious) work.

bob mass is described by two parameters, m and H. The quantity m is just the total
mass of the bob, whereas H is the mass moment of inertia of the bob about an axis
perpendicular to the plane of the paper and passing through the center of mass of
the bob.
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When discussing the dynamics of masses, the word system always needs precise
definition. Recall that Newton’s second law, and thus all other formulas describing
the motion of mass that can be derived from Newton’s second law, apply only to
a fixed, identifiable, quantity of mass. Through familiar usage, the closed bound-
aries of almost all mass systems under discussion will be self-evident and not require
comment. However, the present recognition of the importance of precisely defin-
ing what does and does not belong to the closed system under discussion (and thus
which forces are internal and which forces are external) prompts the explicit defi-
nition of this system to be the rigid, massless rod connecting the pivot point to the
bob, and the bob itself.2 In simple terms, the system under study is everything that
moves.

Figure 2.1(a) shows the system deflected to the reader’s right. The position of the
rigid bar is measured by the time-varying value of the angle θ . The implication of
the single arrowhead in the diagram’s dimensioning for θ is that θ has positive values
when the rigid bar is deflected to the right of the vertical SEP and negative values
when the rigid bar is rotated to the left of the SEP. Figure 2.1(a) also shows that
every mass particle of the rigid bob is precisely located by this angular measure, θ .
The reverse is also true: the location of the mass particles of the rigid bob defines
the value of θ . Since in a structural dynamics analysis the generalized coordinates of
a mechanical system unambiguously locate the instantaneous positions of all of the
mass of the system, and because all the mass of this system is concentrated in the
bob, θ is the sole generalized coordinate of what then is this single degree of freedom
system. (Recall that a generalized coordinate is often referred to as a degree of
freedom (DOF); and the unique number of DOF required to fully describe all the
possible motions of a system is a inherent characteristic of the dynamical system.) In
mathematical terms, q1 = θ .

The mechanical system of Figure 2.1(a) is a stable pendulum system because,
regardless of whether the system is deflected to the left or the right, the gravitational
force on the mass produces a moment about the pivot point that tends to cause the
system to rotate back to its below-the-pivot, vertical SEP. It is purposeful that Fig-
ure 2.1(a), which is intended to guide the following analyses, shows the pendulum
system displaced from its vertical position rather than just hanging vertically. It is
strongly suggested that all pendulum analyses begin with a diagram of all the compo-
nents of the pendulum system displaced in positive directions from the SEP. Without
a sketch of the system in a general displaced configuration, the analyst risks overlook-
ing forces and moments associated with such a general displacement or generalized
coordinates necessary to describe the general motion.

In this simple pendulum system, every mass particle rotates in the plane of the
paper about the fixed axis seen end-on as the pivot point, point P. Thus it is possible
to use the corollary of Newton’s second law that states that the sum of the torques
about any fixed axis (MFA) is equal to the mass moment of inertia about that fixed
axis (HFA) multiplied by the second time derivative of the angular rotation about the

2 In fluid dynamics, the application of Newton’s second law to a specific “control” volume in the flow
field is really the repeated application of Newton’s second law at different times to the series of masses
that occupy that volume at those time points.



P1: ICD
0521865743c02 CUFX001/Donaldson 0 521 86574 3 September 6, 2006 11:26

50 Mechanical Vibrations

fixed axis, here called θ̈ . This equation is Eq. (1.5a).3 Therefore all that is necessary to
complete this fixed axis differential equation of motion is to write the mathematical
descriptions of the torque and the moment of inertia, both about the fixed axis
running through the pivot point. These torque and moment of inertia descriptions
must be in terms of the given quantities. Using the parallel axis theorem for mass
moments of inertia developed in the first chapter, and noting that the external force
reaction at the pivot point has no moment arm about the fixed axis, leads to

HF A = H + mL2 MF A = −mgL sin θ

∴ (H + mL2)θ̈ = −mgLsin θ ,

where mg is the only external force producing a moment about the fixed axis. The last
equation is called the equation of motion. Equations of motion are usefully written
in the form where all the terms involving the unknown quantities (in this case, the
one time function, θ) and their derivatives are placed on the left-hand side of the
differential equation. Hence the equation of motion should be presented as

(H + mL2) θ̈ + mgL sin θ = 0. (2.1)

Solutions to equations of motion are discussed later in this chapter in order to first
focus on writing such equations of motion.

The use of the fixed axis (FA) version of Newton’s second law was quite efficient
in this very simple case where a fixed axis exists. However, many mechanical, or even
pendulum, systems have more complicated motions than simply that of a rotation
about a fixed axis. Thus for the sake of preparing for more challenging circumstances,
the writing of the equation of motion for the above simple pendulum system is now
repeated using the more general, planar rotational form of Newton’s second law.
This more general form is that for the CG case, which is Eq. (1.5b)

HCG θ̈ = MCG. (2.2)

In this system, the center of mass is at the center of the bob. The rotation of the bob
is the same as the rotation of the pendulum. Thus, for this example problem, the
left-hand side of the above equation is simply Hθ̈ . The moment about the center of
mass is positive in the same counterclockwise direction that θ is positive. Thus

Hθ̈ = MCG = RHL cos θ − RV L sin θ ,

where the weight force has no moment arm. The horizontal and vertical reactions, RH

and RV (called the forces of constraint), that appear in the above expression for the
moments about the center of mass are determined by the use of the two equations
fhor = mahor and fvrt = mavrt. The respective horizontal and vertical accelerations
of the center of mass are determined by twice differentiating with respect to time
the horizontal and vertical deflections of the center of mass. The one point that
bears particular attention is that the reaction RH was drawn positive to the left,
whereas, because of the positive direction of θ , the horizontal deflection, velocity,

3 If the bob rotated independently of the pendulum arm, then a second generalized coordinate would
be required, say φ(t), and Eq. (1.4b) would have to be used.
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and acceleration of the center of mass are positive to the right. Thus, a negative
sign, in this case placed on the displacement, is necessary to adjust for the opposite
directions. Hence, after careful use of the chain rule for ordinary derivatives

RH = m
d 2

dt 2 (−Lsin θ)

or RH = −mL θ̈ cos θ + mL θ̇2 sin θ

and RV − mg = m
d 2

dt 2 (L− Lcos θ)

or RV = mg + mL θ̈ sin θ + mL θ̇2 cos θ

so MCG = −mgLsin θ − mL2θ̈ .

Substitution of this last moment equation into Eq. (2.2) again yields the proper
equation of motion, Eq. (2.1). This second analysis is clearly more complicated,
typically so, than the first analysis that took note of the fixed axis of the motion.

Before proceeding to the explanation of the last of the three major methods of
analysis presented for this simple pendulum problem, consider Figure 2.1(b). This
figure shows the deflected position of a mass m of general shape that is pinned to a
rigid support so as to rotate in the plane of the paper. The center of mass is a distance L
below the pivot point. The mass moment of inertia of this mass of general shape, at the
mass center, about an axis perpendicular to the plane of the paper, is H. Clearly there
is no analytical difference between this dynamical system and that of Figure 2.1(b)
because all the quantities that are relevant to the equations of motion for these two
systems are the same. Hence the simplified mathematical model used in Figure 2.1(a)
is justified.

The previous two analyses are written in terms of forces and moments, the quan-
tities directly associated with Newton’s second law and its immediate corollaries.
Although it is not evident in this simple example, analyses based directly on Newton’s
laws are seldom as simple as energy methods in dynamical analyses of structural sys-
tems. Thus it is necessary to master energy methods in general and practice the use of
the Lagrange equations of motion in particular. The most convenient way of writing
the Lagrange equations for the dynamical analysis of structures is

d
dt

(
∂T
∂q̇i

)
− ∂T

∂qi
+ ∂(U + V )

∂qi
= Qi , (2.3)

where, again, qi is the ith generalized coordinate of the mechanical or structural
system whose motion is being described, T is the system’s total kinetic energy, U is the
strain energy of the elastic portion of the system, V is any other significant potential
energy possessed by the system, and Qi is the net generalized force corresponding
to the ith generalized coordinate representing those aspects of the system that are
not, or cannot, be included in the potential functions U, V. If there are n generalized
coordinates, then a Lagrange equation must be written for each of the n DOF.

After identifying the system DOF, an analysis employing the Lagrange equation
begins with writing the mathematical expression for the kinetic energy, T, in terms
of (i) the time derivatives of the DOF (called the generalized velocities) and perhaps
(ii) the DOF themselves and perhaps (iii) time itself. That is, in mathematical terms,
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T = T(q̇i , qi , t). In the case of the system of Figure 2.1(a), where of course θ is the
sole DOF, from Eq. (1.17)

T = 1/2m vCG
2 + 1/2HCG θ̇

2
CG.

The quantity vCG is the total rectilinear velocity of the center of mass and, of course,
θCG is the rotation at the center of mass. That is,

θCG = θF A = θ

and v2 = v2
hor + v2

vrt =
[

d
dt

Lsin θ

]2

+
[

d
dt

L(1 − cos θ)
]2

= L2θ̇2cos2θ + L2θ̇2sin2θ = L2θ̇2

thus T = 1/2(mL2 + H )θ̇2 = 1/2HF Aθ̇2.

Of course, the total rectilinear velocity of the center of mass in this simple case is
nothing more than the tangential velocity of the center of mass at the center of the
bob. Thus this simple result for the total rectilinear velocity could have been written
immediately.

The next step is to write the potential energy expressions. In this case, because the
rod and mass of Figure 2.1(a) or the amorphous mass of Figure 2.1(b) are modeled as
being rigid, they do not store work because of elastic deformations. Thus the strain
energy, U, of this system is zero. There is, of course, a potential energy, V, that results
from the gravitational field. The magnitude of the gravitational potential energy is
simply the negative of the work done by the gravitational force, mg, as the bob mass
m moves along its circular arc from an arbitrary (but convenient) datum to another
arbitrary position. Let the datum be at θ = 0 (the SEP) and let the arbitrary position
of the bob mass be specified by a positive value of the coordinate theta. Then, from
Figure 2.1(b), the vertical rise of the bob mass from the datum is L(1 − cos θ). Since
the gravitational force is directed downward, and the displacement of the force is
upward, the work done by the gravitational force when it moves from the datum
position to the arbitrary position is a negative quantity. Again, because any potential
energy is the negative of the corresponding work quantity, the gravitational potential
energy in this case is V = +mgL(1 − cos θ).

The last item to be discussed in this application of the Lagrange equation to
this single-DOF system is the generalized force Qθ . Generalized forces are always
obtained by calculating the virtual work done by all the external forces acting on
the system that are not accounted for by any of the potential energy expressions.
(The inertia forces are always accounted for by the kinetic energy expression.) Note
(i) the two support forces at the pivot do not move as a result of the virtual dis-
placement δθ , so they do no virtual work; (ii) the gravitational force has been fully
incorporated into the gravitational potential energy; and (iii) there are no other
forces to consider. Thus the conclusion is that the one generalized force, Qθ , for this
system is zero.

It is worth reiterating that the above V, Q assignments are not the only possible
choice. The analyst could equally well choose a zero value to the potential energy
and leave to the generalized force expression the means for incorporating the gravi-
tational force into the analysis. To see how this is done, view Figure 2.1(c). This figure
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shows the entire system moved through a positive, virtual, increment in the gener-
alized coordinate, δθ . (If there were other generalized coordinates, they would be
incremented separately, in turn.) As with all such virtual displacements, the variation
in θ , δθ , is positive in the same sense that θ is positive. Recall that a real force doesn’t
change its magnitude or direction in response to a virtual displacement. Then this
virtual displacement δθ causes the gravitational force to rise vertically and thus do
virtual work of the amount

δW = −mg{L[1 − cos(θ + δθ)] − L(1 − cos θ)}
where cos(θ + δθ) = cos θ − δθ sin θ

because δθ is very small. Thus

δW = mgLδθ sin θ.

A simpler approach to again obtain the same result would have been to just use the
component of the weight force in the tangential direction of the virtual displacement.
The next step towards determining the generalized force is to compare this particular
value for the virtual work to the virtual work definition of generalized forces. As Eq.
(1.12a), the generalized force definition, makes clear, the generalized forces corre-
sponding to each generalized coordinate are merely the coefficients of the variations
on that generalized coordinate in that general virtual work expression:

δW ≡
n∑

i=1

Qiδqi = Q1δq1 ≡ Qθ δθ

here δW = −mgLδθ sin θ

thus Qθ = −mgLsin θ.

Substitution of the above expressions for T, (U = 0), and V or Qθ (not both
because they both account for the same gravitational force), into the Lagrange
equation for the DOF θ , leads to the same equation of motion previously obtained,
Eq. (2.1). In summary, Eq. (2.1) is most easily obtained by the fixed axis formula. How-
ever, the fixed axis formula is quite limited in its applicability. Among the two general
approaches, Newton’s and the Lagrange equations, the Lagrange equation is no
more work than Newton’s equations and, with familiarity, will generally be much less
work.

2.3 Example Problems

Pendulums can have all sorts of appearances. The following example problems, and
the exercises at the end of the chapter, illustrate some of their many varieties of form.
In all cases, the gravitational vector is downward and the systems under study are
without any form of energy dissipative friction such as that between two wet or dry
surfaces sliding on each other. The second example problem is a caution that not
everything that looks like a pendulum is really a pendulum.

EXAMPLE 2.1 Write the equation of motion for the mechanical system of
Figure 2.2(a), where the system is pictured in its undeflected position. Again the
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Figure 2.2. Example 2.3: Simple pendulum with elastic supports. (a) Undefected system.
(b) Deflected system.

pendulum arm and the bob are modeled as (relatively) rigid, and the only flexible
elements of the system are represented by the coiled springs.

COMMENT Note that when elastic springs are present, as is the case here, it is always
to be understood unless otherwise specified, that (i) the springs are massless, (ii) the
springs embody linear force–displacement relationships (i.e., force equals stiffness
factor k times displacement), and (iii) the springs retain their original line-of-force
orientation. In other words, with respect to the third item, after a deflection of this
pendulum arm to the left or the right, both outer supports of each spring move so that
each spring remains horizontal. The reason for this convention is that if the position
of the outer spring supports were fixed, and the deflection of the spring became
more than several percent of the length of the spring, then the force in each spring
would begin to vary nonlinearly with respect to the horizontal deflection at each
inner spring connection. Since, in structural analyses, springs are often mathematical
representations for other, more complicated structural elements or collections of
elements, this is a nonlinearity not worth including. Thus spring lengths are pieces of
information that are never needed for a linear analysis.

SOLUTION The first step in the analysis is to redraw the system in its deflected posi-
tion. Note again that the translational and rotational position of all the mass in the
system (the bob) is fully specified by the single DOF θ . Thus θ is q1. After identifying
the generalized coordinate(s), the Lagrange equation quantities T, U, V, and Qθ are
the next order of business. The addition of (massless) elastic springs does nothing to
alter the kinetic energy of this system from that of the system of Figures 2.1(a)–(c).
Thus, again

T = 1/2mL2θ̇2 + 1/2Hθ̇2.
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The difference between this system and the system of Figures 2.1(a)–(c) is the pres-
ence of the linearly elastic springs that store elastic strain energy, U. As discussed
in greater detail in Section 3.4, the strain energy expression for any single linear
spring, where u1, u2 are the end deflections of the spring in the direction of the spring
axis, is

U = 1/2�u1 u2�
[+k −k

−k +k

] {
u1

u2

}
,

where the above square matrix is the spring finite element stiffness matrix. Mul-
tiplying out the triple matrix product produces the general result for a spring
that U = 1/2k(u1 − u2)2, where the difference between the two spring end displace-
ments is, of course, the spring stretch. Another way of looking at this is to picture
the linear force–deflection plot for the elastic spring. Since the deflection u2 − u1

increases proportionally to the applied force k(u2 − u1), the work done by the
applied force on the spring is the triangular area under the straight line plot, which is
1/2 ∗ (u2 − u1) ∗ k(u2 − u1). This work is stored in the spring as the strain energy of the
spring. Note in passing that the one-half factor is often an indicator of linear elasticity.

Since, for the left spring, u1 = 0, u2 = h sin θ and for the right spring u1 =
h sin θ , u2 = 0, then, for both springs together, U = kh2 sin2 θ . The above general
expressions for the strain energy for a spring is used frequently in this textbook.
Finally, the V, Q trade-off is the same as in the first discussed pendulum problem.
Substitution of T, U, V, and Qinto the Lagrange equation, and differentiating accord-
ingly, yields, after a small bit of trigonometry, the equation of motion

(H + mL2)θ̈ + mgLsin θ + kh2 sin 2θ = 0. (2.4)

Note again that the only addition to the analysis of the previous problem is the
addition of moments because of the elastic springs. ★

EXAMPLE 2.2 Consider the rod and bob system of Figure 2.3, which in this case is
drawn deflected upward through an angle θ from its horizontal static equilibrium posi-
tion. This is not a pendulum system even though, with the deflection in this upward
direction, the gravitational force tends to return the system to its undeflected position.
This system fails being a pendulum system because, when the system is rotated down-
ward, the gravitational field force does not tend to return the system to its undeflected

h

m

θ

L

Figure 2.3. Example 2.2: A vibratory system that appears to be a pendulum but is not.
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position but rather tends to move the system further from its undeflected position.
Regardless of the direction of the system displacement, the gravitational field (or
other force field) must always move the system back toward (or away from) the
static equilibrium position for the system to be classified as a pendulum system. The
writing of the equations of motion for systems like this is postponed until later. ★

EXAMPLE 2.3 Figure 2.4(a) shows an upper cylinder that rolls on a flat surface
without slipping. The upper cylinder’s center of mass is at its geometric center. The
upper cylinder supports a free-swinging pendulum that in turn supports an external,
time-varying, horizontal force that is applied at the pendulum center of mass. Write
the equations of motion for this system.

SOLUTION It is a straightforward but lengthy procedure to (i) write five Newtonian
force and moment equations and (ii) to use three of those five equations to elim-
inate the two internal reaction force components between the rolling cylinder and
the pendulum and the rolling friction force between the cylinder and the flat surface.
The result is one equation of motion for each of the two rigid masses. However,
the simpler analysis presented below is based on the Lagrange equations. Again, the
first step in a Lagrange analysis is to choose the generalized coordinates. With
the no-slip condition between the cylinder and the flat surface, the distance u that
the cylinder rolls from the datum is related to the rotation angle of the cylinder φ

by the equation Rφ = u. Thus u and φ are not independent variables, and only one of
the two can be a generalized coordinate. (Recall that all system DOF must be wholly
independent quantities.) Arbitrarily choose φ as the generalized coordinate that pre-
cisely locates the position of the rolling cylinder. With the rolling cylinder located
thusly, the mass of the pendulum bob is located by use of the additional measure θ .
Hence θ is the second and final generalized coordinate for this pendulum system.
Again, φ locates the position of all the mass of the rolling cylinder, whereas φ and
θ together locate the position of all the mass of the pendulum. Thus all of the mass
of the system is located unambiguously by these two DOF. Note that the presence
or absence of forces and moments has no bearing on the choice of the generalized
coordinates.

Now it is a matter of going through the T, U, V, Q checklist. The kinetic energy,
T, is never more than the rectilinear and rotational kinetic energy of each system
mass. The rectilinear and rotational velocities of the cylinder are evident, but the
horizontal and vertical velocity components of the bob must take into account that
bob moves with the cylinder and thus has kinetic energy even if the pendulum does
not swing. See Figure 2.4(b). Another way of saying the same thing is to say that θ is
a relative coordinate in that it does not by itself fully describe the rectilinear motion
of the bob. Therefore, with the velocity Rφ replacing u

T = 1/2 m1(Rφ̇)2 + 1/2H1φ̇
2 + 1/2 H2θ̇

2 + 1/2 m2[(Rφ̇ + Lθ̇ cos θ)2 + (Lθ̇ sin θ)2].

Furthermore,

U = 0 V = m2gL(1 − cos θ).

The only part of the problem not yet accounted for is the externally applied force of
arbitrary magnitude, F(t). Since no potential is available for such a nonconservative
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Figure 2.4. (a) Example 2.3: Deflected position of two-mass pendulum system. (b) Velocity
diagram for the second mass. (c) Exaggerated first virtual displacement, δφ. (d) Exaggerated
second virtual displacement, δθ .

force, it has to be included in the generalized force terms of the Lagrange equations.
As always, the calculation of the generalized forces proceeds from the introduction
of positively directed virtual deflections, one at a time, in each of the system DOF for
the purpose of calculating the resulting virtual work. Start with a virtual deflection
δφ. As can be seen from Figure 2.4(c), δφ results in a horizontal (virtual) movement
of the applied force of magnitude Rδφ. Since virtual work is always a matter of real
forces and moments moving through, respectively, virtual translations and rotations,
this external force does virtual work of magnitude δW = FRδφ. Note that in this
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calculation, the value of θ was unaltered. Now it is θ ’s turn to have a variation,
while φ is kept to a constant value. As is shown in Figure 2.4(d), the virtual work in
this case is F cos θLδθ . Thus, in summary,

δW = Qφδφ + Qθ δθ = F Rδφ + F L cos θδθ

hence Qφ = F R and Qθ = F Lcos θ ,

because, just as θ and φ are mutually independent, so are their variations, δθ and δφ.
Note that in this case, the two generalized forces are actually moments because the
generalized coordinates are angles.

Now that all the required quantities for the Lagrange equations have been worked
out, it is only necessary to substitute into Eq. (2.3). The various components of the
two Lagrange equations of motion are

∂T

∂φ̇
= (H1 + m1 R2 + m2 R2)φ̇ + m2 RLθ̇ cos θ

∂T

∂θ̇
= H2θ̇ + m2L2θ̇ + m2 RLφ̇ cos θ

so
d
dt

∂T

∂φ̇
= [H1 + (m1 + m2)R2]φ̈ + m2 RL θ̈ cos θ − m2 RL θ̇2 sin θ

d
dt

∂T

∂θ̇
= (H2 + m2L2)θ̈ + m2 RL φ̈ cos θ − m2 RL φ̇ θ̇ sin θ

∂T
∂φ

= 0 and
∂T
∂θ

= −m2 RL φ̇ θ̇ sin θ

∂V
∂φ

= 0 and
∂V
∂θ

= +m2gLsin θ.

Two of the above θ equation terms mercifully cancel. Therefore, the final result is
the following two coupled, highly nonlinear, ordinary differential equations that are
to be solved for the two DOF as functions of time.

[H1 + (m1 + m2)R2]φ̈ + (m2 RLcos θ)θ̈ − m2 RLθ̇2 sin θ = RF(t)

(m 2 RLcos θ)φ̈ + [H 2 + m 2L2]θ̈ + m 2gLsin θ = LF(t) cos θ. (2.5)

★

EXAMPLE 2.4 Write the equation of motion for the smaller cylinder that rolls
without slipping on the inside of the static, larger circular cylinder, as shown in end
view in Figure 2.5. The smaller cylinder has mass m, and its center of mass is at its
geometric center. The smaller cylinder also has a mass moment of inertia H about
its center of mass.

SOLUTION The no-slip constraint on the system means, from the geometry of the two
cylindrical surfaces, that Rθ = rφ. Thus the position of the rolling cylinder is com-
pletely specified by the use of either of these two angular measures, φ or θ . Arbitrarily
choose θ as the single DOF for the rolling cylinder. Now it is just a matter of going
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Figure 2.5. Example 2.4: A circular cylinder of radius r rolling inside another of radius R.

through the T, U, V, Q checklist for the Lagrange equation. However, the kinetic
energy expression does require some explanation. The total rectilinear velocity (i.e.,
the square root of the squares of the two orthogonal velocity components) of the
rolling cylinder is again the tangential velocity, (R − r)θ̇ . The total angular velocity
of the rolling cylinder (the reason for this example) is not simply the time deriva-
tive of φ, but rather the time derivative of φ less θ . The reason for this is that, from
Newton’s laws on which the Lagrange equation is based, the angular velocity must
be measured with respect to a fixed axis (e.g., a vertical axes), not with respect to a
rotating axis such as that between the center of the larger cylinder and the point of
contact between the two cylinders.

Another way of determining the correct rotational velocity of the smaller cylinder
is first to recall that kinetic energy depends only on the instantaneous mass velocities
(i.e., on the instantaneous displacements whose time derivatives yield the velocities)
and not the path taken to achieve those velocities or displacements. Second, note that
the arbitrary deflected position of the mobile cylinder, as shown in Figure 2.5, can
be achieved by taking the path where the mobile cylinder translates through space,
from the SEP datum at the bottom of the larger cylinder, up and to the right, and
then rotates into its final position. Note that after the two translations, the vertical
line between the cylinder center and the original contact point P rotates only through
the angle φ − θ to reach point P′. Thus

T = 1/2m[(R − r)θ̇ ]2 + 1/2H(φ̇ − θ̇)2 = 1/2

[
m(R − r)2 + H

(
R
r

− 1
)2

]
θ̇2

V = mg(R − r)(1 − cos θ) U = 0 Q = 0.
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Therefore the differential equation of motion is[
m(R − r)2 + H

(
R
r

− 1
)2

]
θ̈ + mg(R − r) sin θ = 0. (2.6)

This equation of motion is also relatively simple to acquire using Newton’s laws.
First apply Eq. (2.2) to the rolling cylinder, which again is the entire system being
analyzed. The result is

H(φ̈ − θ̈) = r f (t). (2.7)

The force-equals-mass-multiplied-by-acceleration-type equations for the (fixed) hor-
izontal and vertical directions are, respectively,

mü = − f cos θ − N sin θ and mv̈ = − f sin θ + N cos θ − mg.

From the geometry of the two cylinders

u = (R − r) sin θ and v = (R − r)(1 − cos θ)

thus ü = (R − r)θ̈ cos θ − (R − r)θ̇2 sin θ

and v̈ = (R − r)θ̈ sin θ + (R − r)θ̇2 cos θ.

Substituting these accelerations into the force equations yields

m(R − r)θ̈ cos θ − m(R − r)θ̇2 sin θ = − f cos θ − N sin θ

m(R − r)θ̈ sin θ + m(R − r)θ̇2 cos θ = − f sin θ + N cos θ − mg.

Inspection of these two equations indicates that they can be greatly simplified by
multiplying the first of the two by cos θ , multiplying the second by sin θ , and adding
the two resulting equations to obtain

m(R − r)θ̈ = − f − mg sin θ.

Substituting this last equation into the moment equation, Eq. (2.7), yields[
H

(
R
r

− 1
)

+ mr(R − r)
]

θ̈ + mgr sin θ = 0.

This equation can be seen to be identical to Eq. (2.6), the previously derived
equation of motion, when it is multiplied by the quantity [(R − r)/r ]. An important
aspect of this Newtonian derivation of the equation of motion is that this second
derivation reinforces the conclusion that the friction force, which enforces the no-
slip condition at the cylinder boundary, does not appear in the final form of the
equation of motion. This conclusion fully establishes the fact that this friction force,
which is a constraint or reaction force, does no work on the rolling cylinder. There-
fore this friction force of constraint, unlike other friction forces, is not an energy
dissipative force, and it truly has no place in the energy expressions of the Lagrange
equation. ★
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Figure 2.6. Example 2.5: Rocking half cylinder rolling without slipping.

EXAMPLE 2.5 Write the equation of motion for the rigid, hollow, half cylinder
of thin (t � R) material shown in end view both in its datum and displaced config-
urations in Figure 2.6. The half cylinder rocks back and forth without slipping on its
supporting flat surface. The reader is invited to confirm that the center of mass of
the half cylinder is located a distance 2R/π below the full cylinder center, and that
Hcg = mR2[1 − (4/π2)], where m is the total mass of the half cylinder.

SOLUTION This is a pendulum problem because regardless of which of the two direc-
tions the cylinder is displaced, left or right, the gravitational field causes the half
cylinder to roll back toward its datum, its static equilibrium position, where its plane
of symmetry is vertical. Note that the geometry of the half cylinder is such that the
full cylinder center is always a distance R above the flat surface. Thus, as is shown in
the figure, the half cylinder center point always moves entirely horizontally a distance
equal to that moved by the contact point between the half cylinder and the flat surface.

Since the half cylinder rolls without slipping, the angle of rotation, θ , can be used to
describe both the rotation of the half cylinder and the translation of its center of mass.
Thus θ is chosen as the single generalized coordinate for the rocking half cylinder.
With no half cylinder deformations and no external forces other than the gravitational
force that is to be accounted for by the potential energy V, both U and Q are zero.
Therefore the equation of motion is developed by writing the expressions for T and
V. The total kinetic energy is the kinetic energy of translation and the kinetic energy
of rotation. Since there is no fixed axis about which this system rotates, the analysis
must focus on the motion of the system center of mass. A simple formula for the actual
motion of the center of mass is not apparent. (The path in the plane of the paper that
the center of mass actually traces out is a curtate cycloid.) Fortunately, it is not at all
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necessary to describe the actual path followed by the center of mass. The vital fact
is again that the kinetic energy, unlike work in general, is a point function; that is, it
is never path dependent. Therefore, it is necessary only to choose an arbitrary but
representative deflected position (deflected point) for the system under study and
then calculate the rectilinear and rotational velocities at that single point. To do that,
any convenient path to that deflected position is as good as the actual path. Thus,
to travel from the datum configuration to the deflected position choose the simplest
possible path: horizontal and vertical translations followed by a rotation through the
angle θ . With u̇ and v̇ again symbolizing the horizontal and vertical components of
the total velocity at the center of mass

T = 1/2m(u̇ 2 + v̇ 2) + 1/2HCG θ̇2

u̇ = d
dt

[
Rθ − 2R

π
sin θ

]
= R θ̇ − 2

π
R θ̇ cos θ

v̇ = d
dt

[
2
π

R(1 − cos θ)
]

= 2
π

R θ̇ sin θ.

So

u̇ 2 + v̇ 2 = R2θ̇2
(

1 + 4
π2

− 4
π

cos θ

)

and T = 1/2mR2θ̇2(2 − 4
π

cos θ)

and V = mg
2
π

R(1 − cos θ).

Now it is simply a matter of substituting into the Lagrange equation and simplifying
the result. The necessary derivatives, and the simplified form of the equation of
motion in standard form, are

∂T

∂θ̇
= 2mR2θ̇

(
1 − 2

π
cos θ

)
d
dt

∂T

∂θ̇
= 2mR2θ̈

(
1 − 2

π
cos θ

)
+ 2mR2θ̇

(
2
π

θ̇ sin θ

)

−∂T
∂θ

= −mR2θ̇2
(

2
π

sin θ

)

and
∂V
∂θ

= 2
π

mgRsin θ

thus

(
1 − 2

π
cos θ

)
θ̈ + θ̇2

π
sin θ + g

π R
sin θ = 0. (2.8)

★

EXAMPLE 2.6 Write the equation of motion for the “double pendulum” shown
in Figure 2.7. The new feature of this example problem is that the two pendulum
system is being driven by an enforced base motion, h(t), which has a known time
history, rather than being driven by an applied load.
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Figure 2.7. Example 2.6: The base-driven double pendulum shown in its deflected position.

SOLUTION The first step is defining the system and selecting the generalized coor-
dinates. The first question is whether the mass of the moving support, m0, should
be included within the system boundaries. It is not evident that it is not necessary
or useful to include the moving support within the system. Therefore m0 will be
included in the system so that later it can be seen that it has no part in the equations
of motion. The position of the moving support mass, m0, is fully described by the
known quantity h(t). Thus no generalized coordinate is required for the moving sup-
port. One generalized coordinate is required for each of the two pendulums. Choose
θ1 and θ2, as indicated in Figure 2.7, to be the required DOF. [See Exercise 2.7(b) for
another choice of DOF involving θ3.] Since each pendulum arm is rigid, the strain
energy, U, is zero. Since the gravitational forces are the only explicit, external forces,
and because they are conveniently described by the gravitational potential function,
the two generalized forces Q1, Q2 are also zero. Thus it is only necessary to write
expressions for the kinetic and potential energies.

The combination of the mass values, the horizontal distances, and the vertical
distances each of the three masses move are

(i) m0, h(t), and 0;

(ii) m1, (h + L1 sin θ1), and L1(1 − cos θ1); and
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(iii) m2, (h + L1 sin θ1 + L2 sin θ2) and [L1(1 − cos θ1) + L2(1 − cos θ2)].

The velocities, and hence the kinetic energy, is obtained by simply differentiating
the above distances with respect to time. Therefore, the kinetic and potential energies
are

T = 1/2m0ḣ2 + 1/2m1[(ḣ + θ̇1L1 cos θ1)2 + (θ̇1L1 sin θ1)2] + 1/2H1θ̇1
2 + 1/2H2θ̇

2
2

+ 1/2m2[(ḣ + θ̇1L1 cos θ1 + θ̇2L2 cos θ2)2 + (θ̇1L1 sin θ1 + θ̇2L2 sin θ2)2]

V = m1gL1(1 − cos θ1) + m2g(L1 + L2 − L1 cos θ1 − L2 cos θ2).

After simplifying the above expressions, it is only necessary to grind out the differ-
entiations called for by the Lagrange equations. The required derivatives and then
the two equations of motion are

d
dt

∂T

∂θ̇1
= [

H1 + (m1 + m2)L2
1

]
θ̈1 + m2L1L2θ̈2 cos(θ2 − θ1)

− m2L1L2θ̇2(θ̇2 − θ̇1) sin(θ2 − θ1) + (m1 + m2)ḧL1 cos θ1

− (m1 + m2)ḣL1θ̇1 sin θ1

d
dt

∂T

∂θ̇2
= (

H2 + m2L2
2

)
θ̈2 + m2L1L2θ̈1 cos(θ2 − θ1)

− m2θ̇1(θ̇2 − θ̇1)L1L2 sin(θ2 − θ1) + m2ḧL2 cos θ2 − m2ḣL2θ̇2 sin θ2

− ∂T
∂θ1

= (m1 + m2)ḣθ̇1L1 sin θ1 − m2θ̇1θ̇2L1L2 sin(θ2 − θ1)

− ∂T
∂θ2

= m2ḣθ̇2L2 sin θ2 + m2θ̇1θ̇2L1L2 sin(θ2 − θ1)

∂V
∂θ1

= (m1 + m2)L1g sin θ1 and
∂V
∂θ2

= m2L2g sin θ2

thus
[
H1 + (m1 + m2)L2

1

]
θ̈1 + m2L1L2θ̈2 cos(θ2 − θ1)

− m2L1L2θ̇
2
2 sin(θ2 − θ1) + (m1 + m2)gL1 sin θ1

= −(m1 + m2)ḧL1 cos θ1

and
(
H 2 + m2L2

2

)
θ̈2 + m 2L1L2θ̈1 cos(θ2 − θ1)

− m2θ̇
2
1L1L2 sin(θ1 − θ2) + m2gL2 sin θ2

= −m2ḧL2 cos θ2. (2.9)

Note that, as mentioned above, the mass of the support does not enter into the equa-
tions of motion. Only the second time derivative of the enforced displacement, h(t),
the motion that drives the system, enters into the equations of motion in combination
with the pendulum masses in the form of equivalent externally applied moments, that
is, as mass–acceleration–distance terms.

EXAMPLE 2.7 For the case of small angular excursions from the vertical, write
the equation of motion for the single spherical pendulum; that is, a simple pendulum
supported by a universal joint such that the pendulum arm can rotate freely about
both a horizontal axis in the plane of the paper and another such axis perpendicular
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Figure 2.8. Example 2.7: (a) Displaced pendulum in three-space whose center of mass position
is defined by θ and ψ . (b) Top view of angular velocity vectors.

to the plane of the paper. However, the joint is such that the bob mass cannot rotate
about the longitudinal axis of the pendulum arm. See Figure 2.8(a). The pendulum
arm length is L, and the bob mass parameters are simply m, and Hxx = Hyy = Hzz =
H, while all mass products of inertia are zero. There are neither externally forced
motions or externally applied forces or moments.

SOLUTION The bob center of mass moves on a spherical surface. Since the spherical
radius coordinate has the fixed value L, the bob center of mass can be located at any
point in time by the use of just the azimuth angle θ and the coordinate ψ . Hence,
as shown in Figure 2.8, choose as the two generalized coordinates θ and ψ .4 (If the
prohibited spin about the pendulum arm axis were possible, then a third angular DOF
would be required.) The two tangential velocity vectors corresponding to the θ and ψ

DOF are Lθ̇ sin ψ (a velocity vector perpendicular to the “revolving door” plane of
the pendulum arm) and Lψ̇ (a vector within the “revolving door” plane).5 These two
velocity components are orthogonal to each other. Thus the sum of their squares is
the square of the magnitude of the total rectilinear velocity vector. Having developed
the quantities necessary to describe the translational portion of the kinetic energy, it
is now necessary to turn to the fixed axis angular velocities to be used with the mass

4 The “small” (right-hand rule) rotation angles being added vectorially are ψ and θ .
5 Review the results of Exercise 1.6(b).
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moments of inertia in the description of the rotational kinetic energy as described by
Eq. (1.17). The θ̇ rotation vector is coincident with the z axis, and thus the angular
velocity about the z axis is simply θ̇ . This, of course, also means that no component
of θ̇ contributes to the angular velocities about the x and y axes. From the angular
velocity vector diagram of Figure 2.8(b), the small angular velocities about the x and
axes are

θ̇ x = ψ̇ sin θ and θ̇ y = −ψ̇ cos θ.

Then using the kinetic energy expression of Eq. (1.17), the kinetic and potential
energies, and consequently the θ and ψ equations of motion, are

T = 1/2mL2(θ̇2sin2ψ + ψ̇2) + 1/2H(θ̇2 + ψ̇2)

and V = mgL(1 − cos ψ)
d
dt

[θ̇(mL2sin2ψ + H)] = 0

and (H + mL2)ψ̈ + mL(g − Lθ̇2 cos ψ) sin ψ = 0. (2.10)

Now consider the heretofore excluded possibility of the pendulum bob spinning
about the longitudinal axis of the pendulum arm. That angular velocity vector (call
its magnitude φ̇) would parallel the pendulum arm. Hence, that angular velocity
vector would have angular velocity components along all three of the fixed Cartesian
coordinate axes. The additional small angular velocities terms would be

θ̇ x = −φ̇ cos θ sin ψ θ̇ y = −φ̇ sin θ sin ψ θ̇ z = φ̇ cos ψ.
★

2.4 Interpreting Solutions to Pendulum Equations

The previous section provides a variety of pendulum problems. More challenging
pendulum vibration problems can be found in the exercises. A mastery of those
example problems provides a firm basis for writing the equations of motion for
any mechanical system (as opposed to a structural system). An inspection of the
equations of vibratory motion associated with these example problems is sufficient to
draw the conclusion that they are generally nonlinear ordinary differential equations.
One important aspect of the (economical) practice of engineering is avoiding the
rigors of solving nonlinear differential equations when it is possible to gain useful
information from the corresponding linear forms of the same equations. The most
direct way to avoid the nonlinearities associated with pendulum problems is to limit
the range of applicability of the pendulum differential equations by limiting the
magnitudes of the generalized coordinates. When the rotational angles are “small,”
the nonlinear sine functions of those rotation angles can be replaced by the linear
functions that are simply the rotation angles themselves. That is, when θ is “small,” sin
θ can be approximated by θ . Similarly, the cosine of a small angle can be approximated
by the value one after, not before,6 the equation(s) of motion are obtained from
the general form of the Lagrange equations. Of course, the validity of these two

6 Before doing the differentiation required by the Lagrange equation, when the DOF θ is small, the
cosine function can replaced by the first two terms of its series expansion, 1− 1/2θ

2.
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trigonometric approximations depends on the accuracy required for the analysis.
When the argument of these two functions is as large as two-tenths of a radian (a
bit over 11◦), then the largest error is in the cosine function, and that error is less
than 2%. That is well within the usually accepted range of “engineering error.” This
assertion on the magnitude of the error of that approximation can be checked either
by writing out the first few terms of Taylor series expansions for the sine and cosine
functions or simply by use of a hand calculator. Thus, when the simple pendulum
of Section 2.2 swings through the not insignificant, two-sided arc of 23◦ or less, the
equation of motion of that pendulum, Eq. (2.1), can be approximated by replacing
sin θ by θ itself to get the following linear differential equation, which is in error by
less than 1%:

(H + mL2)θ̈ + mgLθ = 0. (2.11)

This linear differential equation (linear because θ and its derivatives appear only
to the first power) is much easier to solve than the equation with the sine function.
A brief discussion of an analytical (as opposed to numerical) solution of the orig-
inal differential equation that includes the nonlinear sine function is discussed in
Endnote (1). Numerical solutions to nonlinear ordinary differential equations are
discussed in Chapter 9.

The purpose of this section is to discuss the various features of the mathematical
solution to this typical, linear, vibratory equation of motion, Eq. (2.11). At this point
in the subject development, the solution to this linear differential equation, although
simple to derive, is only stated. The stated solution forms can be substantiated easily
by direct substitution into Eq. (2.11). This is a matter of organizational economy. The
full derivation of the solution to a slightly more inclusive linear differential equation
is postponed to Chapter 5. As for the solution itself, first note that the solution to the
above second-order, linear ordinary differential equation must have two constants
of integration. The solution for the angular position of the pendulum arm at any
point in time can be written in any one of the following three entirely equivalent
mathematical forms

θ(t) = C1 sin ωt + C2 cos ωt

or θ(t) = C0 sin(ωt + ψ1) = C0 cos(ωt − ψ2)

where ω =
√

mgL

H + mL2

and C1 = C0 cos ψ1 = C0 sin ψ2 C2 = C0 sin ψ1 = C0 cos ψ2

or C0 =
√

C2
1 + C2

2 and tan ψ1 = C2

C1
= cot ψ2,

where the constants of integration in the first-solution form are C1, and C2, in the
second-solution form they are C0, and ψ1, and in the third-solution form they are C0

and ψ2.
Note that the parameter ω is, in this case as it is to be in all cases, the square

root of the ratio of the coefficient of the deflection term (θ) over the coefficient
of the acceleration term (θ̈). Focus on the second-solution form C0 sin(ωt + ψ1),
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or the similar third-solution form C0 cos(ωt + ψ2). The term C0 is called the (total)
amplitude of the motion because it describes how far the pendulum swings to one
side or the other. The parameters C1 and C2 of the first-solution form are only partial
amplitudes, as is seen clearly on the last of the above equation lines. The parameters
ψ1 and ψ2 are called phase angles. Phase angles have only one effect. Phase angles
shift the point where the sine or cosine function crosses the horizontal axis of the
independent variable, which in this case is time. For example, if the first of these
phase angles were to have the value π/2, then the sine function with that phase angle
would be shifted to the left along the horizontal axis to the point where it would
become a cosine function. Similarly, if the second phase angle had the value π/2,
then the cosine function would become a sine function.7

Since θ is only a function of time, the various pairs of constants of integration
(C1, C2), (C0, ψ1), and (C0, ψ2) depend on the values of the initial conditions. Let the
symbols for the initial conditions be as follows:

initial deflection Θ0 = θ(0)

and initial velocity Θ̇0 = θ̇(0).

Setting time equal to zero in (i) the first of the above three solution forms for θ as
a function of time, the one with the constants of integration C1 and C2; and (ii) the
angular velocity equation, which is determined by differentiating this same angular
deflection equation, yields

C1 = Θ̇0

ω
and C2 = Θ0.

Therefore the first, and perhaps simplest, solution form becomes

θ(t) = Θ̇0

ω
sin ωt + Θ0 cos ωt. (2.12)

The other two ways of writing the small deflection solution in terms of the initial con-
ditions are easily obtained by using the relationships among the various constants
of integration C1, C2, C0, ψ1, ψ2, set forth above. Consider now either the single sine
function or the single cosine function form of the solution. Either of these solution
forms shows that for any combination of initial conditions, a plot of the back-and-
forth motion of the pendulum arm is a sinusoidal plot. (Recall the cosine function
is the same as the sine function except for a ninety degree phase shift.) As will be
seen, sinusoidal motion is very common for vibrating systems in the (approximate)
absence of energy dissipating friction or nonlinearities. It is so common that there
is a special name for this type of motion. Such a motion is called harmonic motion,
and it is so important that it is worth examining in detail. Figure 2.9(a) shows two
different time histories for a simple pendulum where both amplitudes8 are less than,
say, 0.2 rad (11◦) for the sake of the validity of the linear differential equation and its
solution. The solid line time history in Figure 2.9(a) is for the case where the initial

7 A simple basis for these statements can be the only trigonometric identities that need to be memorized:
sin(α ± β) = sin α cos β ± cos α sin β and cos(α ± β) = cos α cos β ∓ sin α sin β.

8 Recall that as defined above, the “amplitude” is the extent of the motion past the static equilibrium
position (where θ equals zero), on either side of the horizontal axis.
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θ(t)

t0

0Θ 

0 Θ

(a)

time duration of  
one cycle = one period

t

s(t)

ψ
ω

S0

S0

(b)

s(0)

Figure 2.9. Graphs for the linearized (undamped) vibratory equation of motion, Eq. (2.11). (a)
A time history (solid line) corresponding to an initial displacement, Θ0, and another (dashed
line) for an initial velocity, Θ̇0.
(b) A plot of a general harmonic response s(t) = S0 sin (ωt + ψ) used to identify the amplitude
S0, the period 2π /ω, and the phase angle ψ .

(i.e., starting) conditions for the pendulum are an initial displacement of magnitude,
Θ0, and no initial angular velocity. In other words, it is the case where the pendulum
arm is rotated through the angle Θ0 and then released without a shove. From the
above mathematics, this response history is a cosine function. The dashed line is the
time history when the pendulum starts from its static equilibrium position, that is,
the downward vertical position, and then is given a shove (i.e., an initial velocity is
imparted to the pendulum without there being an initial deflection). From the above
mathematics, this time history is a sine function. Both these time histories corre-
spond closely to our observation of the vibrations of pendulums and vibrating elastic
structures (play with a weight suspended from a rubber band). This correspondence
between this mathematical description and the observed time history of an actual
vibration is close but not exact. In a physical system, the amplitudes will sooner or
later noticeably decrease. This decrease is said to be becasue of energy dissipating
“damping forces.” The discussion of damping forces is postponed to Chapter 5.

Figure 2.9(b) is another harmonic time history, s(t), which is labeled so as to define
general terms that are used hereafter. The motion in this case can be mathematically
described as either a sine function with a phase angle or a cosine function with a dif-
ferent phase angle. Referring to this diagram, the following definitions are universal.
As above, the amplitude of the motion is the vertical distance on the plot from the
undeflected position, s(t) = 0, to the peak value where s(t) has its maximum positive
or its maximum negative value. The amplitude is always reported as a positive value.
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The double amplitude is also measured on the ordinate of the time history. It is the
positive difference between two successive peak values.

Again referring to Figure 2.9(b), the period of a harmonic or any other repeated
motion, T, is the smallest time duration before the time trace of the motion begins
repeating itself. In mathematical terms, for all values of t , the period T is such
that

s(t) = s(t + T ).

For vibratory motions, the period has units of seconds, or, more precisely, seconds
per cycle, where a cycle is the smallest portion of the time trace that is endlessly
repeated. The frequency of the motion, f , reports how often a cycle occurs. Therefore
the frequency is the inverse of the period, and it takes the unit of hertz (cycles per
second). The circular frequency of the motion, ω, is much like the frequency, but
rather than being in units of cycles per second, it has units of radians per second.
Mathematically the relationship between these three quantities is

T = 1
f

= 2π

ω
or ω = 2π f = 2π

T
.

This ω symbol is exactly the same as that used above in the statement of the solution
for the displacement of the pendulum arm because C0 sin(ωT + ψ1) = C0 sin(ψ1).
Clearly the word frequency can have two meanings: cycles per second and radians
per second. In a mathematical analysis, the word frequency generally means circu-
lar frequency because it is more convenient to write an ω rather than 2π f in such
solutions as that of Eq. (2.12), which typifies all harmonic solutions. However, when
discussing data, such as experimental data, the term frequency usually means hertz
(cycles per second). Of course it is important that the units of frequency either be
evident from a mathematical expression or be explicitly stated. Since this is an analy-
sis textbook rather than a technical report, frequency from this point onward means
circular frequency, that is, ω, in radians per second. Finally, Figure 2.9(b) can also
be used to review the meaning of that essential quantity called the phase angle of
the motion. Again, in the typical mathematical expression for a harmonic motion,
s(t) = S0 sin(ωt + ψ), the phase angle, ψ , is the part of the argument of the sine
function that does not contain time as a factor. Figure 2.9(b) shows the typical shift
in the zero crossing of the sine form of the function s(t) as the result of a positive
phase angle.

It will be seen that when the vibratory system is free of externally applied contact
loads or imposed base motions, the values of the periods and frequencies of the
motion depend only on the inherent characteristics of the vibratory system: the mass,
geometric, and elastic parameters of the system. Such periods and frequencies are
called natural periods and natural frequencies. It will be shown that the number of
natural frequencies or natural periods is equal to the number of DOF the system
possesses.

It is worth repeating that when there is a single DOF, and hence a single equation
of motion, the natural (circular) frequency of such a system is always the square root
of the coefficient of the deflection term (the zeroth time derivative term) divided
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by the coefficient of the acceleration term. That is, for the generic, linear, one DOF
equation of motion (the dynamic force equilibrium equation)

m ü(t) + k u(t) = F(t),

where (m, k) are constants, no matter how complicated, the single natural frequency
of this system is

ω1 =
√

k
m

.

No such simple relation exists when there are more than one DOF. As above, from
this point onward, to distinguish natural frequencies from frequencies associated
with applied loads and enforced motions, the natural frequencies are denoted with
positive integers as subscripts.

Concluding this introductory comment on natural frequencies and natural periods,
Ref. [2.1] provides a conservation of energy solution for simple pendulum amplitudes
that are not limited to being small. That nonlinear solution shows that the value of the
simple pendulum natural frequency decreases (and the value of the natural period
increases) as the pendulum swing becomes larger. In other words, the natural fre-
quency and period are not constant for large deflections but depend on the magnitude
of the deflection. The mathematics of the large amplitude solution for a simple pendu-
lum is presented in Endnote (1). In the case of structures (as opposed to mechanisms
such as pendulums) the geometry of the deflection usually causes the structure to
become stiffer (bigger k) and causes the natural frequencies to increase with increas-
ing deflection. However, if the deflections pass the elastic limit into the plastic region,
then the structure can become considerably less stiff over the peak parts of the ampli-
tude, and the natural frequencies will now decrease with larger amplitudes. Note that
in these circumstances of changing geometry or plasticity, the vibratory motion will
no longer be sinusoidal. However, the motion will still be back and forth and thus
close enough to being harmonic that all the terms defined above will still be relevant.
In this textbook, the emphasis is on linear elastic systems where the geometry is not
appreciably altered by the deflections, and the materials remain elastic.

2.5 Linearizing Differential Equations for Small Deflections

The previous section showed that when the amplitude of the simple pendulum of
Section 2.2 is limited to being small enough to allow the replacement of the sine
function by its argument, the equation of motion of the simple pendulum has a
harmonic solution. Again, a harmonic solution function is either a sine or cosine
function. The differential equations of the more complicated pendulums of Section
2.3 can also be linearized on the same basis. Whenever the amplitude of the motion is
small enough to allow the sine of the unknown deflection function to be replaced by
the unknown function itself, the cosine of that function can be replaced by 1.0 with
only slightly less accuracy. Thus, for example, the linearized (i.e., small deflection)
form of Eq. (2.4) is

(H + mL2)θ̈ + (mgL+ 2kh2)θ = 0.
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Next in complexity with respect to demonstrating the linearization of pendulum
equations of motion are Eqs. (2.5). These are the two nonlinear equations of motion
for the problem where a simple pendulum is suspended from a cylinder rolling on a
flat surface. The third term of the first of these two equations of motion contains the
frequently occurring product of θ̇2 and the sine of θ . This term can be discarded as
very small compared to, for example, the second term in the same equation, the one
containing θ̈ whenever the applied force F(t) results in near harmonic motion for
the angles φ and θ at amplitudes less than, say, two-tenths of a radian. The reason
this third term is much smaller than the second term in these circumstances is

θ(t) ≈ Θ sin ωt and sin θ ≈ θ ≤ Θ

therefore θ̈(t) ≈ ω2Θ sin ωt ≤ ω2Θ

and similarly θ̇2 sin θ ≤ ω2Θ2Θ = ω2Θ3.

Thus the third term is proportional to the third power of the small amplitude (a value
less than 0.2), whereas the second term of this equation of motion is only proportional
to the first power of the small amplitude. Hence the third term, with the amplitude
being limited to 0.2 rad, is at most, 4% of the second term of the same equation. Thus
the third term can be eliminated without loss of engineering accuracy. Therefore the
linear forms of Eqs. (2.5) are

[H1 + (m1 + m2)R2]φ̈ + m2 RLθ̈ = RF(t)

m2 RLφ̈ + (H2 + m2L2) θ̈ + mgLθ = LF(t).

The linearization of the remainder of the example problem equations of motion
duplicates the above-discussed steps. Thus such linearizations are left to the exercises.
As an aside, note that, from the first of the above two linearized equations, when the
externally applied force F(t) is zero, the two angular accelerations become directly
proportional to each other. Even without the applied force being zero, equation
compactness can be achieved by using the first of the above equations to eliminate
φ̈ in the second equation. Then there is but one equation in terms of one unknown
function.

As a repeated comment on the process of linearization, note that the above discus-
sion focused on carrying out the process of linearization after obtaining the nonlinear
differential equation. Often the linearization can be done more conveniently at an
earlier stage, with the sines of small angles being replaced by the small angles. How-
ever, it may or may not be possible to replace the cosines of small angles by 1: As
an example of a case where it is not correct to so linearize the cosine function, recall
that the potential energy of many pendulums is proportional to (1 − cos θ). This fac-
tor would then be zero in those circumstances, and the gravitational effect would be
completely lost from the analysis. In such cases, the cosine of the small angle needs to
be replaced by the first two terms in its Taylor series expansion, which are 1 − θ2/2.

2.6 Summary

Pendulum problems begin the discussion of vibratory systems because the back-
and-forth swinging motion of the pendulum arm, the system vibration, is familiar to
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all readers. Therefore, the parameters of the mathematical solution to any linear or
nonlinear pendulum differential equation (period, frequency, amplitude, phase angle,
initial deflection, etc.) are quantities the reader can readily visualize. Pendulums of
different configurations also offer practice in writing system equations of motion that
do not require a knowledge of structural mechanics. The writing of these pendulum
equations of motion provides the reader with (i) a review of the Lagrange equations
of motion and (ii) a reminder of the limitations of present analytical techniques for
solving nonlinear differential equations and hence the importance of the numerical
techniques to be discussed in Chapter 9. Further opportunities for practicing the
application of the Lagrange equations are found in the exercises at the end of the
chapter.

Occasionally, toward the end of chapters, there are sections marked by a double
asterisk (∗∗). These sections deal with topics that are more complicated than are
appropriate for a one-semester course. The next two sections fit this mold. Subjects
off the main path followed by this book are relegated to endnotes. This chapter has
an endnote that continues the discussion of stability questions in the context of the
general, discrete system vibratory equations.

2.7 **Conservation of Energy versus the Lagrange Equations**

The Lagrange equations are the preferred means for describing the dynamics of
mechanisms and structures. Generally, for pendulums and structures alike, the
Lagrange equations, just like Newton’s laws, involve accelerations, velocities, and
deflections. Conversely, the conservation of energy equation involves only velocities
and deflections. Therefore it may seem that in the circumstances of no frictional (i.e.,
no energy dissipative) forces, or no externally applied forces, that the conservation
of energy equation offers (i) the advantage of greater simplicity and (ii) the advan-
tage of having, in effect, eliminated the accelerations and thereby accomplished one
of the two required integrations over time that are needed to solve the Lagrange
equations. That is, a conservation of energy equation requires only one integration,
whereas a Lagrange equation requires two. This is more than a matter of less required
effort. It is more a matter that first-order differential equations are generally much
easier to solve than second-order differential equations, which are other than linear
equations with constant coefficients. Indeed, the conservation of energy equation
does offer these important advantages, and this limited method should be part of
an analyst’s repertoire. Again, the advantage of having, in effect, accomplished one
time integration is especially important in the case of nonlinear equations of motion.
However, a certain amount of caution is necessary in the application of the conser-
vation of energy equation. It is necessary to point out that the conservation of energy
equation may not produce the correct answer when there is an enforced motion any
more than it would when there is an externally applied force. The following example
problem illustrates this statement.

EXAMPLE 2.8 A thin, stiff, uniform bar of constant cross section A, length L,
mass density ρ, and total mass m = ρ AL is supported by a hinge at its top end. The
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rod rotates about a vertical axis with a constant angular velocity ω0, as shown in
Figure 2.10. In Figure 2.10 the axis of the hinge is seen in end view as point P. This
hinge axis, of course, rotates with the rod and is always perpendicular to the plane
defined by the rod and the rotation axis. Since the elastic deformations of the rod as
a result of the actions of the gravitational and centrifugal forces are much smaller
than the overall motion of the rod, and because the focus here is on describing the
overall motion of the rod, the rod is modeled as rigid. The tasks to be completed
are (i) determine θ0, a constant angle that defines the inclined, static equilibrium
position of the rotating rod, and (ii) derive the equation of motion for small flapping
oscillations, θ1(t), about the static equilibrium position of part (i). The quantities θ1(t)
and θ(t) = θ0 + θ1(t) are illustrated in Figure 2.10(b). (Note that if the rod were a
uniform helicopter blade, it would also be necessary to include lift forces and, as a
result, the static equilibrium angle could be above the horizontal.)

SOLUTION (a) Using Newton’s equations first, the static equilibrium position is
determined by the zero sum of (i) the moment about the hinge caused by the weight
of the rod and (ii) the moment about the hinge caused by centrifugal forces acting
on the rod. The gravitational moment about point P is simply obtained by multiply-
ing the vertically directed gravitational force, mg, by the horizontal distance from
the axis of rotation to the center of mass, 1/2Lsin θ0. To check this result, and, more
importantly, to lay a foundation for the calculation of the moment as a result of the
centrifugal forces, repeat the calculation of the gravitational moment as a sum (inte-
gral) of differential moments. That is, consider a differential length of the uniform
bar, dx, as shown in Figure 2.10. The force acting on this differential length is pro-
portional to the force acting on the entire bar, (mg)(dx/L). Combining this vertically
acting force with its horizontal moment arm yields

MP =
L∫

0

(x sin θ0)
(mg

L
dx

)
= mg

L
sin θ0

L∫
0

xdx = 1/2mgLsin θ0,

which, of course, is the same as the answer previously obtained.
Since any differential element of the bar moves in a circle lying on a horizontal

plane, there are centrifugal accelerations directed away from the axis of rotation.
Note that it is incorrect to place the total centrifugal force at the center of mass
because the magnitude of the centrifugal force is not constant along the length of
the rod as is the weight per unit length. Therefore it is properly cautious to cal-
culate the moment created by the centrifugal accelerations by again considering a
length dx of the uniform rod. The centrifugal moment about the hinge axis pro-
duced by the mass of this differential portion of the rod is the vertical (moment arm)
distance to this differential length, x cos θ0, multiplied by the horizontal centrifu-
gal force. The centrifugal force acting on this differential sized length of the bar is
equal to the differential mass multiplied by the local centrifugal acceleration; that is,
dFc = (ρ Adx)(rω2

0), where r = x sin θ0. As with the gravitational moment, the total
centrifugal moment is obtained by integrating the product of all these differential
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Figure 2.10. Example 2.8: (a) The static equilibrium position, θ0, is determined by the balance
between the weight force and the centrifugal force. (b) An illustration of the up (and down)
vibratory motion of the bar as it rotates about a vertical axis.
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forces and their moment arms over the length of the rod. Hence, the moment equi-
librium equation for both the gravitational and centrifugal forces is

0 = (mg)(1/2Lsin θ0) −
L∫

x=0

(x cos θ0)
(
ρ Adx)(ω2

0x sin θ0
)

where ρ Aω0
2 sin θ0 cos θ0

L∫
x=0

x2dx = 1
3

mL2ω2
0 sin θ0 cos θ0

hence 1/2mgLsin θ0 = 1/3mL2ω2
0 sin θ0 cos θ0

or (mLsin θ0)
(

1/2g − 1/3Lω2
0 cos θ0

) = 0.

Either the first or the second of the above two factors is zero. Setting the first factor
equal to zero provides the solution that the static equilibrium angle has the value
zero or the value π . The zero solution is discussed shortly. The 180◦ solution is
obviously unstable and will be ignored. Setting the second factor equal to zero yields
the solution

cos θ0 = 3g

2ω2
0 L

≤ 1.0.

The above inequality arises because the cosines of all real angles must be less than
or equal to 1. Thus this second solution cannot apply when the enforced, constant,
angular velocity is smaller than the square root of 3g/2L. Thus the second solution
becomes operative only when the enforced rotational velocity reaches that value,
at which point this angle of repose is still zero but grows as the enforced angular
velocity grows. In summary

θ0 = 0 for ω0 ≤
√

3g
2L

θ0 = arccos
(

3g

2Lω2
0

)
for ω0 >

√
3g
2L

.

This solution could also have been obtained using the Lagrange equation with θ0

as the generalized coordinate if the analyst is careful, as in the case of the centrifugal
moment, not to assume that the kinetic energy simply involves the product of the
total mass and the square of the velocity at the center of mass. This energy approach
to obtain the static equilibrium position is simply a subcase of the energy approach
employed in the solution to the second part of this example problem, which follows
immediately and is further explained there.

(b) To derive the equation of a flapping vibratory motion, draw the system in its
displaced configuration as shown in Figure 2.10(b) where a nonzero static equilibrium
position is assumed for the sake of generality. Since the static equilibrium position
is now known, and because the angular velocity about the vertical axis is a known
constant, only the time-varying, vibratory position of the rod is unknown. Just like
locating the static equilibrium position, only a single angular coordinate is required
to locate the flapping rod in its vertical plane. Let that DOF be

θ(t) = θ0 + θ1(t), (2.13)
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Figure 2.10. Example 2.8 (continued):
(c) Location and orientation of selected
vectors.

where, again, these quantities are defined in Figure 2.10(b).
The rotational kinetic energy of the rod is approximated by noting that the mass

moment of inertia of the thin rod about its own longitudinal axis is negligible. If it were
not negligible, the corresponding angular velocity from Figure 2.10(b) is ω0 cos θ .
From the same figure, rotation of the rod about the axis lying in the plane of the paper,
which is perpendicular to the rod’s longitudinal axis, is ω0sin θ . The corresponding
mass moment of inertia at the center of mass can be calculated to be mL2/12. The
angular velocity about the third orthogonal axis, the one perpendicular to the plane
of the paper, is simply θ̇ , and the value of its corresponding mass moment of inertia at
the center of mass is also mL2/12. That takes care of the three orthogonal components
of the rotational kinetic energy. Now the two nonzero components of the angular
velocity can used to write the rotational kinetic energy as Trot = 1/2(mL2/12)(θ̇2 +
ω2

0sin2θ).
This system is sufficiently complicated that it is wise, when seeking the rectilinear

component of the kinetic energy, to proceed from first principles. For this purpose,
set up two sets of orthogonal unit vectors. Let p and q be horizontal unit vectors
that originate at the center of mass of the rod when the rod is vertical. Let these two
vectors rotate about the axis of rotation such that p is always in the plane defined by
the rod and the axis of rotation, as shown in Figures 2.10(c). Let i, j, and k be the
usual Cartesian unit vectors fixed in space, and let them have the same origin. Now,
to calculate the rectilinear velocity of the center of mass of the rod, introduce the
position vector r(t), whose time derivative is the velocity at the center of mass. Then

r (t) = p [1/2Lsin θ ] + k [1/2L(1 − cos θ)]

ṙ (t) = ṗ [1/2Lsin θ ] + p [1/2L θ̇ cos θ ] + k [1/2L θ̇ sin θ ]
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where p = i cos ω0t + j sin ω0t

and ṗ = −ω0(i sin ω0t + j cos ω0t) = +qω0

so ṙ · ṙ = 1/4L2(θ̇2cos2θ + θ̇2sin2θ + ω2
0sin2θ

)
= 1/4L2(θ̇2 + ω2

0sin2θ
)
.

Multiplying the above velocity squared by one-half of the mass provides the
rectilinear kinetic energy. Combining that energy with the previously determined
rotational kinetic energy produces the total kinetic energy, which is

T = mL2

8

(
θ̇2 + ω2

0sin2θ
) + mL2

24

(
θ̇2 + ω2

0sin2θ
)

= mL2

6

(
θ̇2 + ω2

0sin2θ
)

also V = (mg)(1/2L)(1 − cos θ).

Since 1/3mL2 is the mass moment of inertia of the rod about the rod end, the above
answer for the kinetic energy now makes clear that the total kinetic energy could
have been written much more quickly as one-half the mass moment of inertial of
the rod about (i) the hinge axis and then (ii) an axis perpendicular to the hinge axis;
each multiplied by its respective angular velocity.

Before proceeding to the Lagrange equation, calculate the virtual work to be
sure that it is zero as it would seem at first glance. Since the inertial, including the
centrifugal, and gravitational forces are included in the kinetic and potential energies,
the only external forces not accounted for are those that produce the moment that
maintains the constant angular velocity about the vertical axis of rotation. The vector
for this moment is orthogonal to the vector9 for the virtual rotation δθ . Therefore
the virtual work is indeed zero.

Substituting the above kinetic and potential energies into the Lagrange equation
yields the equation of motion

mL2

3
θ̈ − mL2ω2

0

3
sin θ cos θ + mgL

2
sin θ = 0. (2.14)

Note that this equation cannot be linearized immediately because θ is not neces-
sarily a small angle. Theta need not be a small angle because it includes the perhaps
large angle of the static equilibrium position, θ0. Therefore, with the intent of obtain-
ing a linear equation so that a first estimate of the small vibratory deflection, θ1(t),
natural frequency, or natural period is possible, substitute Eq. (2.13) into Eq. (2.14).
With θ1(t) regarded as being small in the usual sense of the sine of this angle being
approximately equal to this angle, and its cosine being approximately equal to 1

sin(θ0 + θ1) = sin θ0 + θ1 cos θ0 and cos(θ0 + θ1) = cos θ0 − θ1 sin θ0.

9 From Ref. [2.3], small (10◦ or less for engineering accuracy) angular rotations can be treated as vector
quantities, and virtual rotations are very small.
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After discarding the square of θ1, and simplifying, the equation of motion in terms
of θ1 is as follows:

θ̈1(t) +
(

3g
2L

cos θ0 − ω2
0 cos 2θ0

)
θ1(t) = sin θ0

(
ω2

0 cos θ0 − 3g
2L

)
= 0.

Again, the right-hand side is zero because of the solution for the static equilibrium
angle: cos θ0 = 3g/2Lω2

0. The coefficient of the above zeroth derivative term, which
is the square of the small vibratory deflection natural frequency, can be better under-
stood to be a positive quantity by rewriting it as follows:

ω2
1 = 3g

2L
cos θ0 − ω2

0 cos 2θ0

= 3g
2L

cos θ0 − ω2
0cos2θ0 + ω2

0sin2θ0

= ω2
0sin2θ0.

Returning to the main purpose of this example, now write the conservation of
energy equation, (d/dt)(T + V) = 0. This equation, at first glance, would seem to be
valid because the only immediately evident external force is the gravitational force,
and that is included in the potential energy term. From above

T + V = mL2

6

(
θ̇2 + ω2

0sin2θ
) + mgL

2
(1 − cos θ) = const.

d
dt

(T + V ) = θ̇

[
mL2

3
(θ̈ + ω2

0 sin θ cos θ) + mgL
2

sin θ

]
= 0

or
mL2

3
θ̈ + mL2ω2

0

3
sin θ cos θ + mgL

2
sin θ = 0. (2.15)

A comparison of Eqs. (2.14) and (2.15) shows there is a sign difference between the
two equations with respect to the second term of these equations. The conservation
of energy equation is wrong because the energy is not constant. To see why the energy
of the system is not conserved, consider the rod at two different positions in its up
and down flapping vibration (i) where the rod has swung up to the maximum value
of θ and (ii) where the rod has swung down to the minimum value of θ . At both
positions the kinetic energy associated with the motion in the plane of the rod and
the vertical axis of rotation is zero. This is so because at the instants that the rod
occupies those positions, the rod has come to a halt in that plane in order to change
the direction of its swing in that plane. In the upper inclined position, the kinetic
energy of rotation about the vertical axis is greater than that at the lower inclined
position because, from the above, the angular velocity is ω0 sin θ and sin θ increases
as θ increases when θ is below a value of 90◦, as it must be here. The translational
kinetic energy is also greater at the upper position because the center of mass radius
of the tangential velocity is also larger. The higher elevation of the center of mass at
the upper position also means that the potential energy is also greater at the upper
position. Hence the total energy is greater at the upper rod position than at the lower
rod position, and thus the energy is not constant. The energy levels change because
the constant angular velocity ω0 is only possible by means of a time-varying moment
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Figure 2.11. Horizontally base excited
pendulum.

acting about the axis of rotation that pushes the system along when the rod swings
above the rod static equilibrium position and slows down the system when the rod
swings below its static equilibrium position. Thus this moment is always adding work
(energy) to, or deleting work (energy) from, this pendulum system. ★

2.8 **Nasty Equations of Motion**

In certain circumstances, even when the motion of a single, simple-appearing pendu-
lum system is restricted to small deflections, there may not be the slightest hope of
even an approximate analytical solution. That is, the equation of motion will require
a numerical solution as discussed in Chapter 9. For the sake of a stark contrast to a
later example that illustrates this point, first consider the support motion activated
pendulum of Figure 2.11. This one-DOF system, with its horizontally moving support
is little different from the previously studied pendulum systems. The derivation of its
equation of motion is straightforward. With θ as the single generalized coordinate

T = 1/2Hθ̇2 + 1/2m[(u̇ + L θ̇ cos θ)2 + (L θ̇ sin θ)2]

= 1/2Hθ̇2 + 1/2m[u̇2 + 2u̇ θ̇ Lcos θ + L2θ̇
2]

and V = mgL(1 − cos θ)

therefore (H + mL2)θ̈ + mgLsin θ = −müLcos θ.

This equation of motion is easily linearized when the base motion is harmonic with
a magnitude such that θ is always small enough that sin θ can be replaced by θ , and
cos θ can be replaced by 1.

To obtain an equation of motion for a similar, simple-appearing system that
requires a numerical solution, again consider the pendulum system of Figure 2.11.
This time, however, let the rail on which the pendulum support moves be oriented
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vertically in such a way that there is no interference between the vertical rail support-
ing the pinned end of the pendulum and the pendulum itself swinging in the plane
of the paper. Let the vertical base motion be described by the time function v(t),
where, as per usual, v(0) = θ(0) = 0 is the datum point for the system. Then

T = 1/2Hθ̇2 + 1/2m

([
d
dt

(Lsin θ)
]2

+
{

d
dt

[v + L(1 − cos θ)]
}2

)

= 1/2Hθ̇2 + 1/2m(v̇ 2 + 2v̇ θ̇ Lsin θ + L2θ̇2)

and V = mg[v + L(1 − cos θ)]

therefore (H + mL2)θ̈ + mL(g + v̈) sin θ = 0.

To better contrast these results, let θ be restricted to small deflections in the usual
sense and let the previous, horizontal base motion and the present vertical base
motion be harmonic; that is, let

u(t) = u0 sin ω0t and v(t) = v0 sin ω0t ,

where u0 and v0 are the small amplitudes of the base motion. Then the respective
equations of motion corresponding to these two differently directed excitations are

(H + mL2)θ̈ + mgLθ = −mLω2
0u0 sin ω0t

(H + mL2)θ̈ + mL
(
g − ω2

0v0 sin ω0t
)
θ = 0.

The first of these two equations of motion is a linear, ordinary differential equation
with constant coefficients. As shown in Chapter 5, this equation of motion is easily
solved. The second equation of motion is also a linear, ordinary differential equation.
However, in the case of the second equation, its θ coefficient is not a constant. Since
this coefficient varies with time in a nonpolynomial manner, this equation can be
expected to require a numerical solution.

One thing can be learned immediately from the second of the above equations,
the one corresponding to the vertical excitation. To understand the point to be made,
first consider two similar, easily solved, linear, ordinary differential equations with
constant coefficients

(1): q̈(t) + ω2
1q(t) = 0 (2): q̈(t) − ω2

1q(t) = 0.

Their respective solutions can be written as

(1): q(t) = C1 sin ω1t + C2 cos ω1t (2): q(t) = C1 sinh ω1t + C2 cosh ω1t.

Thus the change in sign for the coefficient of the deflection term changes the solution
from one that is strictly bounded in the first case to one that is unbounded in the
second case. Although the first motion is called vibratory, the second motion is termed
unstable. Returning to the pendulum with the vertical excitation, the coefficient of
the θ term becomes negative, and the motion unstable, whenever

ω2
0v0 > g.

The next section further explores questions of system stability.
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atumFigure 2.12. Spring supported inverted pendulum.

2.9 **Stability of Vibratory Systems**

As shown in the third section of Chapter 4, it is important to clearly identify the
system’s static equilibrium position. Consider the inverted pendulum system of Fig-
ure 2.12. It is necessary to consider the possibility of more than one static equilibrium
position for this pendulum. Let the static equilibrium position be measured by the
rotational angle θ0, which is an unknown constant to be determined. Setting the sum
of the moments about the base equal to zero yields the static equilibrium result

0 = (kLsin θ0)(Lcos θ0) − mg(Lsin θ0)

or sin θ0(kLcos θ0 − mg) = 0

so either

sin θ0 = 0, which implies θ0 = 0

or

cos θ0 = mg
kL

, which implies kL ≥ mg.

Thus, when the weight force is less than kL, there are two possible static equilibrium
positions. The rod is in static equilibrium when it is vertical (θ0 = 0), and it also is in
static equilibrium when it is at the positive or negative angle described by θ0 equal
to the arccosine of mg/kL.

The following static stability analysis shows that only the vertical position, of the
two positions, is stable. With θ0 as the generalized coordinate, the total potential
energy of this pendulum system is

U + V = 1/2k(Lsin θ0)2 − mgL(1 − cos θ0).
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With the kinetic energy being zero as it is in all static cases, the Lagrange equation
of motion is the equation of static equilibrium. That equation is

∂(U + V)
∂θ0

= 0 = kL2 sin θ0 cos θ0 − mgLsin θ0.

for the same equilibrium state results as above. It can be shown that, just as the first
derivative of the potential energy yields the equilibrium states, the stability nature
of the equilibrium states can be determined in an energy conservative case like this
by examining the second partial derivative of the potential energy. See Ref. [2.2].
Whenever this second partial derivative is positive, the system is stable. Whenever
this second partial derivative is negative, the system is unstable. The second partial
derivative has the form

∂2(U + V)
∂θ2

0

= kL2(cos2θ0 − sin2θ0) − mgLcos θ0.

Substituting θ0 equals zero, its value for the first static equilibrium state, shows that
equilibrium state is stable whenever kL is greater than mg, and it is unstable when
the inequality is reversed. Substituting the value of θ0 for the second equilibrium
state, where again cos θ0= mg/kL yields

1
kL2

∂2(U + V)
∂θ2

0

= (cos2θ0 − sin2θ0) − (cos θ0) cos θ0 = −sin2θ0 < 0

for all values of θ0. Therefore this second equilibrium state, where the inverted pen-
dulum system is in an off-vertical position, is always unstable. That is, the pendulum
system will remain in its off-vertical static equilibrium position before falling down
for approximately the same period of time a pencil balanced on its sharpened point
remains in that static equilibrium position. Hence, the conclusion relating to the
vibrations of this system that this pendulum system can vibrate only about its verti-
cal equilibrium position and only then if kL > mg. With θ0 equal to zero, and θ(t) the
time-varying position of the pendulum arm measured from the vertical, the linearized
equation of motion and the system natural frequency of vibration is

mL2θ̈(t) + (kL2 − mgL)θ(t) = 0

where ω1 =
√

k
m

− g
L

.

This solution also shows that there cannot be a real first natural frequency for this
one DOF system, unless kL > mg. Indeed, this identical result for the limitation on
the system parameters can be viewed as now having been obtained by a “dynamical
analysis” as opposed to the previous “energy approach.” This indicates another use
for dynamic analyses.

To be a bit more general in the discussion, accept that in later chapters it is shown
that the force free vibration of any one-DOF mechanical system is described by the
following linear ordinary differential equation:

m ü(t) + cu̇(t) + ku(t) = 0.

This differential equation of motion with its three constant coefficients can be rewrit-
ten in terms of just two system parameters (i.e., two ratios) by simply dividing this
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equation by the leading coefficient. In terms of the system natural frequency ω1, and
the system damping factor (the significance of which is to be discussed in Chapter 5)
ζ1, the system equation of motion becomes

ü + (c/m)u̇ + (k/m)u(t) = 0

or ü + 2ζ1ω1u̇ + ω2
1u(t) = 0

where ω1 =
√

k
m

and ζ1 = c

2
√

km
. (2.16)

It will be seen that whenever the damping factor ζ1 has a value less than 1 (the
common situation for structures whereby vibrations are possible), the solution to the
system differential equation of motion can be written as

u(t) = C0 exp(−ζ1ω1t) cos
(
ω1t

√
1 − ζ 2

1 − ψ
)

,

where C0 and ψ are the two constants of integration for the second-order differential

equation. Of course, as discussed previously, these two constants of integration are
related to the initial deflection and the initial velocity of the one-DOF system. Since it
is always to be understood that the initial conditions are at time zero, the time variable
t has only positive values. First consider the case where the system parameters, the
natural frequency and the damping factor, are both positive. Inspection of the above
mathematical solution for the motion of the one-DOF system, u(t), again shows
that the cosine function part of the solution describes a back-and-forth, constant
amplitude vibratory motion. The new element, the negative exponential function
part of the solution modifies the constant amplitude part of the motion, steadily
decreasing it as time progresses. This decrease in vibratory amplitudes with increasing
time is exactly what is observed with wholly stable physical systems undergoing force
free (i.e., “natural”) vibrations.

To focus in the simplest possible way on the effect of negative values of the param-
eters on the single degree of freedom system, begin by letting the effective damping
coefficient, c, and hence the damping factor, ζ , temporarily be zero. Also, without any
loss of generality, let the “effective mass,” m, always be a positive number. If k (and
c ) are also positive quantities, then the situation is a stable vibration as mentioned
in the preceding paragraph. If, however, the coefficient k is a negative quantity,
as it could be for the inverted pendulum system discussed in this section, then the
natural frequency of vibration is an imaginary number and as such has no physical
meaning as a vibration frequency. In this case, what happens to the mathematical
solution for the motion of the mass, Eq. (2.16), is that the cosine of the imaginary
number (ignoring the phase angle ψ for simplicity)10 becomes a hyperbolic cosine.
The hyperbolic cosine, with an argument proportional to time, describes a motion of
the mass that is not vibratory, but just as described above, a motion that continuously
and steadily (i.e., monotonically) increases in magnitude as time increases. Such a
system where the mass moves with ever increasing magnitude in a single direction

10 For a brief discussion of why it is justified to ignore the damping factor and the phase angle in this
argument, see the footnotes attached to Endnote (2).
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h

2RFigure 2.13. Exercise 2.1: Measuring
a mass moment of inertia.

is called a statically unstable, or a system undergoing divergence. A marble placed at
the top of the smooth outer surface of a bowling ball typifies this situation. Again,
with respect to the inverted pendulum problem, if mg > kL, then the pendulum is
statically unstable or divergent.

Returning to the full m, c, ksystem, this time let the effective damping coefficient, c,
and thus the damping factor, ζ , be the sole negative parameter. The above solution for
the motion of the mass, Eq. (2.16) is still valid, and the only change in the form of the
solution is that the exponential function now has a positive argument proportional to
time rather than a negative argument. That is, the cosine function is unaltered, but the
function that modifies the amplitudes of the cosine function, the exponential function,
undergoes a change from being a “squeezer” to being an “expander.” Thus the
mathematics reveals that the motion of the mass is vibratory as a result of the cosine
function, but the amplitudes of the vibration steadily increase. Such a system is called
dynamically unstable, and the system is also said to be experiencing flutter. What is
true for single degree of freedom systems regarding divergence and flutter is also
basically true for multidegree of freedom systems. However, the explanation offered
here of how this is so requires more advanced mathematical skills, and for that reason
the explanation is relegated to Endnote (2) and left for more advanced readers.
An application of these stability concepts to an important engineering problem is
discussed in Section 11 of Chapter 7.
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CHAPTER 2 EXERCISES (answers in Appendix I)

2.1 (a) As shown in Figure 2.13, a symmetric, but irregularly shaped, circular object
is suspended a distance h above its geometric center. The symmetry of the object and
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Figure 2.14. Exercise 2.3: A V pendu-
lum.

the homogeneity of the material gives assurance that the geometric center is also the
center of mass. The circular object has a weight w, an outer radius R, and an average
thickness P and its astrological sign is Leo. When set to swinging in the plane of the
paper from its support point, through small angular amplitudes, its observed period
of vibratory motion is T. What is the magnitude of the object’s mass moment of
inertia about an axis through the center of mass and perpendicular to the plane of
the paper?

(b) Conceptually design an experiment using a pendulum for the accurate deter-
mination of the acceleration of gravity. Hint: One approach is to consider using a
long object of imperfect geometry that can be physically suspended from two differ-
ent points along its length where each suspension point is a different, far distance
from the object’s center of mass. The two suspensions can provide two pieces of
information that allow the calculation of the mass moment of inertia and then the
acceleration of gravity.

2.2 (a) Linearize Eq. (2.6), and write the expression for the small deflection natural
(circular) frequency and natural period.

(b) Linearize Eq. (2.8), and provide the solution for the small deflection natural
(circular) frequency.

(c) Linearize Eqs. (2.9), and provide the solution for the (small deflection) natural
period.

2.3 (a) Write the small deflection equation of motion, and determine the period of
vibration for the inverted V pendulum shown in Figure 2.14. The pendulum swings
only within the plane of the paper and is thus a single degree of freedom system. For
this part of the exercise, omit the effect of the mass moments of inertia of each arm
by only taking into account the mass of each pendulum arm, which is M.
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Figure 2.15. Exercise 2.4: Three elastically coupled pendulums. (This vibratory system is exam-
ined again in Chapter 6.)

(b) Improve the answer for part (a) by now including the effect of the mass moments
of inertia of each of the pendulum arms. Let the thicknesses of the two arms be much
smaller than the lengths. Thus the mass moment of inertia of each arm about an axis
perpendicular to the plane of the paper, and passing through the center of mass of
the arm, is ML2/12. (Can you verify this moment of inertia value?)

(c) Note that the long thin rod has a mass moment of inertia about its center of mass
that is much larger than that of a compact body with the same mass. In this context,
what was the error associated with ignoring the mass moments of inertia of the two
bars as indicated by your answers to parts (a) and (b)?

2.4 By separately grouping the acceleration and deflection terms for each of the
three equations of motion, write the (small deflection, linear) matrix equation of
motion that describes the motions of the three pendulums that are connected as
shown in Figure 2.15. These pendulums swing only within the plane of the paper.
To simplify the algebra, let g/L = α2(k/m), where α is the nondimensional constant
that locates the spring connections. Let the spring constant k be sufficiently “soft”
that the spring forces are of the same order of magnitude as the gravitational forces.
Note that the mass moment of inertia of each pendulum bob about its own center of
mass is negligible in this case.

2.5 (a) Consider a circular cylinder of mass m shown in Figure 2.16(a). The cylinder
rolls back and forth, without slipping, because its center of mass is located a distance
a below the geometric axis of the cylinder. If H is the mass moment of inertia of the
cylinder about the center of mass, what then is the small deflection vibratory period
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Figure 2.16(a). Exercise 2.5(a). (b) Exercise 2.5(b): The swinging gate pendulum.

for the cylinder? Note that the horizontal, linear spring is attached to the geometric
center of the circular cylinder.

(b) The (rigid) thin, garden gate of Figure 2.16(b) has a uniformly distributed mass.
The gate’s total mass m = ρbht0, where ρ is the constant mass density and t0 is the
constant gate thickness. The gate’s hinge line is off vertical by an angle α. Determine
the natural frequency of its vibration as it swings about its hinge axis. Hint: Verify
that with t2

o � h2, b2, the gate’s mass moment of inertia about an axis parallel to the
hinge line at the center of mass is

HCG = ρh
12

(
bt3

0 + b3t0
) ≈ ρhbt0

(
b 2

12

)
= mb 2

12
.

(c) Write the equations of motion for the spring-pendulum system shown in Figure
2.16(c) using the DOF of Figure 2.16(d).

(d) Linearize the equations of motion of part (c) above by setting L+ v ≈ L; θ̇
2 ≈ 0;

vθ̇ ≈ 0; cos θ ≈ 1; and sin θ ≈ θ .

2.6 (a) Not all pendulums look like the usual pendulum situation of a solid object
moving in a gravitational field. Consider the mercury manometer tube shown in
Figure 2.17. Its inner cross-sectional area is A, and the total, U-shaped, fluid column
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L

F(t)m, H

Unstretched
spring position

k

Rest position

v

F(t)

k

Deflected position

L

Datum

θ

(c) (d)

Figure 2.16(c). Exercise 2.5(c). (d) Exercise 2.5(c).

length is L. Both halves of the tube are open to the same atmospheric pressure, and
thus the static equilibrium position of the mercury is that where both fluid columns
have the same height. The incompressible mercury (mass density ρ) can be set to
sloshing back and forth in the tube. Ignoring friction and other small effects, deter-
mine the period of this sloshing vibration by writing the equation of motion of the
mercury column.

(b) If one of the two tops of the above manometer were now connected to a pressure
tap that caused one fluid column to be higher than the other, would this disparity in
column heights affect the vibratory period?

2.7 (a) Write the equations of motion for the pendulum system of Figure 2.4, which
is now modified by changing the surface on which the roller travels from a flat surface
to that of a circular cylinder like the support surface of Figure 2.5. Let the support
surface have a radius R and the roller have a radius r .

u
u

L

Figure 2.17. Exercise 2.6: Sloshing manometer tube with equal pres-
sure openings.
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(a)
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l
L

k
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(b)

Figure 2.18. (a) Exercises 2.8(a) and (b): The rocking stick pendulum. (b) Pendulum with
movable mass; Exercises 2.8(c), (d), and (e).

(b) Redo the double pendulum problem of Figure 2.7, but this time instead of using
the previously identified (absolute) generalized coordinate θ2 as the second DOF, use
the generalized coordinate θ3, which is defined as the rotation of the lower pendulum
arm relative to the rotation of the upper pendulum arm. In other words, θ3 is θ2

minus θ1.

(c) Show that the equation of motion for the pendulum system of Example 2.1 is
unaltered even if the two springs have equal preloads. Note that with only slightly
unequal preloads, the pendulum would just move slightly off-vertical so as to equalize
the forces in the springs; that is, the system would move to a slightly nonvertical static
equilibrium position from which it would vibrate as before.

For the eager

2.8 Figure 2.18(a) shows a thin rod rocking (without slipping) back and forth on
a circular cylindrical surface. The axis of the rod is perpendicular to the axis of the
cylinder, and the single generalized coordinate θ is the angle measured from the ver-
tical through the center of the cylindrical surface to the point of contact with the rod.
Note that u, v are the horizontal and vertical distances traversed by the center of
mass of the rod, whereas � and h are the horizontal and vertical distances between
the point of contact and the rod center of mass. Let m be the mass of the rod, and L
be its length.

(a) Write the large deflection equation of motion.

(b) Linearize that equation to obtain the small deflection natural frequency.

(c) Figure 2.18(b) shows a pendulum of mass M and mass moment of inertia about
its own center of mass of magnitude H. Enclosed within the pendulum bob is an
additional, spring supported, mass m with its CG mass moment of inertia having the
value h. Note that m, h are not part of M, H. The two centers of mass are respectively
located at � and L from the fulcrum, and these CGs move only in the plane of the
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(c)

(b)(a)

Figure 2.19. Exercise 2.9: The twisting trapeze pendulum.

paper. Modeling the pendulum system as frictionless and without external excitation,
write the large rotation equations of motion for this system, and then cast the linear
forms of these equations in matrix form. As per usual, the springs are to be modeled
as massless, and the static equilibrium position of the mass m is located on the axis
of the pendulum arm.

(d) How would the task of part (c) change if the two springs were infinitely stiff?

(e) How would the mass m move if the two springs had zero stiffness?

2.9 Figure 2.19 shows the geometry of a trapeze and three views of the trapeze
undergoing vibratory motion as the trapeze twists about its axis of symmetry. (Be
sure to note that the trapeze does not swing in or out of the paper in such a manner
that the bar remains parallel to its original position.) Write the small deflection
expressions for the kinetic and potential energies in terms of a single generalized
coordinate of your choice.

2.10 (a) Figure 2.20 illustrates a “horizontal” pendulum problem. The horizontal
pendulum arm of length b is rigid and massless. At the wall, the arm is supported
by a universal joint that allows the pendulum to swing in and out of the plane of
the paper. At a distance a from the wall, the rod is supported by a massless string
of length h. The string remains taut and unstretched at all times. Write the small
deflection equation of motion and determine the small deflection natural frequency.
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Hinge

a

h

b

D

Bm
A

C

Figure 2.20. Exercise 2.10(a): A true horizontal pendulum.

(b) The pendulum of Figure 2.21 is one of a large class of problems where the
geometry of the pendulum arm is altered as the pendulum swings. In this case the
arm is axially rigid, but laterally flexible, much as chain. Thus the swinging arm
conforms to the shape constraints imposed by the rigid circular arcs as shown in
the sketch. Write the kinetic and potential energy expressions for the mass of the
pendulum bob. Note that only one generalized coordinate is required, and let that
DOF be the θ indicated on the figure.

For the especially eager

2.11 Consider the inverted pendulum problem of Figure 2.12 when the rectilinear
spring attached to the bob is replaced by a rotational spring (i.e., a linear spring that
generates a moment to oppose a rotation, as per M = Kθ , just a rectilinear spring
generates a force to oppose a translation, as per F = ku). Let the rotational spring
be attached to the base of the rod. Using any method:

(a) Determine all possible static equilibrium positions.

(b) Determine the stability of those SEPs,

(c) Determine the natural frequency of small vibrations about all stable SEPs.

2.12 Reconsider the one DOF system of Figure 2.5 where now the concave support
surface has a radius that varies with θ ; that is, R = R(θ), where R(θ) is a very smooth,
everywhere concave, function of θ , and R′(0) = 0. R(θ) is symmetric about θ = 0.

(a) Show that in this case the relationship between the two angular velocities, φ̇ and
θ̇ , is

r φ̇ = d
dt

θ∫
0

[
R2 +

(
dR
dθ

)2
]1/2

dθ = θ̇


R2 +

(
dR
dθ

)2


1/2

.

(b) In terms of the two rotational angles φ and θ , write the kinetic energy and
potential energy expressions for the rolling cylinder. (This is a challenging task.)
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SEP

θ

R

Figure 2.21. Exercise 2.10(c): A pendu-
lum arm that is inextensible but wholly
flexible laterally and of length L.

ENDNOTE (1): THE LARGE-DEFLECTION, SIMPLE PENDULUM SOLUTION

Consider the nonlinear differential equation for the large deflections of a simple
pendulum of arm length L

θ̈ + g
L

sin θ = 0.

The θ̈ term can be rewritten as follows:

dθ̇

dt
= dθ̇

dθ

dθ

dt
= θ̇

dθ̇

dθ
.

Substituting the above product for θ̈ and then multiplying through by dθ , the inte-
gration of the differential equation becomes∫

θ̇dθ̇ = − g
L

∫
sin θdθ + C1.

Carrying out the indefinite integration leads to

1
2
θ̇2 = g

L
cos θ + C1.

Now choose the initial conditions for this problem to be an initial deflection of θ0

and a zero initial velocity. Thus, at time zero

0 = g
L

cos θ0 + C1 or C1 = − g
L

cos θ0.

Hence, after substitution for the constant of integration, taking the square root, and
rearranging the result, where, in general, θ0 ≥ θ ,

dθ

dt
= ±

√
2g
L

√
cos θ − cos θ0.

Note that because the radical involving the cosines is real, and the time rate of change
of θ is negative because in the first half cycle of the pendulum vibration the value
of θ must be decreasing after the pendulum is released from its initial position θ0.
Hence the negative sign must be chosen for the square root. Generally, it is better to
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have squared quantities inside a radical. To this end use the trigonometric identity
that

cos θ = 1 − 2sin2 θ

2
.

Then, separating the variables and using definite integration over the time period
zero to t ,

−
θ∫

θ0

dθ√
sin2(θ0/2) − sin2(θ/2)

= 2

√
g
L

t∫
0

dt ,

where the first radical is again clearly real for all values of θ0 less than ±π/2. To put
this integral into a standard form, introduce the notation sin (θ0/2) = 1/k, and factor
out that quantity from the first radical. Then select as the upper limit of integration
the point in time where the pendulum swings from its initial deflection to the vertical,
which, in terms of time, is one quarter of a period, that is, select t = T/4. Reversing
the limits of integration on the left-hand side and carrying out the integration on the
right-hand side yields

θ0∫
0

d(θ/2)√
1 − k2sin2(θ/2)

= T
4

√
g
L

sin
(

θ0

2

)
.

The left-hand side integral is known as an “incomplete elliptic integral of the first
kind.” Tabulated values of these integrals can be found, for example, in Ref. [2.4].
This integral can be evaluated here by use of a binomial expansion, in which case
this integral becomes

θ0∫
0

[
1 + k 2

2
sin2

(
θ

2

)
+ 3k 4

8
sin4

(
θ

2

)
+ 5k 6

16
sin6

(
θ

2

)
+ · · ·

]
d

(
θ

2

)
.

The nth term in the above series is

(2n − 3)!k 2m−2 sin 2m−2(θ/2)
2m−3(m − 1)!(m − 2)!

.

The above integral can be evaluated once a value of θ0 is chosen. If, for example, the
initial deflection is chosen to be the convenient value of 90◦, then the above series
of integrals can be easily evaluated using beta functions. With any choice of θ0, it is
clear that the natural period T will not be a constant but depend on θ0 by depending
on k.

ENDNOTE (2): DIVERGENCE AND FLUTTER IN MULTIDEGREE
OF FREEDOM, FORCE FREE SYSTEMS

The last paragraph of this chapter states without proof that multidegree of freedom
structural systems free of externally applied, time-varying forces and moments have
roughly the same divergence and flutter responses that single degree of freedom
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systems have. The following is the justification for that statement. As is seen in
Chapter 5, the general “force free,” n-DOF, linear equation of motion can be written
in matrix form as

[m]{ü} + [c]{u̇} + [k]{u} = {0}, (2.17)

where [m], [c], and [k] are, respectively, the system mass (or inertia), damping, and
stiffness matrices, all of which are of size N × N. The next three chapters also demon-
strate that these three matrices can be made to be symmetric matrices for almost all
structures, and therefore they are assumed to be symmetric in the discussion that fol-
lows. The N × 1 column matrix {u} = {u(t)} is the matrix of generalized coordinates
that locates the time-varying positions of the system masses, and, of course, each dot
represents one differentiation with respect to time. An example problem at the end
of this endnote partially illustrates the above statements.

Although not necessarily the best choice of a coordinate transformation, the topic
development begins with the following conceptually simple coordinate transforma-
tion between the original (physically based) generalized coordinates u(t), and a new
set of generalized coordinates, q(t), where11

{u(t)} = [m]−
1/2{q(t)}.

The above inverse square root of the mass matrix, a matrix of constants, is easily
obtained if the mass matrix is a diagonal matrix, as is often the case for simple
structures. If the mass matrix is not a diagonal matrix, then its inverse square root
is obtained from the eigenvalues of the mass matrix as explained in the last section
of Chapter 9. Substituting this coordinate transformation and premultiplying both
sides of the equation of motion by the same inverse square root of the mass matrix
leads to [

m−1/2m1m−1/2
]
{q̈} +

[
m−1/2c m−1/2

]
{q̇} +

[
m−1/2k m−1/2

]
{q} = {0}.

From the definition of the inverse square root of a matrix, the first coefficient matrix
is the identity matrix. Therefore, the above equation can be rewritten using the
following symbols where the definitions of the new matrix symbols are obvious

{q̈} + 2[ζω]{q̇} + [ω2]{q} = {0}.
It is important to note that both of the new constant coefficient matrices of the
above equation are equal to their own matrix transposes and thus are also symmetric
matrices. As discussed in Chapter 9, the matrix solution to the above second-order
modified matrix equation of motion can be written as

{q(t)} = exp(−[ζω]t)
(

sin([ωd]t){C1} + cos([ωd]t){C2}
)

where [ωd]2 ≡ [ω]2 − [ζω]2
(2.18)

11 From Chapter 5, a more efficient transformation is one based on a Cholesky decomposition of the
mass matrix. However, the transformation based on the square root of the mass matrix requires less
explanation at this point.
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and where {C1} and {C2} are n × 1 column matrices of constants of integration that,
of course, are related to the system’s 2N initial conditions. Again, an explanation
of the mathematics of functions of matrices can also be found in Ref. [2.3]. This
solution statement for {q} can be validated by substitution into the corresponding
matrix equation of motion. Only the validity of the first (the sine) portion of the
solution need be demonstrated below

{q̇} = −[ζω]{q} + [ωd] exp(−[ζω]t) cos([ωd]t){C1}
{q̈} = +[ζω]2{q} − 2[ζω][ωd] exp(−[ζω]t) cos([ωd]t){C1}

− [ωd]2 exp(−[ζω]t) sin([ωd]t){C1}
so {q̈} + 2[ζω]{q̇} + [ω]2{q}

= [ζω]2{q} − [ωd]2{q} − 2[ζω]2{q} + [ω]2{q} ≡ {0} Q.E.D.

Following the same discussion pattern that is followed for the single-DOF system,
first, temporarily, let the damping matrix, [c], be null,12 and consider only the cosine
portion of the solution13 of Eq. (2.18). Then, in these much reduced, but still indica-
tive, circumstances, [ωd]2 = [ω]2. Next decompose the [ω2] matrix into the product
of its eigenvectors and eigenvalues; that is, write [ω]2 = [Φ][Λ][Φ]t , where [Λ] is the
diagonal matrix of the n eigenvalues. If any of these eigenvalues is negative, then in
the eigenvalue–eigenvector decomposition of [ω] = [Φ][Λ]

1
2 [Φ]t , the middle, diag-

onal matrix of eigenvalue square roots will contain an imaginary number. In that
case, the cosine of that imaginary number will be a real hyperbolic cosine that will
grow without bound as time increases. Thus in the number of degrees of freedom
for which there are negative eigenvalues for the [ω2] matrix, there will be that same
number of static instabilities (also called divergences). Hence, for a structural system
to be statically stable, all the eigenvalues of the [ω2], matrix, and thus all the eigen-
values of the stiffness matrix, have to be positive. Another way of saying the same
thing is to say that either the [ω2] matrix or the stiffness matrix has to be “positive
definite.” (If one these two “equivalent” matrices is positive definite, so too is the
other.)

Similarly, if any of the n eigenvalues of the matrix [ζω] happens to be negative,
then the exponential function will have a positive argument. Thus as time steadily
increases, so too will the values of those exponential functions associated with the
negative eigenvalues. Since these exponential functions serve as both an upper and
lower bound for the amplitudes of the vibration, this means, of course, that the
amplitudes of the vibration increase without bound. Therefore there will be as many
dynamical instabilities as there are negative eigenvalues of the [ζω] matrix. Con-
versely, for the system to be dynamically stable and not flutter, the [ζω] matrix, or,
equivalently, the damping matrix, must be positive definite.

12 Positive damping (such as any form of friction) is stabilizing, so setting the theoretical value of the
damping to zero does not falsely expand the stability boundary.

13 This is equivalent to having initial displacements but not initial velocities. The justification for this step
is that the general characteristics of the system’s linear behavior are unaltered by the nature of the
system initial conditions.
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Figure 2.22. Example 2.9: Inverted double pendulum system.

EXAMPLE 2.9 Consider the double inverted pendulum of Figure 2.22. The reader
can check that the matrix equation of motion is

[
1 0
0 1

] {
θ1

θ2

}
+




(
2

k
m

− g
L

)
− k

m

− k
m

(
2

k
m

− g
L

)



{
θ1

θ2

}
=

{
0
0

}
.

Since [\m\] in this simple case is the identity matrix [ I ], which is equal to its own
inverse square root, no transformation of coordinates is necessary to obtain a solution
to this matrix equation of motion. As was done in the triple pendulum problem of
Figure 2.15 to simplify the algebra, let α be a nondimensional proportionality factor
such that

g
L

= α
k
m

.

Using the techniques discussed in Chapter 6, the solutions that describe the motion
of this double inverted pendulum problem are

θ1(t) = C1 sin(ω1t + ψ1) + C2 sin(ω2t + ψ2)

θ2(t) = C1 sin(ω1t + ψ1) − C2 sin(ω2t + ψ2),

where C1, C2, ψ1, and ψ2 are the four initial condition-dependent constants of inte-
gration that are to be expected for the solution of any two second-order ordinary
differential quations,

ω2
1 = (1 − α)

k
m

and ω2
2 = (3 − α)

k
m

.

Given the above information, determine the value for α that constitutes the boundary
point between stability and instability for this mass system.

SOLUTION From examining the solutions for the two natural frequencies of vibration,
it should be clear that if α is greater than 1.0, the first natural frequency will be an



P1: ICD
0521865743c02a CUFX001/Donaldson 0 521 86574 3 September 6, 2006 11:41

98 Mechanical Vibrations

imaginary quantity. Since an imaginary argument for the first two sine functions
converts those sine functions into hyperbolic sine functions with a real argument,
and because the hyperbolic sine function increases without bound, the system is
unstable in that circumstance. Hence the system is stable whenever α is less than 1.0;
that is, whenever k/m > g/L. Neutral stability can be expected whenever α exactly
equals 1.0. ★
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3 Review of the Basics of the Finite Element
Method for Simple Elements

3.1 Introduction

The first two chapters provided the basics of small-rotation dynamics with applica-
tions to rigid bodies or near rigid bodies. The purpose of this chapter is to provide
an introduction to the finite element method (FEM) of structural analysis to the
limited extent necessary for the use of this textbook. That is, the present discussion
of the FEM is limited mostly to one-dimensional structural elements. Specifically,
all the example problems and exercises deal only with linear, beam finite elements
and linear, spring finite elements. Neither of these elements require the finite series
sophistication of two- or three-dimensional elements such as plate or solid finite ele-
ments. A very brief introduction to multidimensional finite elements is presented in
Endnote (1). If the reader is already familiar with the FEM, then this chapter can be
skipped, particularly because the next chapter provides ample further review of this
topic. Since the finite element method is so extensively used for, and so particularly
suited to, structural dynamics analyses,1 no other method of structural analysis is
used for the calculations presented in this textbook. For the sake of instruction, the
use of the FEM in this textbook is oriented to hand calculations rather than the use
of one of the many available and routinely used commercial software programs that
all do essentially the same things and differ only in style. Thus the reader should be
able to gain insight into what all such FEM programs need to do.

In this chapter only, the point of view is that of static analyses, that is, the FEM
is considered in relation to loads that do not vary with time. This approach is both
possible and useful because the Lagrange equations represent a summation of differ-
ent types of forces to form what is sometimes referred to as equations of “dynamic
equilibrium.” Specifically, the Lagrange equations sum the (i) generalized inertia
forces, which are the (d/dt)(∂T/∂q̇) − ∂T/∂q mass–acceleration terms; (ii) internal
generalized elastic forces, which are the ∂U/∂q stiffness–deflection terms; and (iii)
the externally applied forces and the internal dissipative forces, which are collectively

1 In engineering, the initial development of the FEM is credited to the leadership of the structural
dynamics group of the Boeing Co. in Seattle, Washington. See Ref. [3.1]

99
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the ∂V/∂q and the Q terms. This mathematical separation of types of forces in the
Lagrange equations allows the separate consideration of the deflection dependent
∂U/∂q elastic forces regardless of whether the applied loads are time invariant.

3.2 Generalized Coordinates for Deformable Bodies

The definition of generalized coordinates, or degrees of freedom (DOF), as quan-
tities that determine the system’s deflected position, was originally introduced in
Chapter 1 in relation to rigid bodies. The same definition for generalized coordinates
applies to flexible bodies. However, unless certain restrictions are implemented, the
flexibility of the body can require the unnecessary use of huge numbers of DOF to
merely approximate the deflected position of even the simplest of flexible bodies.
This difficulty concerning the required numbers of generalized coordinates can be
illustrated by considering a uniform, long beam, of length L, which, for the sake of
simplicity, has a doubly symmetric cross section. Let the loci of beam cross-section
centroids and the x axis coincide. Let the y and z axes be the cross-sectional axes of
symmetry. See Figure 3.1(a). Let the beam be subjected to an arbitrary, y-direction
(distributed) force loading per unit of beam length, fy(x). Then the deflections of
the beam centroidal axis in the positive y direction, call those deflections v(x), are
related to the arbitrary applied distributed loading by the differential equation,2

EIzzv
′′′′(x) = f y(x). The arbitrary force input, fy(x), over the span length produces

an arbitrary deflection output over the span length. To see that a very large number
of generalized coordinates is required to approximate such an arbitrary deflection
function, v(x), even when that function has continuous first derivatives as all beam
deflection functions must, consider the following argument in relation to this beam
of length L. One generalized coordinate is needed to specify v(L/2), the vertical
deflection of the beam axis at x = L/2. Two additional, entirely independent, gener-
alized coordinates are needed to fix the deflections at the quarter points, x = L/4 and
x = 3L/4. Four additional generalized coordinates are needed to fix the deflections
at the remaining eighth points x = L/8, 3L/8, 5L/8,and 7L/8. Then eight additional
DOF are needed to specify the deflections at the remaining sixteenth points, and so
on. Hence the above-mentioned apparent requirement for large numbers of DOF
when the body is flexible. Is there a limit, no matter how large, on this number of
DOF needed to fully specify the position of the beam of length L? This is the same
as asking the following question. Can the deflection of an intermediate point on the
beam axis be determined from knowing the deflections on either side of this inter-
mediate point? That the answer is “no” can be understood by fixing the deflections
at the adjacent points and introducing an additional concentrated force of arbitrary
magnitude at that intermediate point. This additional concentrated force can cause
the intermediate point’s original deflection to move up or down from what it would
be without that arbitrary force. It does not matter if the additional deflection relative
to the adjacent points is quite small. It suffices that the center point deflection is thus

2 The quantity E is Young’s modulus, Izz is the cross section’s area moment of inertia about the z axis. A
simple way to derive this equation is to twice differentiate the following familiar beam bending equation
EIzzv

′′(x) = Mz(x), where the derivative of the internal bending moment is the internal shear force
and the derivative of the shear force is the external loading per unit length.
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Figure 3.1. Finite element modeling for beam bending. (a) Beam partitioned into several beam
elements with the external loading represented by a series of discrete forces and moments along
the beam length and: (i) the (internal) shearing forces and bending moments acting at the single
element ends; (ii) the generalized coordinates at the single element ends (nodes). (b) A beam
element whose deflected position is “controlled” by the four generalized coordinates. (c) Plots
of the four shape functions associated with the beam element generalized coordinates showing
a unit value associated with the corresponding generalized coordinate and zero deflection or
slope at the location of the other three generalized coordinates.

independent of the two adjacent point deflections. Therefore, it may be concluded
that two generalized coordinates defining the deflections at the two adjacent points
are not sufficient to determine the deflection at the center point when the magnitude
of the additional concentrated force at the center point is arbitrary. Thus by extension
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of this argument, it may be concluded that an infinite number of DOF are required
to fully specify the infinite number of independent deflections along the axis of this
beam.

Another way of drawing the same conclusion is to recall that an infinite number
of Taylor’s series terms or Fourier series terms are required to exactly specify the
arbitrary but smooth deflection curve v(x)of the beam axis.3 This impracticable sit-
uation changes drastically when restrictions are placed on the beam loading. Let
a single beam of length L be the structure under consideration. Let the beam be
divided into a series of segments, each of finite length. Consider a segment of length
�, where, for structural dynamic purposes, � is typically L/8 or some such fraction of
the total length. Furthermore, let the external, distributed, lateral loading acting on
the beam of length L be replaced by a series of concentrated forces (and perhaps
moments) acting only at the segment end points as shown in Figure 3.1(a). Of course,
the replacement of the original distributed loading, which might already include con-
centrated loads and concentrated moments, is done on the basis that, for any beam
segment, the replacement loading at the segment ends has the same total force and
moment acting on the segment as does the original loading. This approximation of
a distributed loading by a series of statically equivalent forces can be surprisingly
accurate. See Ref. [3.2], p. 685.

When the distributed loading is replaced by concentrated forces and moments
located only at the segment ends, the familiar beam bending differential equation
mentioned above, when applied to just one beam segment of length �, becomes
simply EIzzv

′′′′(x) = 0. This is so because the replacement concentrated loads at the
beam segment end points are not part of any distributed loading, fy(x),over the
interior of the beam element. That is, the right-hand side of the above differential
equation refers only to the open interval of the beam segment length. The solution to
this segment differential equation EIzzv

′′′′(x) = 0, where 0 < x < �, in terms of the
deflection and bending slope at the left end of the beam segment, which are called
v1 and ψ1, respectively, and similar quantities at the right end, with subscript 2, is the
cubic polynomial

v(x) = v1[2(x/�)3 − 3(x/�)2 + 1] + �ψ1[(x/�)3 − 2(x/�)2 + (x/�)]

+ v2[−2(x/�)3 + 3(x/�)2] + �ψ2[(x/�)3 − (x/�)2]. (3.1a)

Since this expression involves only cubic polynomials, this expression is clearly
a solution for the above fourth-order beam bending differential equation. Further-
more, it contains the required four unknown constants of integration, which again
are the deflection boundary conditions v1, ψ1, v2, and ψ2. From this solution it is
apparent that the deflection function v(x), for all values of x, is controlled entirely by
the four quantities v1,ψ1, v2, and ψ2. The spatial variable x merely identifies the point
on the segment axis whose deflection is determined by the values of v1,ψ1, v2, and ψ2.
Hence, those four end-point deflections are the beam-bending degrees of freedom
for the beam segment without interior loading. As is shown in Figure 3.1(b), bending

3 In this case the Fourier coefficients would be the generalized coordinates.
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a flexible ruler will confirm the complete physical control that these four quantities
have on the deflected shape of the entire ruler.

As an aside, it is useful to know the following terminology. In mathematical terms,
the cubic polynomial terms associated with each of the generalized coordinates are
called cubic splines. In FEM terms, each of these polynomials is called a shape func-
tion. This latter name comes from the fact that these cubic polynomials individu-
ally describe a deflection shape that corresponds to a unit value of their associated
DOF and zero values for the other three DOF. This is illustrated in Figure 3.1(c),
where x/� = ξ . Since four is a manageable number of degrees of freedom for a beam
segment bending in a single plane, this segmentation scheme and load limitation
approach is adopted for beam bending and all other types of beam deflections, as
well as the deflections of plate segments, shell segments, solid segments, and so on.
Furthermore, if the beam bending deflections vary with time, so too do the general-
ized coordinates. That is, for the vibrating beam bending segment

v(x, t) = v1(t)[2(x/�)3 − 3(x/�)2 + 1] + �ψ1(t)[(x/�)3 − 2(x/�)2 + (x/�)]

+ v2(t)[−2(x/�)3 + 3(x/�)2] + �ψ2(t)[(x/�)3 − (x/�)2]. (3.1b)

In summary, generalized coordinates, or DOF, for flexible systems describe the
deflected shape of the system in exactly the same fashion as they do for rigid systems.
However, to make the number of DOF manageable, the actual loading on the system
is approximated by a series of concentrated forces and concentrated moments. The
selected geometric points that are the locations of these concentrated forces and
moments in or on the flexible body are called the system nodes, and each of the finite
sized structural segments between the nodes is called a finite element. The term finite
distinguishes these elements from the differential sized elements that are a basis of
a calculus based analysis and, hence, a classical structural analysis.

3.3 Element and Global Stiffness Matrices

To make use of finite element modeling in static or dynamic structural analyses, it is
necessary to develop the means to describe the force–deflection relationship for each
type of finite element. After an appropriate deflection function expression has been
obtained in terms of suitable generalized coordinates and shape functions, such as
Eq. (3.1), the most straightforward way of approaching this task is to enforce element
equilibrium by use of the principle of virtual work (δWex = δU) and use the element
material equations.4 Equally efficient is the use of the principle of the minimum value
of the total potential energy. Since some readers may be vague in their understanding
of these closely related principles, and since this textbook employs only beam or still
simpler finite elements, then the derivation of the force–deflection equations for
the beam bending finite element that follows forgoes the use of those sophisticated

4 Since a discussion of the complications of plasticity is unnecessary to explaining structural dynamics, all
structures herein are considered to be elastic. The principle of virtual work is included within Hamilton’s
principle, but the previous derivation of Hamilton’s principle did not include essential details of the
principle of virtual work.
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general principles.5 Instead, just the previously detailed concept of virtual work is
used.

The internal bending moments and shear forces at the nodes of the above beam
bending finite element can be determined by using Eq. (3.1b) and the familiar strength
of materials equations Mz(x) = EIzzv

′′(x) and Vy(x) = EIzzv
′′′(x) at both element

end points. Thus after twice and thrice differentiating the Eq. (3.1b) polynomial
solution for the lateral deflection v(x), setting x = 0 or x = � to localize the bend-
ing moment and shearing force results to segment ends 1 and 2, respectively, and
arranging the answers in matrix form, the result is


Vy1

Mz1

Vy2

Mz2


 = EIzz

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







v1

ψ1

v2

ψ2


 .

The brief form of this matrix relationship is written as {Q} = [ke]{q}, where the
square matrix, including the scalar factor, is called6 the beam element stiffness matrix
for bending in a single plane. Of course, if the beam were also bent in the x, z plane,
there would be another such fourth-order algebraic matrix equation involving the
nodal shear forces and bending moments of that plane, as well as the nodal deflections
of that plane. (Those deflections are written here as w1,θ1, w2, and θ2.) Furthermore,
as discussed in Section 3.4, there is also a 2 × 2 stiffness matrix for beam torsion,
with twisting DOF φ1 and φ2, and another for beam extension with DOF u1 and u2.
Hence the full beam element force–deflection matrix equation involves a 12 × 12
element stiffness matrix where there are eight DOF for bending in two orthogonal
planes, two DOF for twisting, and two DOF for extension.

The next step is to proceed from the above force–deflection description of one
segment of a beam, that is, a single beam finite element, to a description of the force–
deflection relations for an entire beam or a large frame or grid structure composed
of many beams. To accomplish this step, first note that the external virtual work of
the shear forces and bending moments acting on the one beam segment, call it the
jth beam segment, is simply

δW( j)
ex = V( j)

y1 δv
( j)
1 + M( j)

z1 δψ
( j)
1 + V( j)

y2 δv
( j)
2 + M( j)

z2 δψ
( j)
2

= δ�v1 ψ1 v2 ψ2�( j)




Vy1

Mz1

Vy2

Mz2




( j)

= �δq�( j){Q}( j).

Remember that here the delta operator acts on only the deflection quantities.
Recall that, by definition, an elastic body is one in which all external work done

on the body is stored in the body as recoverable internal strain energy, U. Since the

5 The differential equation solution approach used here to determine a beam stiffness matrix will not
suffice for, for example, plate, shell, and solid finite elements.

6 In general terms, a stiffness coefficient or factor is the opposite of a flexibility coefficient or factor.
A stiffness factor k generally relates force and deflection as F = ku, whereas a flexibility coefficient c
generally relates these quantities as u = cF .
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v2 v3 v4 v5 v6

Figure 3.2. Example beam global (or system) generalized coordinates.

total internal energy of any body is equal to the sum of the internal energy of each
of its parts, the virtual strain energy of the entire elastic beam or frame consists of
the sum of the virtual strain energy of each of the N beam segments. That is

δU =
N∑

j=1

δU( j) =
N∑

j=1

�δq�( j){Q(in)}( j) =
N∑

j=1

�δq�( j)[kj ]{q}( j), (3.2)

where the above individual finite element force–deflection relationship {Q}(e) =
[ke]{q}(e) has been used. To make Eq. (3.2) useful, it is necessary to transition from
the various sets of generalized coordinates for the individual finite elements, many
of which overlap with those of adjacent finite elements, to the (unique) generalized
coordinates of the overall structure. This latter set of DOF are called the system
or global generalized coordinates. Like the element DOF, the global coordinates,
defined below, are also located at the nodes of the structure but may or may not
be in the same direction as the element or local coordinates. In this textbook for the
sake of simplicity for hand calculations, the few beam example problems that require
rotations of any kind only involve right-angle rotations. Thus the topic of rotations
becomes unimportant to the present explanation. In commercial finite element anal-
ysis programs, the required rotations of DOF for actual structures are automatically
calculated from the input geometry.

The idea that defines the global DOF is that they completely specify the displace-
ments of the entire structure by specifying the deflections of all of the individual
finite elements. For the beam of Figure 3.1, the 12 selected global DOF, v1 through
ψ6, are shown in Figure 3.2. Note that in Figure 3.2 the nodes are simply labeled
1, 2, 3, . . . , whereas the finite elements are numbered 10, 20, 30, . . . . Since these
selected system DOF accomplish the task of fully specifying the deflections of the
five finite elements that constitute this single beam structure, they are a valid set of
system/global generalized coordinates.

To illustrate the relation between the global generalized coordinates, {q}, and each
of the local coordinate sets, {q}( j), consider beam finite element 30. The element
or local DOF of beam element 30 are v

(30)
1 , ψ

(30)
1 , v

(30)
2 , and ψ

(30)
2 . In global terms,

these same coordinates are v3,ψ3, v4, and ψ4, without any superscripts. Thus the
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relationship between these two sets of DOF and their corresponding virtual changes
can be simply written in transformation matrix form as

{q}(30) = [T30] {q} and {δq}(30) = [T30] {δq},

which in detail, for the first of these two equations, is




v1

ψ1

v2

ψ2




(30)

=




0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0







v1

ψ1

v2

ψ2

v3

ψ3

v4

ψ4

v5

ψ5

v6

ψ6




.

This type of coordinate transformation equation can be used to advantage in the
above virtual work expression, Eq. (3.2). Substituting for the element DOF vectors,
while recalling that transposing a matrix product requires reversing the product order,
yields

δU =
5∑

j=1

�δq�[Tj ]t [kj ][Tj ]{q} =
5∑

j=1

�δq�[Kj ]{q}

= �δq�
(

5∑
j=1

[Kj ]

)
{q},

where each [Kj ] is, in this case, a 12 × 12 matrix. The sum of those five 12 × 12
matrices is another 12 × 12 matrix. Call that sum simply [K], the system stiffness
matrix. Therefore the above equation for the internal strain energy of the entire
structure can be written as

δU = �δq�[K]{q}. (3.3)

Note that each [Kj ] is a symmetric matrix because the corresponding [kj ] is symmet-
ric. Since the sum of symmetric matrices is symmetric, so too is [K]. The symmetry
of the structural stiffness matrix is a reflection of Maxwell’s reciprocity theorem
[3.1,3.2].

Even when the structural system being analyzed requires just hundreds of global
DOF, the above transformation matrices [Tj ], and the expanded element stiff-
ness matrices [Kj ], would consume enormous computer storage. Fortunately, the
actual creation of those transformation matrices is entirely unnecessary. To see
how the structural stiffness matrix can be created without resort to transformation
matrices, return to the above illustration for beam element 30. In more concise
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submatrix form, the above expanded form of the element stiffness matrix, [K30], can
be rewritten as

[K30] = [T30]t [k30][T30] =

 0

I
0


 [k30][0 I 0] =


 0 0 0

0 k30 0
0 0 0


 ,

where each of the submatrices is 4 × 4. If the same thing is done for finite element
10, the result is

[K10] = [T10]t [k10][T10] =

 I

0
0


 [k10][I 0 0] =


 k10 0 0

0 0 0
0 0 0




and therefore

[K10 + K30] =

 k10 0 0

0 k30 0
0 0 0


 .

Hence, from these examples, the following important conclusion. The structural stiff-
ness matrix can be built entry by entry by simply positioning each individual element
stiffness matrix entry in the global stiffness matrix at the row and column position
that corresponds to the associated global degrees of freedom. Hence, rather than
use any of those unwieldy coordinate transformations, the system stiffness matrix
is always constructed in this direct superposition fashion. In the case of the single
beam being discussed, the final matrix sum [K10 + K20 + K30 + K40 + K50] = [K] is
one where [K20] overlaps [K10] and [K30] because the global DOF for those elements
overlap, and indeed all the elements overlap in a sequential case. To clearly see this
type of superposition result in a simple form, let the EI and � of each of the five
finite elements of the single beam be the same. Then placing each of the element
stiffness matrix entries in their proper position in the global stiffness matrix, and
adding superimposed terms, leads to

[K]{q} = EI
�3




12 6� −12 6� 0 0 0 0 0 0 0 0

6� 4�2 −6� 2�2 0 0 0 0 0 0 0 0

−12 −6�
- - - - - - - - - - - - - - - - - -
24 0 −12 6� 0 0 0 0 0 0

6� 2�2 0 8�2 −6� 2�2 0 0 0 0 0 0
-- - - - - - - - - - - - - - - - -
0 0 −12 −6�

- - - - - - - - - - - - - - - - - -
24 0 −12 6� 0 0 0 0

0 0 6� 2�2 0 8�2 −6� 2�2 0 0 0 0

0 0
-- - - - - - - - - - - - - - - - -

0 0 −12 −6�
- - - - - - - - - - - - - - - - - - - -

24 0 −12 6� 0 0

0 0 0 0 6� 2�2 0 8�2 −6� 2�2 0 0

0 0 0 0
-- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0 −12 −6� 24 0 −12 6�

0 0 0 0 0 0 6� 2�2 0 8�2 −6� 2�2

0 0 0 0 0 0
-- - - - - - - - - - - - - - - - - - -

0 0 −12 −6� 12 −6�

0 0 0 0 0 0 0 0 6� 2�2 −6� 4�2







v1

ψ1

v2

ψ2

v3

ψ3

v4

ψ4

v5

ψ5

v6

ψ6




.

The process of positioning the element stiffness matrix entries in the global stiffness
matrix is called assembling the global stiffness matrix. The above single-beam exam-
ple produces the typical result that the nonzero matrix entries are clustered around
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(a)

(b)

x

EI0, L2EI0, L

z

F0

0 = θ1

θ2 θ3

w1 = 0 w2 w3

2EI0, L EI0, L

EL. #10 EL. #20

Figure 3.3. Example 3.1: (a) Analysis model of nonuniform, cantilevered beam with tip load,
F0. (b) Global generalized coordinates for the corresponding two-element FEM model.

the matrix’s main diagonal. Such matrices are called banded. All large structural
systems have stiffness matrices that exhibit this characteristic, at least in part.

Beyond the assembling of the global stiffness matrix, there are two other aspects
of the finite element method that need attention even in a static load case. These two
items are the creation of the global load vector and the use of the system boundary
conditions (BCs). These aspects of the FEM are examined in the following example
problem.

EXAMPLE 3.1 Consider the tip-loaded, nonuniform, cantilevered beam shown
in Figure 3.3(a). As always, let the y and z axes be the principal axes of the beam
cross sections. Write the matrix equation {Q} = [K]{q}, whose solution is the selected
DOF for this structural system.

SOLUTION The finite element model for this structure that achieves engineering
accuracy depends on the loading. In this case of just a static tip force F0, the finite
element model need not be more complicated than the two-element model shown in
Figure 3.3(b), which accounts for the piecewise change in the beam cross section at
midspan. However, if there were a static external loading per unit length of the beam
structure, then at least six, possibly eight, beam finite elements would be required
for engineering accuracy for such a structure rather than just the two finite elements
used here. Along with the process of choosing the number of finite elements is the
process of choosing an appropriate set of global DOF. Again, because this example
problem is simply a case of beam bending in the plane of the paper under the action
of a single, concentrated applied load, the six-system DOF shown in Figure 3.3(b)
are wholly sufficient for these two finite elements. Note that the selected directions
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of these global DOF reflect those of the element DOF. That is, there is a global
degree of freedom concurrent with each element DOF and vice versa. However, a
global DOF can correspond to more than one element DOF as is seen in the case
of global DOF w2 and θ2. Again, whereas the element DOF are unchanging for a
particular type of element, the number of system DOF changes with the refinement
of the mathematical model chosen to represent the structure.

The first step toward writing the requested matrix equation {Q} = [K]{q} is to
determine the system stiffness matrix [K]. To this end, the precise correspondence
of the element DOF to the global DOF is simply established by inspecting the global
FEM model of Figure 3.3(b) so as to determine which global DOF appear where
the element DOF would be in the (4 × 1) element DOF vector. Hence in terms of
the global DOF, the element 10 the virtual strain energy, or its negative, the internal
virtual work, is

δU10 = �δq�[ k10 ]{q}

= �δw1 δθ1 δw2 δθ2�2EI0

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w1

θ1

w2

θ2


 .

In the hand calculations that follow, it is convenient to keep just EI0/L3 as a factor
for all the stiffness matrices in anticipation of combining those matrices. Therefore,
insert the above factor 2 into the element stiffness matrix so as to obtain

δU10 = �δw1 δθ1 δw2 δθ2� EI0

L3




24 12L −24 12L
12L 8L2 −12L 4L2

−24 −12L 24 −12L
12L 4L2 −12L 8L2







w1

θ1

w2

θ2


 .

As for element 20, also in terms of the system DOF

δU20 = �δw2 δθ2 δw3 δθ3� EI0

L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w2

θ2

w3

θ3


 .

The next step can be either to assemble the system stiffness matrix or to apply the
system BCs. In a commercial FEM program, the BCs would be applied as the last step
before the solution to the resulting force–deflection simultaneous equations. This is
so because BCs generally cannot be accurately estimated in many cases. Therefore
the analyst may wish to examine the results of several BC choices. Then it becomes
more efficient to do the BCs last. However, in hand calculations such as these, there
is less bookkeeping if the BCs are done first and then the global stiffness matrix is
assembled. In this example, the BCs, which are always stated in terms of the global
DOF, are

w1 = θ1 = 0.

These boundary conditions have no effect on the second element. For the first ele-
ment, substitute the above boundary conditions into each of the two DOF vectors
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in the element 10 strain energy expression. The multiplication of the two zeros of
the two DOF vectors ([δq] and {q}) effectively eliminate the first two rows and first
two columns of that stiffness matrix. Discarding these rows and columns, the virtual
strain energy of the first beam element can be rewritten more concisely as

δU10 = �δw2 δθ2� EI0

L3

[
24 −12L

−12L 8L2

] {
w2

θ2

}
.

All the preparation necessary to obtain the global stiffness matrix is now complete. It
only remains to superimpose the stiffness matrices for the two elements. For example,
the stiffness term in the w2 row and the θ2 column of the stiffness matrix for element
number 10 is added to the corresponding term of the stiffness matrix of element
number 20, and so on. The final result, the global stiffness matrix and displacement
vector, is

[K]{q} = EI0

L3




36 −6L −12 6L
−6L 12L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w2

θ2

w3

θ3


 .

Note that, just like the element stiffness matrices, the global stiffness matrix has
to be symmetric, and all diagonal elements must be positive numbers. These two
requirements can serve as weak checks on the correct hand assembly of the global
stiffness matrix.

The next step is to create the load vector. This vector of generalized forces is
obtained by writing the expression for the external virtual work, which is

δWex = 0 δw2 + 0 δθ2 + F0 δw3 + 0 δθ3 = �δw2 δθ2 δw3 δθ3�




0
0
F0

0


 .

The above four-term description of the external virtual work is the most conve-
nient form for this particular simple problem statement. Since the deflections at the
clamped beam end have fixed zero values, they do not have a variation. Nevertheless,
the force and moment reactions at the clamped beam end could have been included
in this expression for the external virtual work for the sake of considering other
boundary conditions at a later time.

Now that expressions have been developed above for the strain energy and the
external virtual work, the next step is to combine the two on the basis δWex = δU.
Again, this vital link can be viewed either as (i) one way of writing the principle
of virtual work or (ii) in less sophisticated terms, as a variation on the equation of
conservation of energy for the elastic system.7 This identity δWex = δU is detailed as
�δq�{Q} = �δq�[K]{q}, or �δq�({Q} − [K]{q}) = 0. Since the vector �δq� of this two-
term product is entirely arbitrary, the quantity in parentheses must be the source of
the zero result. Therefore {Q} = [K]{q}. This last result now can be the object of all
static FEM analyses without further discussion of virtual energies. In this example

7 The principle of virtual work applies to energy dissipative systems as well.
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u2 = u

u3 = uu1 = u #40

#50#30#10

#20

θ1 θ2 θ3

v1 = 0 v2 = 0 v3 = 0

Figure 3.4. Example 3.2.

problem, the equation {Q} = [K]{q} is a set of four simultaneous equations, in matrix
form, that is now solved for the four entries in the DOF vector. In detail, this matrix
equation is 


0
0
F0

0


 = EI0

L3




36 −6L −12 6L
−6L 12L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w2

θ2

w3

θ3


 .

★

EXAMPLE 3.2 Write the FEM matrix equation for the two-bay, one-story portal
frame FEM model shown in Figure 3.4. Each of the five beam elements has the same
length, L, and the same bending stiffness coefficient, EI0. Let the external loading
be forces (not shown) of magnitude F0 acting to the left at each of the two upper
corners of the frame where the DOF u1 and u3 are shown.

SOLUTION Planar beam frames are structures that bend only within their plane.
Recall that long beams are much stiffer in stretching than bending.8 Thus, as is cus-
tomary for the linear analysis of beam frames, all beams in the frame are modeled to
be rigid with respect to stretching. Thus, in this model, the stretching DOF v1, v2, v3

are set equal to zero, and the nonzero translational bending DOF all have the same
value; that is, u1 = u2 = u3 = u. The three rotational (θ) DOF are unaffected by
this constraint on axial rigidity. The use of the axial rigidity approximation not only
greatly simplifies the problem, but it also helps avoid matrix ill-conditioning in large
structures as a result of mixing the numerically small bending stiffnesses with the
numerically, very large, axial stiffnesses, in the same stiffness matrix.

8 For example, it is much easier to bend a common 12-in. ruler 1 in. than stretch the ruler 1/100 of an
inch.
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Since these five beams only bend, the five beam element stiffness matrices are,
after inserting the corresponding global DOF and the appropriate BCs,

[k10] {q10} = EI0

L3

[
12 6L
6L 4L2

] {
u
θ1

}

[k30] {q30} = EI0

L3

[
12 6L
6L 4L2

] {
u
θ2

}

[k50] {q50} = EI0

L3

[
12 6L
6L 4L2

] {
u
θ3

}

[k20] {q20} = EI0

L3

[
4L2 2L2

2L2 4L2

] {
θ1

θ2

}

[k40] {q40} = EI0

L3

[
4L2 2L2

2L2 4L2

] {
θ2

θ3

}
.

Therefore the assembled stiffness matrix and the associated generalized coordinate
vector for this double portal frame are

[K]{q} = EI0

L3




36 6L 6L 6L
6L 8L2 2L2 0
6L 2L2 12L2 2L2

6L 0 2L2 8L2







u
θ1

θ2

θ3


 .

The virtual work expression for the two leftward-acting, external forces located at
the upper frame corners is

δWex = (−F0)δu1 + (−F0)δu3 = −2F0δu.

Therefore the final force–deflection matrix equation is


−2F0

0
0
0


 = EI0

L3




36 6L 6L 6L
6L 8L2 2L2 0
6L 2L2 12L2 2L2

6L 0 2L2 8L2







u
θ1

θ2

θ3


 .

Again, all the quantities in the generalized force vector are known, while all the
quantities in the DOF vector are unknown. The solution of these four simultaneous
equations for the unknown DOF permits, via the element stiffness matrices, the
analyst to determine both the element deflections, the support reactions, and the
internal bending moments and shearing forces and their corresponding stresses. ★

3.4 More Beam Element Stiffness Matrices

The previous section focuses on elastic bending of a beam axis in a single principal
plane of the beam cross section. This section introduces beam twisting and beam
extension about and along the same beam axis. Again, the creation of the associ-
ated element stiffness matrices is entirely a matter of familiar static force analysis.
This unsophisticated approach does not compromise the usefulness of these stiffness
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Figure 3.5. (a) Beam element modeling. (b) Sign conventions for beam element twisting and
extension, and spring extension.

matrices in dynamic analyses at all. This is so because, as mentioned above, and
as is seen in subsequent chapters, when the Lagrange equations are applied to a
vibrating structure, the forces that are proportional to deflections, the elastic forces,
represented by the description [K]{q}, are entirely separate from the forces that are
dependent on velocities or accelerations.

Consider the twisting of a nonuniform beam subjected to a torque distributed over
the length of the beam. Let the beam geometry be approximated by a series of just
three uniform beam elements as illustrated in Figure 3.5(a). Let the entire distributed
torsional loading acting on the beam be replaced by equivalent concentrated torques,
Mt , at the four nodes. Let beam twisting finite element number 30, as shown in the
first part of Figure 3.5(b), represent a typical such element. Note that, just as is
the case for all elements, the sign convention for the forcelike quantities and for the
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w2

w4 = 0 w5 = 0

EL. #30 EL. #40

θ2

w3

θ3

Figure 3.6. Example 3.3: FEM model with two beam elements and two spring elements.

deflections is identical. Since the beam segment is uniform, the element torque-twist
relations are quite simple. They are

Mt1
(30) = GJ

�
(φ1 − φ2) Mt2

(30) = GJ
�

(φ2 − φ1) or

{
Mt1

Mt2

}(30)

=
(

GJ
�

)
(30)

[
1 −1

−1 1

] {
φ1

φ2

}(30)

,

where φ is the beam twist, G is the shear modulus, and J is the St. Venant constant
for uniform torsion [3.1]. Exercise 3.8 deals with the torsion FEM model shown in
Figure 3.5.

Quite similar expressions are obtained on the same basis for beam and spring
extension. If N is the axial force acting in either a beam or a spring, if A is the cross
sectional area of the uniform beam element, and if k is the spring stiffness factor,
then the beam extension and spring element stiffness relations are, on the same basis
as above {

N1

N2

}(e)

=
(

EA
�

)
(e)

[
1 −1

−1 1

] {
u1

u2

}(e)

and
{

N1

N2

}(e)

= ke

[
1 −1

−1 1

] {
u1

u2

}(e)

.

Again, assembling element stiffness matrices such as these is illustrated in the fol-
lowing examples and later chapters.

EXAMPLE 3.3 Modify the two beam element structure of Figure 3.3, Example 3.1,
by adding a vertically oriented, rectilinear spring with spring constant 5EI0/L3 at the
structure’s midspan, and another such spring with spring constant 7EI0/L3 at the free
end of the structure, as shown in Figure 3.6. Then write the applied force–deflection
matrix equation.
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SOLUTION These two additions make the structure stiffer, that is, able to bear a larger
load for the same deflection. This increase in the physical stiffness of the structure is, of
course, reflected in the enhancement of the global stiffness matrix entries. Remember
that these springs are just another pair of structural elements.9 In this case, their
boundary conditions, strain energies, and associated 1 × 1 (i.e., scalar) stiffness matri-
ces, are

w4 = w5 = 0

δU3 = δw2
5EI0

L3
w2 δU4 = δw3

7EI0

L3
w3

.

Assembling the stiffness matrices of these additional elements in exactly the same
way, that is, adding corresponding 1 × 1 matrix terms as determined by the global
DOF (augmenting the (1,1) and (3,3) entries by 5 and 7, respectively) produces the
new global stiffness matrix equation




0
0

+F0

0


 = EI0

L3




41 −6L −12 6L
−6L 12L2 −6L 2L2

−12 −6L 19 −6L
6L 2L2 −6L 4L2







w2

θ2

w3

θ3


 .

★

EXAMPLE 3.4 Using one beam finite element for each beam member, write
the FEM force–deflection matrix equation for the two beam structure and loading
sketched in Figure 3.7(a). For ease of hand assembly, let GJ = 1/2EI.

SOLUTION The two beam structure shown in Figure 3.7(a) is called a beam “grid”
because the loading causes the planar structure to deflect out of its plane. Specifically,
the externally applied moment M1 causes beam 10 to bend and beam 20 to twist, and
M2 causes beam 10 to twist and beam 20 to bend. Therefore, bending and twisting
element stiffness matrices are needed for both beams.10 Thus adopt the system DOF
shown in Figure 3.7(b). Note that, for example, all φ vectors are directed in the
same direction. Although not important in such a small problem, this uniformity of
direction for all like named terms is convenient for interpreting computer solutions
for large problems. The price worth paying for this uniformity is that φ is a twisting
DOF for beam 10, whereas it is a bending slope DOF for beam 20. Otherwise, the
selected global DOF are much like the various element DOF.

The element stiffness matrix for beam 10, after combining the bending and the
twisting components and using the given relationship GJ/L = (1/2L2)(EI/L3) and

9 Structural spring elements are sometimes called “point elements” or “zero dimensional elements”
because there is no spring length associated with the stiffness description.

10 A commercial FEM program starts by automatically using all 12 beam DOF and then during the
solution process deleting those DOF that are not load activated such as, in this example, the nodal
translations in the y direction.
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(a) (b)
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Figure 3.7. Example 3.4: (a) Simple beam grid analysis model. (b) Corresponding FEM model.
(c) Beam 20 global coordinates. (d) Standard element coordinates for the x, z plane.

noting that the positive directions of the chosen global DOF are aligned with the
positive directions of the element DOF

[k10]{q} = EI
L3


 24 −12L 0

−12L 8L2 0
0 0 L2







w2

θ2

φ2


 .

Beam 20 requires some care. As shown in Figure 3.7(c), when the lower numbered
node of beam element 20 is placed on the left-hand side as per usual, the selected
system beam bending slope DOF φ2 and φ3 are directed oppositely to the standard
element beam bending slopes ψ of Figure 3.1(a), which is repeated for the x, z plane
in Figure 3.7(d). To most easily explain the process for sorting out this circumstance
where global DOF are opposite to element DOF, it is convenient to revert back to
the expression for the beam virtual strain energy. For bending alone, the virtual strain
energy expression for beam 20 in terms of the global DOF is

δU20 = �δw2 − δφ2 δw3 − δφ3� EI
L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w2

−φ2

w3

−φ3


 .
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What is most convenient is to transfer the minus signs from the DOF vectors to their
factors within the stiffness matrix. In this manner, the second and fourth rows and
the second and fourth columns of the element stiffness matrix are multiplied by −1.
This results in a checker board of sign changes that looks like

+ − + −
− + − +
+ − + −
− + − +

Note that because there are no sign changes on the main diagonal all elements on
that diagonal remain positive. The result is

δU20 = �δq�[k20]{q} = δ�w2 φ2 w3 φ3� EI
L3




12 −6L −12 −6L
−6L 4L2 6L 2L2

−12 6L 12 6L
−6L 2L2 6L 4L2







w2

φ2

w3

φ3


 .

Note that instead of having the minus signs on the third row and column, they now
appear on the first row and column.

It is still necessary to add the twisting terms. Since the global twisting DOF are
aligned with the element twisting DOF, it is necessary only to make the transition, as
before, from GJ/Lto (EI/L3)(1/2L2). This twisting matrix equation by itself is then

[k20]{q} = EI
L3

[
1/2L2 −1/2L2

−1/2L2 1/2L2

] {
θ2

θ3

}
.

The external virtual work is

δWex = M1δθ3 − M2δφ3.

Now that the element matrices in terms of the global DOF, and the virtual work
expression have been determined, the final system force–deflection matrix equation
can be written. Again, the system stiffness matrix is obtained by mapping the above
element matrices on the system matrix according to the row and column of the global
DOF that multiply each element stiffness matrix entry. The final result is



0
0
0
0

+M1

−M2




= EI
L3




36 −12L −6L −12 0 −6L
−12L 8.5L2 0 0 −0.5L2 0
−6L 0 5L2 6L 0 2L2

−12 0 6L 12 0 6L
0 −0.5L2 0 0 0.5L2 0

−6l 0 2L2 6L 0 4L2







w2

θ2

φ2

w3

θ3

φ3




.

★

EXAMPLE 3.5 Set up the FEM force–deflection matrix equation for the two
beam grid shown in Figure 3.8(a) using the DOF shown in Figure 3.8(b). Again
let GJ = 1/2 EI.

SOLUTION Here the challenge is dealing with beams of different lengths. Specifically,
for beam 10, everywhere the element stiffness matrix template requires a length �
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Figure 3.8. Example 3.5.

(i.e., both within the matrix and in its initial factor), the value 2L needs to be used.
Therefore, using as always the same EI/L3 initial factor for ease of hand assembly,
the beam 10 stiffness matrix, after consolidating all factors, is

[k10]{q} = EI
L3


 1.5 −1.5L 0

−1.5L 2L2 0
0 0 1/4L2







w2

θ2

φ2


 .

Note that, in agreement with everyday experience, the longer the beam the lesser
the stiffness.

In the case of this beam 20, the global bending DOF are all aligned in the positive
directions of the element bending DOF, but the global twisting DOF are opposite
to the positive directions of the element twisting DOF. Hence the twisting strain
expression for beam 20 has the form

δU20 = �−δθ2 − δθ3�
1/2 EI

L3

[
L2 −L2

−L2 L2

] {−θ2

−θ3

}
.

Redeploying the negative signs from both DOF vectors into the square matrix leaves
the square matrix unchanged. This is always the case for 2 × 2 matrices. Hence the
complete beam 20 element stiffness matrix, after application of the right end BCs is

[k20]{q} = EI
L3


 12 0 6L

0 1/2L2 0
6L 0 4L2







w2

θ2

φ2


 .

Therefore the system force–deflection matrix equation to be solved simultaneously
for the three unknown DOF is


−F0

0
0


 = EI

L3


 13.5 −1.5L 6L

−1.5L 2.5L2 0
6L 0 4.25L2







w2

θ2

φ2


 .

★
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Figure 3.9. Example 3.7: (a) Analysis model. (b) FEM model.

EXAMPLE 3.6 Once again modify the beam structure of the previous example
problem by adding a vertically oriented spring. Let this spring be attached either
above or below node 2 and have a stiffness factor of k = 5EI/L3.

SOLUTION The addition of the spring further enhances the stiffness (i.e., reduces the
deflections) of the structure at node 2. All that is necessary to complete the alteration
of the above system matrix equation is to add a 5 to the (1,1) entry in the stiffness
matrix. The result is




−F0

0
0


 = EI

L3


 18.5 −1.5L 6L

−1.5L 2.5L2 0
6L 0 4.25L2







w2

θ2

φ2


 . ★

Up to this point, all connections between beams are modeled as “rigid” connec-
tions, meaning that there is complete continuity of deflections and of bending slopes
and of twists. Not all beam connections fit this description. If a connection has little
rotational stiffness, then the engineering model might well represent the connec-
tion as a hinge. The next example problem shows the simple way in which the finite
element method deals with such a hinge connection. Note that a hinge maintains
continuity of deflections but not continuity of bending slopes. Thus there is only one
deflection DOF at a hinge, but different bending slope DOF on each side of the
hinge.

EXAMPLE 3.7 Determine the upward deflection at the hinge of the simple two
beam structure shown in Figure 3.9(a).



P1: JZP
0521865743c03 CUFX001/Donaldson 0 521 86574 3 September 6, 2006 13:7

120 Review of the Basics of the FEM for Simple Elements

SOLUTION The selected DOF are shown in Figure 3.9(b). Hence the two beam ele-
ment stiffness matrices are

[k10]{q} = EI0

l3

[
12 −6l
−6l 4l2

] {
w2

θ2l

}

[k20]{q} = EI0

l3

[
12 6l
6l 4l2

] {
w2

θ2r

}
.

Assembling the global stiffness matrix and the generalized force vector as before
leads to

EI0

l3


 24 −6l 6l

−6l 4l2 0
6l 0 4l2







w2

θ2l

θ2r


 =




F0

0
0


 .

This set of three equations is quite easy to solve by hand. It is only necessary to use
the second and third equations to eliminate the two θs in the first equation. Then the
solution result is

w2 = F0l3

6EI0
.

This solution can easily be checked on the basis that the tip stiffness of a cantilevered
beam is 3EI0/�

3. Since there are two such cantilevered beams in this structure, their
combined stiffness produces the above result. ★

The previous example problems were limited to structures that were either beams
or beam frames, or, separately, beam grids. That is, all the previous problems were two
dimensional. In addition, the loadings were limited to applied forces and moments.
One of the important benefits provided by the finite element method is the ease with
which it deals with three-dimensional structures and support motions. (The FEM
also handles temperature changes with ease, but the slow pace of most temperature
changes makes this topic of no interest for this textbook.) The following example is
a simple illustration of such a capability relative to support motions.

EXAMPLE 3.8 Consider the three-beam grid/frame shown in Figure 3.10. The
structural support at the right end has slowly shifted position since original construc-
tion so that the total shift is described by the two horizontal vector components, u0

and v0. This support motion deforms the structure. Therefore it produces the same
effect as that produced by forces and moments. Using the FEM, write the force–
displacement relationship for this structure. Use the usual approximation that the
axial stiffnesses of the beams are infinite relative to the bending stiffnesses. The square
cross sections are the same for all three beams, and thus the stiffness coefficient in
each bending plane is simply EI0. The torsional stiffness factor GJ = 1/2 EI0.

SOLUTION The first task is to select the generalized coordinates for the structure. At
each beam end there are, in general, three translational DOF and three rotational
DOF for a total of six. Since the left-hand support is fixed, no DOF are required there.
At the right-hand support, just the DOF corresponding to u0 and v0 are required.
At the corners of the structure, the original twelve DOF are reduced by the zero
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Figure 3.10. Example 3.8: Beam grid and frame subjected to a support movement.

axial deflection constraint. That is, because there can be no upward deflection at the
corners, and because u1 must equal u2, these twelve DOF are reduced to nine. The
nine DOF for the corners of the structure are illustrated in the figure.

Now it is a matter of writing the element stiffness matrices for each of the three
beams labeled 10, 20, and 30. Consider beam-column 10. Note that for small deflec-
tions, the bending in the x, z plane is wholly independent of bending in the y, z plane,
and those two sets of deflections are independent of the twisting of this beam. Thus
the total element stiffness matrix for beam 10 is created by the superposition of the
bending stiffness matrices for the two orthogonal planes along with the twisting stiff-
ness matrix. To deal with any differences between the element DOF and the system
DOF with regard to their respective positive directions, it is suggested that the reader
make a separate sketch of each element of the given structure for each bending plane.
Remember to keep the lower numbered node at the left end of the beam element.

When those three stiffness matrices are combined with the deflections at the left
support set to zero, the result for beam-column 10 is as follows, where the beam
element length is L:

[k10]{q} = EI0

L3




12 0 6L 0 0
0 12 0 6L 0

6L 0 4L2 0 0
0 6L 0 4L2 0
0 0 0 0 0.5L2







u1

v1

θ1

φ1

ψ1




.

Note that because all the off-diagonal terms in the fifth row and fifth column are
zero, there is indeed no interaction between the twisting DOF, φ, and these other
four DOF. Furthermore, again because of the zero off-diagonal terms, this small
deflection matrix requires that the deflection and bending slope in one plane have
no interaction with those of the other plane.
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Remembering to use 2L as the element length everywhere the element length is
called for, the element stiffness matrix and corresponding deflection vector for beam
30 is

EI0

L3




1.5 0 0 1.5L −1.5 0 0 1.5L
0 2L2 0 0 0 L2 0 0
0 0 0.25L2 0 0 0 −0.25L2 0

1.5L 0 0 2L2 −1.5L 0 0 L2

−1.5 0 0 −1.5L 1.5 0 0 −1.5L
0 L2 0 0 0 2L2 0 0
0 0 −0.25L2 0 0 0 0.25L2 0

1.5L 0 0 L2 −1.5L 0 0 2L2







v1

θ1

φ1

ψ1

v2

θ2

φ2

ψ2




.

Similarly, the element stiffness matrix and corresponding deflection vector for
beam 20, which is of length L, is

[k30]{q} = EI0

L3




12 0 6L 0 0 −12 0
0 12 0 6L 0 0 −12

6L 0 4L2 0 0 −6L 0
0 6L 0 4L2 0 0 −6L
0 0 0 0 0.5L2 0 0

−12 0 −6L 0 0 12 0
0 −12 0 −6L 0 0 12







u1

v2

θ2

φ2

ψ2

u0

v0




.

The last two rows corresponding to the known values of the support deflections would
provide the horizontal reactions at the right-hand support once the deflections are
calculated. Since there is no present interest in those two reactions, discard those last
two rows. Then, using the rules of matrix multiplication, subdivide this 5 × 7 matrix
into a 5 × 5 matrix that involves only the unknown DOF, and two 5 × 1 matrices
that involve only the known support movements

EI0

L3




12 0 6L 0 0
0 12 0 6L 0

6L 0 4L2 0 0
0 6L 0 4L2 0
0 0 0 0 0.5L2







u1

v2

θ2

φ2

ψ2




− EI0u0

L3




12
0

6L
0
0




− EI0v0

L3




0
12
0

6L
0




,

The above 5 × 5 matrix is the element stiffness matrix for beam-column 20. As
should be expected, it is exactly the same matrix as that for beam-column 10. The 5
× 1 matrices will soon be parts of the equivalent load vector as described below.

At this point the global stiffness matrix can be assembled from the above three
element stiffness matrices. Note that because there are no externally applied loads
directly corresponding to the nine retained DOF, the original external load vector is
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all zeros. Therefore, the equation involving the assembled stiffness matrix is


0
0
0
0
0
0
0
0
0




= EI
L3




24 0 6L 0 0 0 6L 0 0
0 13.5 0 6L 1.5L −1.5 0 0 1.5L

6L 0 6L2 0 0 0 L2 0 0
0 6L 0 4.25L2 0 0 0 −0.25L2 0
0 1.5L 0 0 2.5L2 −1.5L 0 0 L2

0 −1.5 0 0 −1.5L 13.5 0 6L −1.5L
6L 0 L2 0 0 0 6L2 0 0
0 0 0 −0.25L2 0 6L 0 4.25L2 0
0 1.5L 0 0 L2 −1.5L 0 0 2.5L2







u1

v1

θ1

φ1

ψ1

v2

θ2

φ2

ψ2




− EI0
L3




12u0

0
0
0
0

12v0

6Lu0

6Lv0

0




.

Transposing the last vector on the right-hand side to the left-hand side completes
the process of obtaining the {Q} = [K]{q} equation. In this way it is clear that the
new left-hand side vector is the “equivalent” or “effective” generalized force vector.
Note that the units of each effective generalized force vector entry are those of force
for the rows corresponding to a deflection, and the units are those of a moment for
the rows corresponding to a rotation. ★

The next two chapters provide more example problems illustrating the use of FEM
concepts. Therefore, any further practice needed in choosing DOF, creating system
stiffness matrices from element stiffness matrices, and creating applied load vectors
can be left to those examples found in subsequent chapters and, of course, to the
exercises found in this and those chapters.

3.5 Summary

The dynamic equations central to this textbook are the Lagrange equations that
were derived from Hamilton’s principle. The static form of Hamilton’s principle is
obtained by setting the kinetic energy equal to zero and having the sole remaining
quantity in the integrand, the virtual work, be independent of the time variable t .
The result is that the total virtual work, which is the sum of the external virtual
work, δWex, plus the internal virtual work, δWin, is zero. This is called the principle
of virtual work. When the internal forces are energy conservative, as they are for
perfectly elastic bodies, then it is convenient to introduce a potential function for the
elastic forces. This potential function, the negative of the work done by the internal
elastic forces, is symbolized as U and is called the strain energy. Therefore, in terms
of the strain energy, the principle of virtual work can be written in the form where the
virtual work of the external loads is equal to the virtual change in the strain energy
potential; that is, δWex = δU.

The linear finite element method of static structural analysis is most conveniently
based on the principle of virtual work, and matrix algebra. The external virtual work,
which is always calculated directly from the loads applied to the structural system, can
be used to define quantities called the generalized forces, Q, according to the basic
formulation δWex = �δq�{Qex}. This is just a reflection of the basic concept that forces
moving through displacements, real or virtual, do work, real or virtual. As for the
other part of the above statement of the principle of virtual work, the virtual strain
energy is δU = −δWin = +�δq�{Qelas} = �δq�[K]{q}, where these internal elastic



P1: JZP
0521865743c03 CUFX001/Donaldson 0 521 86574 3 September 6, 2006 13:7

124 Review of the Basics of the FEM for Simple Elements

generalized forces are the previously discussed internal moments and shear forces
at the finite element nodes. From the rules that govern the variational operator

since δU = �δq�[K]{q}, then U = 1
2
�q�[K]{q}.

It is later shown that when this form of the strain energy is differentiated with respect
to each of the generalized coordinates in turn, and the result cast in matrix form, the
result is again that the generalized elastic forces acting on the finite element are
[K]{q}.

Again, to focus on the dynamics of structures, this textbook almost always uses
only the simplest of structural elements to create illustrative finite element models.
Hence, only the small-displacement stiffness matrices of springs, bars, and beams are
employed in the example problems offered here. Even then, because the choice is
often sufficient for illustrative purposes, the corresponding structural elements are
usually confined to being parts of planar structures. The analyst can be comfortable
with these structural modeling simplifications only when he or she knows how to
deal with the complications that are being avoided. The next several paragraphs
discuss three slight complications that are generally avoided in subsequent chapters
for the sake of focusing on the dynamics of the structures. In the order discussed,
these slight complications are beams with nonsymmetrical cross sections, beams with
shear flexibility, and, finally, finite elements arbitrarily oriented in three-dimensional
space. The endnotes further extend the introduction to the FEM by briefly discussing
two sophisticated aspects of the finite element method. Endnote (1) discusses the
simplest of the two-dimensional elements, a thin rectangular slab. Note that this
finite element can bear inplane tensile, compressive (but without buckling effects),
and shearing loadings. As such, this sort of finite element could easily have been
included as a wall or bulkhead in many of the elastic frame models discussed in
this textbook. Endnote (2) serves two purposes. By looking at curved beam ele-
ments, Endnote (2) illustrates another approach to obtaining finite element stiffness
matrices, and it also makes evident that even some one-dimensional elements can be
complicated.

Of the three one-dimensional elements cited above as the elements that are used
here to illustrate the various aspects of structural dynamics, (i.e., the spring, bar,
and beam elements), the beam element is the most complicated. Beam bending has
been, and will be, treated here on the basis that the y and z axes are the princi-
pal axes of the beam cross section, and shearing deformations can be completely
neglected. However, commercial, digital computer, finite element programs make
no such restrictions. First, commercial finite element programs generally allow the
input of an area product of inertia Iyz, which is a measure of the lack of symmetry of
the beam cross-section geometry with respect to the y and z axes. If there is just one
axis of symmetry for the beam cross section, and either of the y or z axes is coincident
with that axis of symmetry, then the product of inertia is zero. See Ref. [3.2], p. 250 ff.
An angle iron, where the centoidal axes, the z and y axes, parallel the web and flange
respectively, would be a case where the product of inertia would not be zero, but
would be negative or positive depending on which direction, left or right, the flange
extends. Because of the desire for simplicity in modeling the beam connections,
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the beam boundary conditions, it is usually not advantageous to rotate the conve-
nient horizontal and vertical cross-sectional axes with a nonzero product of inertia
to principal axes where the product of inertial is zero. Hence the need to know the
formulation of the beam bending stiffness matrix when the product of inertia, Iyz, is
not zero. The derivation proceeds from the virtual strain energy expression, Hooke’s
law, and engineering beam theory, also known as the Bernoulli–Euler hypothesis

δU ≡
∫∫∫

σxxδεxxd(vol.)

where σxx = −E[y v′′(x) + zw′′(x)]

and δεxx = −y δv′′(x) − zδw′′(x),

where, again v(x) is the beam axis deflection in the y coordinate direction, and w

is the same in the z coordinate direction. Substituting the stress and virtual strain
expressions into the strain energy integral, and then carrying out the integration over
the volume by first integrating over the area, where

Iyy =
∫∫

z2dA Izz =
∫∫

y2dA Iyz =
∫∫

yz dA

and using the same cubic spline shape functions set out in Eq. (3.1), leads to the
8 × 8 beam bending stiffness matrix below. For the sake of conciseness, let the 4 × 4
beam bending matrix without its EI/�3 coefficient be symbolized, at its first entry, as
[12 6� . . .]. Then the 8 × 8, small deflection, bending stiffness matrix for arbitrary
orientations of the y and z axes, along with the corresponding vector of generalized
coordinates, is

[k]{q} =




EIzz

�3
[12 6� . . .]

EIyz

�3
[12 6� . . .]

EIyz

�3
[12 6� . . .]

EIyy

�3
[12 6� . . .]







v1

ψ1

v2

ψ2

w1

θ1

w2

θ2




,

where again ψ is the bending slope deflection in the x, y plane, and θ is the same in
the x, z plane.

Commercial finite element programs also allow for shearing as well as bending
flexibility. As can be demonstrated from those few available theory of elasticity solu-
tions for statically, laterally, loaded beams with rectangular cross sections, shearing
deflections in long beams are negligible. However, a case can be made for the inclu-
sion of shearing flexibility or shearing stiffness in vibratory analysis. The first reason
for including shearing deformations is that, as is shown in detail in Figure 8.1, when a
beam vibrates at frequencies that are multiples of what will be called its first natural
frequency, the “bending length” of the long beam can be a fraction of the original
length, making the long beam into a series of short beams. For that deflection pat-
tern, the shearing deflection in those short beams generally will still be secondary
to the bending deflection but now can be somewhat significant. That is, it is possible
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that the percentage of the total deflection attributable to shearing can exceed the
standard allowance for engineering approximations for a given load, usually 7% or
so. The second reason for including shearing deformations is that by so doing, the
beam finite element is rendered more flexible, less stiff.11 This is of value because the
beam bending element stiffnesses described by the above beam stiffness matrices
overestimate the actual beam stiffness. To understand this point, consider a simply
supported beam subjected to a uniform lateral load per unit of beam length. The
deflection solution for the beam is a quartic polynomial. A lateral loading that var-
ied linearly over the length of the beam would result in a deflection solution that was
a fifth-order polynomial. More complicated loadings would result in higher order
polynomials or analytical functions whose power series expansions would involve
an infinite number of distinct polynomial terms. These facts are in contrast to the
above development of the beam bending stiffness matrix that depended on cubic
polynomials over segments of the total beam length as approximations to actual
deflection. Often times, for large, complex structures, the analyst selected element
length is the same as the beam length. This situation results in a cubic polynomial
approximating a higher order polynomial. This situation can be usefully viewed as
a case where the coefficients of the polynomial terms above the third order in the
expression representing the actual deflection pattern for the beam are forced to be
zero by the finite element approximation. Requiring those deflection coefficients to
be zero places constraints on the beam deflection just the same as adding another
support to the simply supported beam under discussion. The added support also con-
strains the deflection, in this case the total deflection, to be zero at the added support
position. It should be clear that the added constraint would lessen the overall deflec-
tions of the beam. Thus the added support makes the beam stiffer or less flexible.
The addition of shearing deflections to the beam bending model partly offsets this
increased stiffness.

All the previous developments involving beam bending deflections have been
based on the Bernoulli–Euler approximation for beam bending, often called engi-
neering beam theory. This approximation excludes shearing strains by requiring the
cross sections to always remain perpendicular to the beam axis. On the basis of that
excellent approximation, other than rigid body rotations, all beam element rotations,
or more precisely, changes in those rotations (called curvatures), are directly related
to bending moments by such familiar formulas as EIw′′(x) = M(x).

The simplest approach to including shearing deflections (i.e., shearing rotations
due to shearing forces) in the beam element is to focus on the beam axis of a single
element. The element nodes, with their w1 and w2 DOF, lie at each end of this
axis. The shearing rotations can be separated from the bending rotations by simply
requiring the element’s beam axis to rotate from its original horizontal orientation
while remaining straight (no curvatures). At the same time require that the cross-
sectional areas retain their vertical orientation much like the individual cards of a
stack of playing cards remain parallel to the tabletop as the stack is shifted from being
straight to having an overhang. This geometry means that there is now other than

11 Again, flexibility is the inverse of stiffness. For example, EA/� is a stiffness factor, whereas �/EA is a
flexibility factor.
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a 90◦ angle between each of the beam cross sections and the straight beam axis. By
definition, this small change in the original 90◦ angle is the shearing strain. Therefore,
in mathematical terms, the shearing strain is

γ = 1
�

(w2 − w1) = 1
�
�−1 + 1�

{
w1

w2

}
.

Using Hooke’s law

τ ≡ σsh = G
�

�−1 + 1�
{

w1

w2

}
.

Hence the virtual strain energy expression is

δU =
∫∫∫

τ δγ d(vol.)

= �δw1 δw2�
∫∫∫

1
�

{−1
+1

}
G
�

�−1 + 1�dA dx
{

w1

w2

}
,

where the DOF vectors have been factored out of the volume integral because they
do not vary with x, y, or z. Carrying out the integration yields

δU = �δw1 δw2�GA
�

[+1 −1
−1 +1

] {
w1

w2

}
. (3.4)

The above argument based on the approximate shearing strain at the beam axis is a
simplification that ignores the fact that the shearing stress varies over the beam cross-
sectional area and, therefore, so too does the shearing strain. That is, the shearing
strain over the entire beam cross section cannot be simply determined, as above, from
the use of the lateral translation DOF w1 and w2 at the beam axis. To make a long
story short, from Ref. [3.2], p. 540, one possible adjustment is to apply a correction
factor γ to the cross-sectional area A. Thus the expression used is

δU = �δw1 δw2�G(γ A)
�

[+1 −1
−1 +1

] {
w1

w2

}
.

This nondimensional correction factor, γ , is generally close to a value of 1. For a
rectangular cross section, it has the value 5/6. One general expression for thin cross–
sections, from the same reference, is

1
γ

= A
I2

yy

s=h∫
s=0

[Qy(s)]2

t(s)
ds,

where A is the total cross-sectional area; s is an arc length coordinate that follows
the centerline of the segments of the thin cross section; h is the maximum value
of the arc length coordinate, the sum of all the lenths of all the flanges and webs; t
is the local thickness, and Q is the same first moment of partial area that the reader
first encountered in his or her elementary strength of materials course in the formula
for beam shearing stress: τ = VQ/(It). Many commercial finite element programs
provide an alternative and much simpler approach to entering the effective cross-
sectional area for shear. To understand this alternative, consider a beam with a wide
flange cross section, often called an H cross section. Consider the verticals of the H



P1: JZP
0521865743c03 CUFX001/Donaldson 0 521 86574 3 September 6, 2006 13:7

128 Review of the Basics of the FEM for Simple Elements

to be the beam flanges, and the horizontal cross bar of the H to be the beam web.
Let the y axis be coincident with the centerline of the web, and the z axis parallel
to the flanges. For shearing forces acting in the y and z directions, the respective
effective area inputs for the shearing stiffness matrix of Eq. (3.4) would then be the
two quantities Ay and Az. The former quantity, Ay, would be only the area of the
flanges, or five-sixths thereof, whereas the latter quantity would be only the area of
the web, or five-sixths thereof. These choices are made on the basis of the strength of
materials solutions for shear stresses in thin beams. In those solutions, the dominant
shear stresses are always aligned with the centerline of the thin flange or thin web.

The above shearing stiffness matrix generally has much larger values than the
bending stiffness12 matrix. To make a comparison that supports inclusion of the
shearing stiffness terms, consider the δw1 and w1 entries of the bending and shear-
ing stiffness matrices. The bending matrix term is 12EI/�3, whereas that for the
shearing matrix is, ignoring the γ term near 1, GA/�. To make a direct comparison,
multiply the term GA/� top and bottom, by �2. Then the ratio of the shearing stiff-
ness term to the bending stiffness term is GA�2 to 12EI. If this ratio is applied to
a long beam, the GA�2 term would overwhelm the moment of inertia factor. Thus
the beam would be much, much stiffer in shearing than bending. In such a case the
beam would properly be modeled as having infinite shearing stiffness that is the
same as saying that the shearing flexibility would not be included in the analysis.
However, when the long beam is divided into several beam elements, the length of
one of these finite elements is sometimes such that this disparity is only, say, 10:1 or
20:1. Then with E being roughly two and a half times larger than G, and taking into
account the factor 12, it can be seen that in this somewhat extreme case the bending
stiffness is greater than the shearing stiffness, the reverse of the normal situation.
Then the shearing flexibility is greater than the bending flexibility and should be
included. Therefore when using a commercial program, expect to find an opportu-
nity for data input that includes the shear modulus even when no beam twisting is
expected in the structure being modeled and data input for the cross-sectional areas
(A, Ay, Az) even when there is no significant beam extension is expected. However,
again, for the sake of focusing on the dynamics of structures, this textbook will ignore
beam axial and beam shear deflections, and all beam area products of inertia will
be zero.

The third ordinary complication avoided in this textbook is arbitrary orientations of
structural elements in three-dimensional space. Rather than use a beam for discussion
purposes, the topic can be best illustrated using a bar element. The bar element sign
convention and stiffness matrix equation in terms of the bar’s two axial displacements
u1 and u2 exactly mimic those of the spring where the spring stiffness factor k is
replaced by the bar stiffness factor (EA/L). Note that because bars of pin-jointed
trusses usually have constant cross sections and thus are constant force elements,
there is no reason to subdivide a bar into more than one element. Thus L is almost
always the full bar length. Hence, in the first of the two equations below, just like

12 Recall that stiffness in the inverse of flexibility, and the greater the flexibility, the greater the deflections.
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for the spring element, where again N is the bar axial force and u is the bar axial
deflection:

{
N1

N2

}
= EA

L

[+1 −1
−1 +1

] {
u1

u2

}
= EA

L




+1 0 −1 0
0 0 0 0

−1 0 +1 0
0 0 0 0







u1

v1

u2

v2


 .

The latter of the above two matrix equations is just the same as the first matrix
equation but for the addition of generalized coordinates that describe deflections
perpendicular to the bar axis. Note, for small displacements, there are no (shear)
forces associated with those lateral, v, deflections, and the lateral deflections do not
affect the axial forces.13 The above 4 × 4 planar bar stiffness equation is not very
useful in terms of the two deflections along the bar axis and the two deflections
perpendicular to the bar axis unless all bars are either horizontal or vertical. What is
needed is the bar stiffness matrix for a bar oriented in a plane at an arbitrary angle, or
oriented in space by a set of angles, but written in terms of global DOF that parallel
the selected Cartesian coordinate system for the planar or spatial truss. Such global
DOF greatly simplify system assembly. To achieve such element stiffness equations,
it is just a matter of writing rotation equations for the bar oriented DOF in terms of
the horizontal and vertical system DOF. First for a planar truss bar element, where
the element DOF are distinguished by an overbar, the global DOF are unmodified,
and the angle β is measured counterclockwise from the (usually horizontal) direction
of the global u degrees of freedom. That matrix rotation equation is


u1

v1

u2

v2


 =




cos β sin β 0 0
− sin β cos β 0 0

0 0 cos β sin β

0 0 − sin β cos β







u1

v1

u2

v2


 .

Designate this 4 × 4 (planar) rotation matrix as [R ]. Then, to obtain the bar element
stiffness matrix in terms of the global DOF, substitute the above rotation equation
into the virtual strain energy form of the above 4 × 4 element stiffness matrix equa-
tion. That is, write

δUel = �δq�[kel]{q} = �δq�[R]T[kel][R]{q} = �δq�[kel]{q}.
Therefore the element stiffness matrix equation for the arbitrarily oriented bar ele-
ment in two-space is


X1

Y1

X2

Y2


 = EA

L




cos2β cos β sin β −cos2β − cos β sin β

cos β sin β sin2β − cos β sin β −sin2β

−cos2β − cos β sin β cos2β cos β sin β

− cos β sin β −sin2β cos β sin β sin2β






u1

v1

u2

v2


,

13 Although, as is stated by the given matrix equation, the bar axial force N due to the two stretching
DOF is EA(∆u/L), and is zero for the two lateral deflections, a more precise value for the axial force
due to difference in the lateral deflections is easily worked out to be N = 1/2EA(∆v/L)2. This latter
term, because of the squaring, is usually quite small and hence negligible.
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Figure 3.11. Example 3.9: Three-dimensional truss model whose geometry outlines a pyramid.

where X and Y are the bar force components in the u and v directions. The following
example problem extends the above result to bars oriented in three-dimensional
space and demonstrates the use of the subsequent 6 × 6 stiffness matrices.

EXAMPLE 3.9 Consider the four-bar, five-node, pin-jointed spatial truss, shown
in Figure 3.11. The joint at the base of each of the four bars is fixed against translation.
Each of the four faces of the pyramid whose outline is formed by the bars is an
equilateral triangle. Hence each bar length is L. Each bar has a stiffness coefficient
of EA. Begin the analysis by presuming that bar buckling is not a concern, and then
write the global {Q} = [K]{q} equation for this structure. After the forces in the bar
are calculated, then the assumption of no buckling can be verified or adjusted. The
element stiffness matrix for a bar in three-space in terms of the two sets of u, v, and
w global DOF, where x is directed along the axis of the bar in question, is

[kel]{q} = EA
L

[+C −C
−C +C

]



u1

v1

w1

u2

v2

w2




,

where, for example, (x̄, z) represents the angle between the bar axis and the z axis,
and

[C] =

 cos2(x, x) cos(x, x) cos(x, y) cos(x, x) cos(x, z)

cos(x, x) cos(x, y) cos2(x, y) cos(x, y) cos(x, z)
cos(x, x) cos(x, z) cos(x, y) cos(x, z) cos2(x, z)


 .

As was done in the two-dimensional case, this bar element stiffness matrix, using u,
v, w DOF paralleling the convenient Cartesian coordinate axes x, y, z while the bar
element itself has an arbitrary orientation in space, can be derived on the basis of
relating, on the one hand, the three DOF that are oriented along the axis of the bar
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(u) and perpendicular to the axis of the bar (v, w), with its known element stiffness
matrix, to, on the other hand, the above convenient DOF u, v, w. The basis of the
relationship at either of the bar element’s two nodes is the fact that the total deflection
at the node is the same vector in either the bar-oriented Cartesian coordinate system
or the convenient Cartesian coordinate system. That is,

ui + v j + wk = ui + v j + wk.

Now the transformation matrix relating the two sets of DOF can be constructed by
taking the dot product on both sides of the above equation with first i, then j, and
then k. The result is

u = u cos(x, x) + u cos(x, y) + w cos(x, z)

and so forth, or, for either node


u
v

w


 =


 cos(x, x) cos(x, y) cos(x, z)

cos(y, x) cos(y, y) cos(y, z)
cos(z, x) cos(z, y) cos(z, z)







u
v

w


 ,

or, for both nodes

{u} = [Tbar ]{u} and �u� = �u�[Tbar ]t .

The above coordinate transformation can now be applied to the bar’s virtual strain
energy expression

δUbar = �δu�[kel]{u} = �δu�[Tbar ]t [kel][Tbar ]{u},

where

[kel]{u} =




+1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 +1 0 0
0 0 0 0 0 0
0 0 0 0 0 0







u1

v1

w1

u2

v2

w2




and therefore [kel] = [Tbar ]t [kel][Tbar ] as shown above.
Return now to the solution of the pyramid truss problem. To be clear on the geom-

etry of the pyramid, for example, the cosines of the angles between the bar 15 axis
and the x, y, and z directions are, respectively, cos(60◦) = 1/2, cos(60◦) = 1/2,
cos(45◦) = √

2/2. Note that these angles are not the same for all four bars.

SOLUTION The direction cosines for element 25 are cos(120◦) = −1/2, cos(60◦) =
1/2, cos(45◦) = √

2/2. The direction cosines for element 35 are cos(120◦) =
−1/2, cos(120◦) = −1/2, cos(45◦) = √

2/2. The direction cosines for element 45
are cos(60◦) = 1/2, cos(120◦) = −1/2, cos(45◦) = √

2/2. Hence the element stiffness
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matrices for the four bars in the global coordinate system are

[k15]{q} = EA
4L


 1 1

√
2

1 1
√

2√
2

√
2 2







u5

v5

w5




[k25]{q} = EA
4L


 1 −1 −√

2
−1 1

√
2

−√
2

√
2 2







u5

v5

w5




[k35]{q} = EA
4L


 1 1 −√

2
1 1 −√

2
−√

2 −√
2 2







u5

v5

w5




[k45]{q} = EA
4L


 1 −1

√
2

−1 1 −√
2√

2 −√
2 2







u5

v5

w5


 .

Hence the assembled global stiffness matrix equation is

{Q} =



F1

F2

−F3


 = [K]{q} = EA

L


 1 0 0

0 1 0
0 0 2







u5

v5

w5


 ,

which is very easily solved for the joint 5 deflections in the global coordinate system.
Then by use of the element stiffness matrix equation and the above global deflections,
the components of the bar forces can be obtained. Then use of the direction cosines
provides the bar axial forces. For example, from the above solution

u5 = F1L
EA

v5 = F2L
EA

w5 = − F3L
2EA

the three components of the axial force in bar 15 are


Nx

Ny

Nz




(15)

= EA
4L




1 1
√

2

1 1
√

2√
2

√
2 2







u5

v5

w5


 = 1

4




1 1 −
√

2
2

1 1 −
√

2
2√

2
√

2 −1







F1

F2

F3


 .

Then, the axial force in bar 15 is

N = Nx cos(x, x) + Ny cos(x, y) + Nz cos(x, z) = 1
2

Nx + 1
2

Ny +
√

2
2

Nz.

Once the bar forces are obtained, they can be compared to the Euler or elastoplastic
buckling load for the bars. ★

The above example shows how simple three-dimensional structures are dealt with
using hand calculations. Machine calculations, as might be expected, usually follow
a different order. In most software, the analyst inputs the nodal locations through-
out the structure, and the element types (e.g., beams, membranes, rigid elements,
etc.) that connect those system nodes. Then the software calculates whatever ele-
ment dimensions, such as bar length, that are required. So far, with one exception,
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all the example problem connections between beam structural elements have been
“rigid” connections that provide complete continuity of all deflections. The exercises
further consider other possibilities such as a hinged connections. Software generally,
as a default option, identifies the system DOF at each node as the three deflections
and three rotations at each node paralleling an analyst selected spatial coordinate
system provided as an option by the software. These DOF may then be increased or
reduced in number by the analyst by changing the rigid connection to, say, a hinged
connection or by selecting only certain types of elements such as bars whereby the
rotational DOF become superfluous. That is, the DOF are ascertained from a knowl-
edge of the types of element DOF associated with each type of structural element
that connects at that node and by whatever coding is required to alter a rigid connec-
tion. The analyst further inputs whatever additional mass, material, and geometric
information is necessary to fully identify the structure under study. Then, with the
further specification of the loads and support conditions, the computer numerically
processes that information to obtain the desired solution often in terms of pages and
pages, or screens and screens, of data printout and drawings. Since the quantity of
solution data is often so large, the solution data may even have to be animated on
the monitor screen so as to assist in its comprehension.
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CHAPTER 3 EXERCISES

Note: All beam loadings in this chapter, and all subsequent chapters, are to be under-
stood to be acting within a plane of symmetry of the beam cross section.

3.1 (a) Consider a single, uniform, simply supported beam whose length is L and
whose stiffness coefficient is EI. The beam is loaded by a single, concentrated, lateral
force of magnitude F0 placed at the center of the beam span. Using just one beam
bending finite element for the left half of the beam, and another for the right half-
span, determine the lateral deflection at midspan.

(b) Redo the previous problem, but this time let the boundary conditions be clamped
supports at both beam ends. Note the percentage change in deflection between these
two extremes of beam boundary condition modeling.

3.2 (a) As a variation on the above problem, consider the beam-spring structure
shown in Figure 3.12(a), where the sole loading is an externally applied moment of
magnitude M0 at midspan. Using the DOF shown in Figure 3.12(b), write the full
seven-DOF {Q} = [K]{q} equation for this structural system and loading. Just use
the generic symbol R to represent the support reactions. Then apply the boundary
conditions to obtain the two DOF matrix equation to be solved for the unknown
DOF.



P1: JZP
0521865743c03 CUFX001/Donaldson 0 521 86574 3 September 6, 2006 13:7

134 Review of the Basics of the FEM for Simple Elements

M0
EI0, l 2EI0, l

5EI0

10

30

20

k = 
l

(a)

(b)

2

3

1 4

θ4θ2

θ1

w4w2

w3

w1

Figure 3.12. Exercise 3.2(a): (a) Math model. (b) FEM model.

(b) Consider the cantilevered beam structure that is shown in Figure 3.13. The struc-
ture is loaded by a tip force whose three components are F1, F2, and F3. The beam
of length 2� is labeled beam 12 on the basis of its end nodes. Similarly, the upper
beam of length � is labeled beam 23. That figure also displays the corresponding finite
element model and all the required DOF. Write the {Q} = [K]{q} equation that can
be solved for the unknown 10 DOF.

3.3 All eight beams shown in Figure 3.14 have the same length and have the same
doubly symmetric cross section. Specifically, the four beam-columns of the structure
shown in Figure 3.14 have the same bending stiffness coefficient, EI, about the x axis
as the y axis. The torsional stiffness coefficient for all eight beams is GJ = 1/2 EI.
The applied loading (not shown) consists of two sets of loads. The first set of equal
magnitude loads are x-direction forces F1 placed at the upper corners labeled 1 and
3. The second set of equal magnitude loads, which act along with the first set, are
two y-direction forces F2 placed at corners 1 and 2. For small deflections (as always),
write the smallest size matrix equation {Q} = [K]{q} that can be used to determine
the deflections of this structure under this loading.

3.4 Consider the fixed-end-supported, three-beam-segment, two-spring structure
loaded by two moment components M1 and M2 at the right-hand corner, and a
lateral force F1 at the left corner, as shown in Figure 3.15. If the numerical value
of the torsional stiffness coefficient GJ for each beam segment is half that of the
bending stiffness coefficient EI0, write the final matrix equation {Q} = [K]{q} that
can be solved for the unknown DOF.
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Figure 3.13. Exercise 3.2(b).

3.5 Consider the structural and FEM models of the small, two-dimensional, frame
shown in Figure 3.16. The beams have been modeled as inextensible. Hence the only
DOF required are as shown. Note that the base of the left-hand support is subjected
to an enforced horizontal motion labeled u0(t). Let this horizontal enforced motion,
u0(t) occur slowly so that no significant amount of kinetic energy is engendered.
Therefore, for this small deflection analysis, only the maximum value of u0(t) is
significant, and as a result, this is simply a static analysis. Write the matrix equation
to be solved for the unknown global DOF.

3.6 Occasionally the stiffnesses of components of mechanisms are modeled as com-
binations of springs in series and springs in parallel. The above-described FEM allows
the quick mathematical description of the overall stiffness properties of such a sys-
tem without reference any rules about springs in parallel or series. To illustrate this
statement, consider the three-DOF spring system of Figure 3.17, where horizontal
motion only is possible. The system is shown in its displaced configuration. Show that
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the matrix force–displacement equation is


0
F1

F2


 =


 k1 + k2 0 −k2

0 (k3 + k4 + k5) −k5

−k2 −k5 (k2 + k5)







u1

u2

u3


 .

Note that the lack of a structural connection between node 1 and the “cart” that is the
equivalent of node 2 is represented by the zero matrix entries in positions (1,2) and
(2,1) of the above 3 × 3 stiffness matrix. A small number of simultaneous, algebraic
equations such as the above are easily and accurately solved by any number of digital
computer programs or even by hand. However, the hand calculation would be even
simpler if the two springs with stiffnesses k1 and k2 were combined by means of the
rule for springs in series, thus eliminating the u1 DOF, leaving only two simultaneous

k1 k2

u1

u2 u3

F1

F2
k3
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Figure 3.17. Exercise 3.6.
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equations to be solved. The equivalent spring constant k for two springs in series is
easily determined to be 1/k = 1/k1 + 1/k2. The similar rule for springs in parallel,
as are k3 and k4, is simply k = k3 + k4.

3.7 Redo Example Problem 3.9 where the only change is that the Cartesian coordi-
nates of the four-bar, three-dimensional truss are now rotated 45◦ about the z axis
from their original orientation. That is, the x axis is now directed from joint 1 to joint
3, and the y axis is now parallel to the line directed from joint 2 to joint 4.

3.8 Write the matrix force–deflection equation {Q} = [K]{q} for the bar subjected
to torques shown in Figure 3.5 when the bar is fixed against twisting at its left end and
free from constraint at its right end. Let each of the three-bar elements have a length
L, and each of the applied external torques have a magnitude M0. Let the torsional
stiffness coefficients of bars 10, 20, and 30 be 3GJ0, 2GJ0, and GJ0, respectively.

ENDNOTE (1): A SIMPLE TWO-DIMENSIONAL FINITE ELEMENT

The finite element method restricted to one-dimensional14 beam and bar elements
has a long history. Other deflection based structural analysis procedures such as the
widely used slope-deflection method predate the FEM by decades. One connection
between the slope-deflection method and the FEM is that the slope deflection equa-
tions are just part of the beam finite element stiffness matrix equation. The FEM
became distinct and widely accepted as the most useful, general structural analy-
sis tool only when it was extended to two-dimensional problems.15 Two-dimensional
problems are approachable by other methods of analysis. Before the development of
the FEM, the two most popular, general methods of solving multidimensional struc-
tural problems were the Rayleigh–Ritz (or just Ritz) method (RRM) and the finite
difference method.16 Both methods can be applied to either energy formulations or
differential equation formulations of a structural problem. A major drawback of the
elegant Rayleigh–Ritz method is that for each distint problem, the analyst is required
to select a set of suitable functions for an (approximate) finite series solution. These
functions might be difficult to find in some circumstances and always require careful
consideration. In any event, because of the necessity of evaluating many integrals,
the Rayleigh–Ritz method was not easily automated by use of software and thus
not easily applicable to large problems in two or three dimensions. The finite dif-
ference method is easily coded and broadly applicable, but if applied to differential
equations, the higher partial derivatives are not approximated as accurately as the
lower derivatives, and it can be a lot of trouble to make the finite difference method
adaptable to arbitrary geometries. The finite difference solution can easily require

14 A beam is one dimensional because its differential equation involves only one spatial coordinate, x. A
plate, for example, is a two-dimensional structural component because its differential equation involves
two independent spatial coordinates, x and y.

15 The boundary element method (BEM) is another modern, broadly applicable method still being devel-
oped around the world.

16 The finite difference method is discussed briefly in Chapter 9 for the purpose of obtaining numerical
solutions to differential equations where time is the sole variable. The finite difference method is
generally applicable to problems with spatial and temporal variables.
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a solution of more equations than the FEM. Thus the FEM was a major advance
because (i) relative to the RRM, its selected functions17 are always the same for a
given type of element and thus do not require any effort of selection on the part
of the analyst and (ii) all its steps are easily programmed. Relative to the finite dif-
ference method, the FEM adapts more easily to geometric and changing material
complexities.

The finite element method, as used today, falls in the category of a deflection-
based,18 finite series solution. Any complete19 series can be used as a basis for FEM
structural element, but because unadorned polynomial terms are so efficiently cal-
culated, compared to, say, sine terms, they are universially preferred even though
they lack other desirable properties such as orthogonality. The choice of polynomial
series terms to represent deflections generally would not be a good choice except
when they are applied to just a small portion of the total structure. For example, if
the chosen polynomial were limited to being just a linear polynomial, such a choice
normally would lead to a very poor approximation for elastic deflections over an
entire range of the structure. If, however, a straight-line approximation is applied to
just a small portion of the structure over and over again, then, for example, like an
n-sided, regular polygon, it can closely approximate a smooth circle. Recall that this
type of approximation of a complicated deflection function over a extensive domain
by a piecewise series of simpler functions over subdomains is what was done in the
beginning of this chapter for a one-dimensional analysis when a cubic polynomial
was applied to eight or more segments of a beam.

The plane stress problem is here chosen to illustrare, in the simplest possible
fashion, the extension of the FEM to multidimensional problems. Recall that a plane
stress problem is one where there exists a direction z such that all stress components
in that direction are zero. That is, there is a z direction for the given structure such
that

σxz = σyz = σzz = 0.

Such circumstances, at least approximately, are commonplace when a structure, or
a portion of a structure, has a geometry where one dimension is much smaller than
the other two dimensions. The web or flange of a wide flange beam are examples
where portions of the structure meet this geometric circumstance and the above
three stresses are much less than the other three stresses.

One circumstance that exactly meets the requirements of the above plane stress
definition is that where the entire external loading acting on a flat, thin structure
is limited to acting only in the plane of the thin structure and is constant over the
thickness. Such a representative plane stress problem is sketched in Figure 3.18(a).

17 In this sense of using a set of selected functions to build a series solution, the finite element method is
a specialized form of the Rayleigh–Ritz method

18 A force-based finite element method was extensively developed but proved to be inferior to the
deflection based FEM.

19 A complete series, like a Fourier series with terms sin(nπx/L) and cos(mπx/L), for all positive interger
value of n is one that can be used to represent any piecewise continuous function. If just one of those
series terms is omitted, say sin(8πx/L), then the remaining infinite series is no longer complete because
all the remaining series terms cannot represent (i.e., sum to) the missing function sin(8πx/L).
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Figure 3.18. (a) Slab loaded at its ends. (b) Crude finite element model of one-quarter of the
slab. (c) Simple, rectangular, four-node, plane stress finite element.

This specific thin slab has a constant thickness h in the z direction. For the sake of
simplicity, let the slab be homogeneous, isotropic, and linearly elastic. These choices
will allow the later use of the simplest form of Hooke’s law throughout the slab.
Any solution for the u(x, y) and v(x, y) deflections and the three nonzero stresses
σxx, σxy, and σyy in this slab begins with noting the double symmetry of the geome-
try and loading. This double symmetry allows the analyst to drastically reduce the
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number of selected nodes by focusing on just one quadrant of the slab, say, the upper
right quadrant. Figure 3.18(b) shows the upper right quadrant very crudely modeled
with just four rectangular, plane stress, finite elements. The elements are selected to
be smaller where the stresses and deflections are expected to be greater. Again, the
specific purpose of this endnote is to explain how such a rectangular, plane stress,
finite element is developed. That development serves as an introduction to the devel-
opment of all other multidimensional finite elements.

The multidimensional finite element is usually based on representing the solution
for the internal deflections as a finite portion of a complete infinite series. Again, the
finite series that is almost always preferred is an unadorned polynomial series even
though such a series lacks such desirable characteristics as the mutual orthogonality
of the series terms. A polynomial series does have the great advantage that the values
of its terms are very quickly calculated by digital computer. That is, there are far fewer
steps to the calculation of xy4 than to the calculation of sin(x). Thus, for this plane
stress problem, let the approximate solution for the in-plane20 deflection field be
initially written as follows

u(x, y) = a0 + a1x + a2 y + a3x2 + a4xy + a5 y2 + a6x3 + · · ·
v(x, y) = b0 + b1x + b2 y + b3x2 + b4xy + b5 y2 + b6x3 + · · · ,

where the coefficients a j and bj are to be determined. The first question to be
answered is how many of these terms should be included in the finite series approxi-
mation for the deflection field. Consider Figure 3.18(c), which shows just one of these
rectangular, plane stress finite elements. Note that, as per usual for such elements,
nodes have been placed at the corners of this finite element. As indicated in Fig-
ure 3.18(b), the nodal deflections of the slab as a whole are the global DOF of the
structure. Since, for any one element, there are only four nodal deflections in, say,
the x direction, and because these four values of the nodal deflections can uniquely
determine only the values of four of the coefficients a j, then the number of terms to
be used in each of the above series solutions is four.

The next question concerns which four terms are best. Again, using the u(x, y)
series to represent either of the two deflection series, note that without the a0 term,
there can be no representation of a rigid body motion21 for this finite element. Thus
that term must be selected because, otherwise, a rigid body motion would result in a
contradictory strain. The a1 term is vital because without it, there can be no constant
normal strain in the x direction, εxx. This constant strain possibility is, of course,
necessary to accomodate a constant loading case. The coefficient a2 is required for a
constant shearing strain. The fourth and last term must be one of the three quadratic
terms because the lower the order of the polynomial, the more basic the correspond-
ing motion. The best choice for the fourth term is the a4 term. The primary reason
for this choice is that along any specific edge of the rectangular finite element, both
the u and v deflections will vary linearly, and those linearly varying edge deflections

20 Deflections in the z direction are of no importance.
21 A rigid body motion is one where all parts of the element have exactly the same translational motion.

This means that the deflection within the finite element is independent of both x and y. Such a motion
is possible only when all the a j but a0 are equal to zero.
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are completely determined by the values of the two sets of nodal deflections at the
ends of the outer edge. Therefore, both deflections will be continuous from one finite
element to an adjacent finite element because the adjacent element would share
the same two nodes. Such deflection continuity is a requirement for the application
of the principle of virtual work to the entire structure. Hence, the selected approxi-
mating series are

u(x, y) = a0 + a1x + a2 y + a4xy

v(x, y) = b0 + b1x + b2 y + b4xy.

This may seem to be too simplistic a series representation for a deflection field, and it
certainly would be if it were applied over any significant portion of the slab. However,
if, as argued above, this deflection approximation is applied over only a small portion
of the slab, then, as the many-sided, regular polygon closely approximates the circle,
many of these elements will closely approximate the true deflection field. Even so, at
the expense of a greater number of calculations, this displacement field approxima-
tion could be improved by placing more nodes on the boundaries of, or even inside,
the finite element. For example, additional nodes could be placed at each of the four
edge midpoints for a total of eight nodes. Then eight terms could be retained in each
deflection series, making those series complete through the quadratic terms, plus
two cubic terms x2 y and xy2. Since a quadratic polynomial has three coeffiicients,
the quadratic form of the displacements at each of the element edges would be fully
defined by the three nodes along that edge, and therefore the adjacent element that
shares those same three nodes would have fully continuous deflections with the other
rectangular element.

The next step for the four node plane stress element is to determine the values of
the a j coefficients in terms of the element nodal deflections. In this case, this is easily
done from the continuity of the nodal and internal deflections. For example, from
Figure 3.18(c), where x1 = 0, x2 = a, y1 = 0, and y2 = b,

u1 = a0 u2 = a0 + a1a u3 = a0 + a1a + a3b + a4ab u4 = a0 + a2b.

Solving for the a j coefficients in terms of the nodal deflections, and then substituting
back into the finite series approximations for the deflections u and v, allows those two
deflections to be written in the following form, where again the polynomial functions
Nj (x, y) are called shape functions:

u(x, y) =
4∑

j=1

u j Nj (x, y) v(x, y) =
4∑

j=1

v j Nj (x, y)

where N1 =
(

1 − x
a

) (
1 − y

b

)
N2 =

( x
a

) (
1 − y

b

)
N3 =

( x
a

) ( y
b

)
N4 =

(
1 − x

a

) ( y
b

)
. (3.5)

Note again that each nondimensional shape function has the property that the func-
tion has the value 1.0 at the location of its corresponding node, and the value zero
at all other nodes. These shape functions, and many other shape functions, can be
easily deduced directly from that set of characteristics.
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Once the element shape functions have been determined, the remainder of the
preparation for the use of the principle of virtual work is routine. To see where
the discussion is going, recall that in this case where three of the stresses are zero,
the principle of virtual work can be stated as

δWex = δU = h
∫∫

[σxxδεxx + σyyδεyy + σxyδγxy]dx dy.

Therefore the necessary tasks ahead are (i) to determine the strains from the above
deflections, (ii) to take the variations of those strains, and (iii) to determine the
stresses from the strains using Hooke’s law. The strains, arranged in matrix form,
are




εxx

εyy

γxy


 =




∂u
∂x
∂v

∂y
∂u
∂y

+ ∂v

∂x




= [B]{q},

where the details of the [B] and {q} matrices in the latter matrix equation are
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.

The virtual strains are simply {δε} = [B]{δq}. In the absence of temperature changes,
Hooke’s law can be written as {σ } = [D]{ε}, which in detail is


σxx

σyy

σxy


 = E

1 − ν2


 1 ν 0

ν 1 0
0 0 (1−ν)

2







εxx

εyy

γxy


 .

Thus the virtual strain energy can be written as

δU = h�δq�

 a∫

0

b∫
0

[B]T[D][B]dx dy


 {q} = �δq�[k]{q}.

Therefore the derivation of the 8 × 8, symmetric, element stiffness matrix is
just a lengthy matter of carrying out the matrix products and integrations
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enclosed in paranthesis. For example, the (δu1, u1) entry of the 8 × 8 stiffness
matrix is

k11 = Eh
1 − ν2

a∫
0

b∫
0

[
1
a2

(
1 − y

b

)2
+ 1 − ν

2b2

(
1 − x

a

)2
]

dx dy

= Eh
3(1 − ν2)

(
b
a

+ 1 − ν

2
a
b

)
.

The remaining 63 element stiffness matrix entries, 63 because of the use of matrix
symmetry as a calculation check on the 36 different entries, are left to the reader as
exercises. Note that the element aspect ratio a/b and its inverse appear separately in
this entry of the element stiffness matrix. Experience has shown that this and other
rectangular elements are more accurate when that aspect ratio is close to 1 and less
than 2.

Returning to the specific problem of Figure 3.18(a), the above plane stress element
stiffness matrices are assembled into a global stiffness matrix in exactly the same
way as was done for beam elements, which was on the basis of the correspondences
between the element DOF and the global DOF. Once assembled, the boundary
conditions resulting from the symmetry are

u1 = u2 = u3 = 0 v1 = v4 = v7 = 0.

These zero boundary conditions eliminate six columns of the global stiffness matrix
and cause six rows to be set aside. This process reduces the original 18 × 18 global
stiffness matrix to a 12 × 12 matrix.

The generalized force vector, {Q}, for this problem is worth attention. Specifically,
the task is to determine the entries in the generalized force vector for this case
where the only externally applied loading on the upper-right quadrant of the slab
is the loading per unit length that is linearly distributed over the right edge of the
quadrant. As ever, the generalized force vector can be computed from the virtual
work expression, which for the right edge of the quadrant can be written as δW =∫

N(y)δu(3a, y)dy. This integral form needs to be applied to elements 11 and 13.
For element 11, from Eq. (3.5), where the local x coordinate has the value a, and
the local and global y coordinates coincide, the virtual deflection for the right side of
element 11 in terms of the global DOF is simply

δu(a, y) = δu7

(
1 − y

b

)
+ δu8

y
b
.

For element 13, again using Eq. (3.5) but replacing the local y with the global y − b
and the local b with the global measure 2b,

δu(3a, y) = δu8

(
1 − y − b

2b

)
+ δu9

y − b
2b

= 1
2

(
3 − y

b

)
δu8 − 1

2

(
1 − y

b

)
δu9.

Note that, for example, the coefficient of δu8 is zero at the location of the u9 DOF
where y = 3b, and the coefficient of δu9 is zero at y = b, where the u8 DOF is located.
The edge loading is easily described in terms of the global y as N0[1 − y/(3b)].
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Therefore, utilizing the general expression δW = �δq�{Q}, the virtual external work
for element 11 can be written as

δW(11)
ex =

b∫
y=0

N0

(
1 − y

3b

)
δu(y)dy =

b∫
y=0

N0

(
1 − y

3b

)
�δu7 δu8�




1 − y
b

y
b


 dy

hence
{

Q7

Q8

}
= N0b




8
18
7

18


 .

Similarly for element 13

δW(13)
ex =

b∫
y=0

N0

(
1 − y

3b

)
�δu8 δu9�




3
2

− y
2b

−1
2

+ y
2b


 dy = �δu8 δu9� N0b




4
9

2
9


 .

Hence the only nonzero entries in the 12 × 1 generalized force vector are the follow-
ing total values corresponding to the u7, u8, and u9 DOF:

{Q}T = N0b
18

� 0 . . . 0 8 15 4 0 . . . . 0�
= N0b� 0 . . . 0 0.444 0.833 0.222 0 . . . . 0�.

Note the total force sums to (3/2)N0 as it should. This was a lengthy process. An
alternative to the above procedure is to simply group the load per unit length
over the length around each node. That is, for example, for DOF u9, take the
distributed loading N0[1 − y/(3b)] over half the depth of the element, b, to get
Q9 = (1/2)(N0/3)(b) =(1/6)N0b. If this apportioning process is completed, the
approximate generalized force vector is

{Q}T = N0b� 0 . . . 0 0.458 0.875 0.167 0 . . . . 0�.
Again the total force by this second method adds to (3/2)N0, as it should, but there
is a 25% error in the smallest entry, a 5% error in the largest entry, and a 3% error
in the middle entry. These errors would be even less if the finite element grid were
not so crude as to have only two elements along the loaded edge. If the original
element grid involved a larger, and hence a more reasonable, number of rectangular
elements then simple minded grouping of the load around the nodes would be more
satisfactory, whereas the hand calculation of the “exact” generalized force vector
would be much more lengthy and thus unreasonable.

In summary, multidimensional finite element stiffness matrices are generally based
on the approximation of the deflection field as finite polynomial series. The coeffi-
cients of those series are then related to the nodal deflections, which are the element
DOF. These two steps can often be skipped by writing the expressions for the internal
element deflections directly in terms of the product of the element DOF and their
corresponding shape functions. This is possible because of the characteristic of all
shape functions that they have the value of 1 at the location of their correspond-
ing DOF and the value zero at the locations of all the other DOF. Once the shape
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functions have been determined, and interelement deflection continuity assured,
then it is a straightforward process of (i) differentiating the deflection expressions
to obtain the strains; (ii) using a mathematical description of the material behavior
to obtain the stresses from the strains; and then (iii) substituting the stresses and the
virtual strains into the virtual strain energy integral, which is the more complicated
part of the principle of virtual work. Evaluating that integral identifies the element
stiffness matrix in the form �δq�[kel]{q}. Then it is a matter of assembling the system
stiffness marix [K], and determing the values of the generalized force vector {Q}
from the system external virtual work expression. The final step of equating {Q} to
[K]{q} enforces equilibrium throughout the system.

It must be noted that the above-discussed rectangular plane stress element is lim-
ited to modeling rectangular slabs, or, as they are often called, rectangular mem-
branes. More general planform geometries with straight edges require triangular
elements. Curved edge geometries can be modeled using what are called isopara-
metric elements, or elements created with one or more curved boundaries.

ENDNOTE (2): THE CURVED BEAM FINITE ELEMENT

Again, the small deflection finite elements used in this textbook are limited to the
simplest types because they are solely for instructional purposes on the topic of
structural dynamics. For example, when the straight beam element experiences all
possible types of beam displacements, it has only twelve DOF. When the straight
beam area product of inertia is zero, then the four lateral deflection and bend-
ing slope DOF for bending in one principal plane do not interact with the four
DOF for bending in the other principal plane.22 Furthermore, those eight bend-
ing DOF are uncoupled with both the two DOF for beam twisting and the two
DOF for beam extension. As is done extensively in this textbook, this extensive
uncoupling, allows the hand work selection of only those smaller portions of the
total 12 × 12 beam stiffness matrix that correspond to the loading and subsequent
expected motions. The stiffness matrices of more sophisticated finite elements gen-
erally do not possess such extensive uncoupling, even when the element is one
dimensional.23 Perhaps the simplest element beyond the straight beam element with
respect to uncoupling is the beam element that is curved in a circular arc in only
one plane. The analyst has two choices when modeling a curved beam structure.
As one possibility, the analyst can represent a curved beam as a series of small,
rotated, straight beam segments much like a high-order, regular polygon approxi-
mates a circle. As a second possibility, the analyst can use a fewer number of curved
beam elements. The first point of this endnote is to show that the latter are much
more complicated than straight beam elements. The second point of this endnote is to

22 Being “uncoupled” is the mathematical term corresponding to a lack of interaction in the physical
world.

23 An element is “one dimensional” when, in the equation that describes its elastic behavior, there is but
a single independent spatial variable. A straight or curved beam is such a one-dimensional element
because the beam deflections are solely functions of the length along the beam axis, say, x or s. A
spring is a zero-dimensional element, whereas a plate is a two-dimensional element because the lateral
deflections of the plate midplane are functions of two coordinates, say, x and y.



P1: JZP
0521865743c03 CUFX001/Donaldson 0 521 86574 3 September 6, 2006 13:7

Endnote (2): The Curved Beam Finite Element 147

demonstrate another approach to determining stiffness matrices for one-dimensional
elements.

This endnote begins, but because of the complexity does not complete, the deriva-
tion of the element stiffness matrix for a beam curved in a single plane, where the
constant radius of curvature is 10 or more times larger than the depth of the beam.
This is a common circumstance, for example, in aircaft and submarines, and therefore
one of some importance. The importance of the above qualification about the large
radius of curvature (small curvature) relative to the depth of the beam is that this
qualification allows the use of straight beam strength of materials theory to describe
the curved beam segment.

The method that is used here for setting up the large radius curved beam stiffness
matrix is one where an older method of structural analysis is applied to the structural
element to first determine the element’s flexibility characteristics rather than directly
ascertain the element’s stiffness characteristics. Then the flexibility equations are
inverted to get the stiffness equations that form the element stiffness matrix. For
the sake of clarity and confidence, this procedure is now illustrated by being first
applied to a straight beam bending finite element. To that end, consider the usual
four-DOF beam bending finite element as is shown in Figure 3.1. Begin the analysis
by temporarily clamping the beam element at node 2. The nodal loads at node 1 are,
of course, the shear force and moment V1 and M1. The selected method of analysis
in this illustrative case is that of writing and integrating the familiar beam bending
differential equation

EIv′′(x) = V1x − M1 → EIv′(x) = 1/2V1x2 − M1x + C1

→ EIv(x) = 1/6V1x3 − 1/2 M1x2 + C1x + C2.

Applying the BCs that v(L) = v′(L) = 0 yields the result

C1 = −1/2V1L2 + M1L C2 = 1/3V1L3 − 1/2 M1L2.

Inserting these solutions into the expressions for the element lateral deflection and
bending slope yields

EIv′(x) = −1/2V1(L2 − x2) + M1(L− x)

EIv(x) = 1/6V1(2L3 − 3Lx + x3) − 1/2 M1(L2 − 2Lx + x2).

By setting x = 0, the following matrix form of the relationships between the gener-
alized displacements and generalized forces at node 1 are obtained immediately{

v1

ψ1

}
= L3

EI

[
1/3 −1/(2L)

−1/(2L) 1/L2

] {
V1

M1

}
.

Inverting this matrix yields{
V1

M1

}
= EI

L3

[
12 6L
6L 4L2

] {
v1

ψ1

}
,

which is the familiar first 2 × 2 submatrix of the beam bending stiffness matrix. Sim-
ilarly, by clamping the beam element at node 1, and considering the generalized
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deflections and loads at node 2, the second of the 2 × 2 submatrices on the stiffness
matrix diagonal is obtained as{

V2

M2

}
= EI

L3

[
12 −6L

−6L 4L2

] {
v2

ψ2

}
.

The off-diagonal 2 × 2 submatrices are obtained by writing the two equilibrium equa-
tions for the beam element. These equations are

V1 = −V2 M1 = −V2L− M2.

Casting these equations into matrix form and then substituting the above flexibility
submatrix yields{

V1

M1

}
= −

[
1 0
L 1

] {
V2

M2

}
= −

[
1 0
L 1

]
EI
L3

[
12 −6L

−6L 4L2

] {
v2

ψ2

}

or
{

V1

M1

}
= EI

L3

[ −12 6L
−6L 2L2

] {
v2

ψ2

}
.

Rewriting the equilibrium equations as

V2 = −V1 M2 = +V1L− M1

and then following the procedure immediately above provides the other off-diagonal
2 × 2 submatrix. Of course, combining the four submatrices completes the rederiva-
tion of the straight beam finite element stiffness matrix for bending in one plane.

Return now to the primary concern of this endnote. The geometry and generalized
coordinates of a curved beam finite element are shown in Figures 3.19(a) and 3.19(b).
Note again that this beam element, like most curved beams, is curved only in a single
plane, which in this case is designated the x, z plane. Parts (a) and (b) of Figure 3.19
each show, as discussed below, the six DOF that interact among themselves, but not
with the six DOF of the other figure. For simplicity, the beam product of inertia is
taken to be zero. The equilibrium equations that will be written shortly for this beam
segment will show the corresponding interrelationships among the various types of
element generalized forces. That is, these equilibrium equations will support the
idea that, for example, the six generalized coordinates of Figure 3.19(a) are coupled
among themselves. In terms of generalized forces and referring to Figure 3.19(a), a
nonzero value for a shearing force at the node 2 end, such as V3, will produce not
only a shearing force at the node 1 end, V1, but it will also produce both a bending
moment and a twisting moment at node 1, such as M1 and M3, respectively. This
interaction can be more easily visualized when (i) the total arc angle β is 90◦; (ii)
the beam is cantilevered at node 1, and (iii) loaded by the V3 shear force at node
2 in the direction of the DOF v2. Similarly, twisting the beam at end 2 bends the
beam at end 1, and bending the beam at end 2 twists the beam at end 1, and so on.
Therefore the twisting and out-of-plane bending motions are inseparable, that is,
coupled.

Figure 3.19(b) shows the DOF associated with beam extension and bending within
the plane of curvature. These two types of motion are also coupled. To understand
this coupling, let the angle β be 180◦, making the beam resemble and inverted U, and
again let the beam be cantilevered at node 1. Then, for example, if at node 2 there is
a nonzero but small value for w2, then the beam is bent in its plane as the mouth of
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(a)

R
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M3
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β

α

β

ψ1 (M1) ψ2, (M4)

v2 (V3)

v1 (V1)

φ2 (M6)

φ1 (M3)
2

1

β

V2

V4
N1

u2 (N2)u1 (N1)

w2(V4)

w1(V2)

My(α)

Vz(α)

N(α)

α

θ2(M5)

θ1 (M2)

N2

β

β
β

R

(b)

Figure 3.19. (a) Curved beam loaded and deflected out of its plane. (b) Plan view of curved
beam bending in its own plane. The generalized forces corresponding to the generalized coor-
dinates are shown in parentheses.

the U opens up.24 However, the beam is also stretched by the w2 motion, or in force
terms, by the V4 shear force that is associated with the w2 motion, because that force
is in the same direction as the beam axis at the top of the inverted U. Similarly, for

24 Bending can be viewed simply as a change in curvature.
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this same U-shaped beam, if there is a u2 axial motion, then the beam is bent. This is,
of course, also true for angles other than 180◦. Hence, it may be expected that both
the force and deflection equations for the six DOF concerning in-plane bending and
extension are coupled.

Rather than write a beam differential equations to determne flexibility submatri-
ces, the analysis method that is chosen to be used here with the curved beam finite
element is the virtual load method. The virtual load method is essentially the same as
the unit load method, the dummy load method, and the application of Castigliano’s
second theorem. Sometimes this method is also called the virtual work method or,
more accurately, the complementary virtual work method. It is explained in many
textbooks such as Ref. [3.2]. All these methods of analysis are based on the prin-
ciple of complementary virtual work. The principle of complementary virtual work
closely parallels the principle of virtual work, which has been discussed previously.
The difference between the two principles can be reduced to saying that, although
the principle of virtual work involves actual forces moving through virtual displace-
ments, the principle of complementary virtual work involves virtual forces moving
through actual displacements. In other words, in the principle of complementary vir-
tual work, the dependent quantities are the forces and moments, and the independent
quantities (which cause the forces and moments) are the deflections. Hence, with the
principle of complementary virtual work, it is the force-type quantities that have
variations, whereas the displacements do not have variations. Mathematically, com-
plementary virtual work is written as δW∗= qδQ. If the reader is somewhat familiar
with the virtual load method/unit load method/dummy load method/Castigliano’s
second theorem, it would be worthwhile for him or her to use this method to redo
the derivation of one of the two straight beam 2 × 2 diagonal submatrices that are
rederived above.

The case of out-of-plane bending is more complicated than the case of in-plane
bending because the latter can be simplified by the approximation that the axial
stiffness is much greater than the bending stiffness, or, in terms of flexibility, the
approximation that the axial flexibility is a much smaller term than the bending flexi-
bility and thus can be ignored. The case of out-of-plane bending is considered first. In
the case of out-of-plane bending, as described in Figure 3.19(a), the complementary
virtual work is the same as it is with a straight beam but with the slight modification
that the distance along the beam axis, x, must be replaced with Rα so that dx becomes
Rdα. Thus

δW ∗
ex = R

L∫
0

Mz(α)δMz(α)
EI

dα + R

L∫
0

Mt (α)δMt (α)
GJ

dα,

where the internal complementary strain energy, on the above right-hand side,
includes contributions from beam twisting as well as beam bending, which as
explained above, are inseparable for a curved beam loaded out of its plane. The
effects of beam shearing could also be included by simply adding a third integral, but
to focus on the more important aspects of the problem, shearing effects are ignored.

Since the beam cross-section area product of inertia has been specified to be zero,
the overall stiffness matrix for bending out of the plane of curvature is a 6 × 6
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submatrix of the total beam 12 × 12 beam stiffness matrix. Minicking the proce-
dure followed above for the straight beam, the values of this 6 × 6 submatrix are
determined by obtaining four 3 × 3 submatrices, starting with the 3 × 3 submatrices
that lie on the main diagonal of the 6 × 6 submatrix. To obtain the first of the diagonal
3 × 3 submatices, clamp the beam element at node 2, and require the left end of the
curved beam element to displace through arbitrary but positive values of the three
node 1 generalized coordinates: the DOF v1, ψ1, and φ1. In this case of an arbitrary
deflection at node 1 while node 2 is clamped, there are six unknown nodal forces.
There are the three out-of-plane nodal loads, V1, M1, and M3, that accomplish the
arbitrary displacements at node 1 and the three corresponding reactions at node 2.
Again, Figure 3.19(a) shows the loads at node 1 and the corresponding reactions at
node 2. Since there are six unknown force-type quantities and but three equilibrium
equations, there are three redundant loads. It is immaterial which three of the six
loads are selected as the redundant reactions. The choice made here is that the three
reactions at end 1 are selected as the redundant reactions. Then the equilibrium
equations that determine the values of the reactions at end 2, once the values of the
reactions at end 1 are discovered, are

V3 = −V1 M4 = V1 R sin β + M1 cos β − M3 sin β

M6 = V1 R(1 − cos β) + M1 sin β + M3 cos β.

The actual load system bending and twisting moment expressions can also be
obtained from Figure 3.19(a). The results, which closely mimic those above, are

Mz(α) = V1 R sin α + M1 cos α − M3 sin α

Mt (α) = V1 R(1 − cos α) + M1 sin α + M3 cos α.

To solve for the three redundant force quantities, three independent virtual load
systems are required. These three virtual load systems, all of which are required to be
in equilibrium, are illustrated in Figure 3.20(a). Note that there is no complementary
virtual work done at node 2 because there are no actual deflections there now that
that end is temporarily fixed. Therefore, when the above virtual internal bending and
twisting moments are inserted into the complementary virtual work equations, the
result is the following three equations to be initially solved for the three DOF

v1δV1 = R2

EIzz

β∫
α=0

[V1 Rsin α + M1 cos α − M3 sin α][δV1 sin α]dα

+ R2

GJ

β∫
α=0

[V1 R(1 − cos α) + M1 sin α + M3 cos α][δV1(1 − cos α)]dα

ψ1δM1 = R
EIzz

β∫
α=0

[V1 Rsin α + M1 cos α − M3 sin α][+δM1 cos α]dα

+ R
GJ

β∫
α=0

[V1 R(1 − cos α) + M1 sin α + M3 cos α][δM1 sin α]dα
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δW∗
ex = υ1 δV1

δW∗
ex = u1 δN1

δW∗
ex = w1 δV2

δW∗
ex = θ1 δM2

δW∗ = ψ1 δM1

δW∗ = φ1 δM3

δV1#1

δM1

#2

δM3

#3

δN1
#1

δV2
#2

δM2#3

(b)

α

α

α

(a)

Figure 3.20. (a) The three virtual load systems needed to determine the actual displacements
at node 1 of the curved beam element for out-of-plane bending and twisting. (b) The three
virtual load systems needed to determine the actual displacements at node 1 for in-plane
bending and extension.

and

φ1δM3 = R
EIzz

β∫
α=0

[V1 R sin α + M1 cos α − M3 sin α][−δM3 sin α]dα

+ R
GJ

β∫
α=0

[V1 R(1 − cos α) + M1 sin α + M3 cos α][δM3 cos α]dα.

Again, in each of the above equations the arbitrary values of the virtual loads cancel.
Now it is a matter of evaluating the above six integrals, which break down to five
different integrals over α. These five different integrals and their evaluations are
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β∫
0

sin αdα = 1 − cos β

β∫
0

cos αdα = sin β

β∫
0

sin α cos αdα = 1
2

sin2β

β∫
0

sin2αdα = 1
2

(
β − 1

2
sin 2β

) β∫
0

cos2αdα = 1
2

(
β + 1

2
sin 2β

)
.

Therefore the equations for the first three generalized coordinates in terms of the
nodal loads are

v1 = R2

2EIzz

[
V1 R

(
β − 1

2
sin 2β

)
+ M1sin2β − M3

(
β − 1

2
sin2β

)]

+ R2

GJ

[
V1 R

(
3β − 4 sin β + 1

2
sin 2β

)
+ 2M1

(
1 − cos β − 1

2
sin2β

)

+ M3

(
2 sin β − β − 1

2
sin 2β

)]

ψ1 = R
2EIzz

[
−V1 Rsin2β + M1

(
β + 1

2
sin 2β

)
− M3sin2β

]

+ R
2GJ

[
V1 R

(
2 − 2 cos β − 2sin2β

)
+ M1

(
β − 1

2
sin 2β

)
+ M3sin2β

]

φ1 = R
2EIzz

[
−V1 R

(
−β + 1

2
sin 2β

)
− M1sin2β + M3

(
β − 1

2
sin 2β

)]

+ R
2GJ

[
−V1 R

(
2 sin β − β − 1

2
sin 2β

)
+ M1sin2β + M3

(
β + 1

2
sin 2β

)]
.

The next step is to cast these three equations into the matrix form




v1

ψ1

φ1


 =




R3

2EIzz

(
β − 1

2
sin 2β

)
+ R3

2GJ

(
3β − 4 sin β + 1

2
sin 2β

)
. .

. . .

. . .







V1

M1

M3


 ,

(3.3)

where dots have been used to indicate the other eight entries in the submatrix to save
space. The coefficient matrix in the above equation is, of course a flexibility matrix.
Obtaining the inverse of this flexibility submatirx completes the task of determining
the first of the four 3 × 3 stiffness submatrices for out-of-plane bending. Obtaining the
algebraic form of the inverse matix is easily done using a digital computer program
such as Mathematica. Unfortunately the printout of the solution is four pages in
length and is not reproduced here. This fact does not render this approach impractical
because when this stiffness matrix component is required for a specific calculation, it
is necessary only to first write the entries of the flexibility matrix as numerical values
and then, if necessary, invert that numerically valued flexibility matrix.

The second of the main diagonal 3 × 3 stiffness matrices is obtained from the
corresponding equations for the three DOF v2, ψ2, and φ2. These equations can be
obtained by reversing the above procedure, that is, by clamping node 1 and requiring
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three arbtirary deflections at node 2. Since there is nothing new about that process, the
details and results are omitted. To obtain, say, the upper-right off-diagonal stiffness
submatrix from its corresponding flexibility matrix, the same equilibrium equations
stated above can be used:

V3 = −V1 M4 = V1 R sin β + M1 cos β − M3 sin β

M6 = V1 R(1 − cos β) + M1 sin β + M3 cos β,

which in matrix form are




V3

M4

M6


 =


 −1 0 0

Rsin β cos β − sin β

R(1 − cos β) sin β cos β







V1

M1

M3


 .

Now it is a matter of substituting the inverse of Eq. (3.3) for the right-hand vector.
Once this off-diagonal 3 × 3 stiffness submatrix is thus obtained, the other such three
by three off-diagonal stiffness matrix is just the transpose of this one because of the
symmetry of the overall stiffness matrix.

Now for the deflections in the plane of curvature. The process for determining
the flexibility matrix, and then its inverse, for deflections within the plane of the
curved beam element, is, of course, much the same as that above. The values of
the three DOF on the left-hand side of the beam element are calculated in terms
of the six generalized element forces shown in Figure 3.19(b). This is accomplished
by having three real deflections at the left-hand side corresponding to the three
DOF at element node 1, while the curved beam element is cantilevered at node 2.
In this case the equality between the complementary external virtual work and the
complementary strain energy is

δW∗
ex =

L∫
0

My δMy

EI
dx +

L∫
0

N δN
EA

dx,

where, again, dx is replaced by Rdα, and Lis equal to Rβ. Again, shearing deflections
are ignored. From Figure 3.19(b), the equilibrium equations for determining the
element generalized forces at node 2 in terms of those at node 1, are

N2 = −N1 cos β + V2 sin β V4 = −N1 sin β − V2 cos β

M5 = N1 R(1 − cos β) + V2 Rsin β − M2.

The signs on these equations can be checked by simply choosing convenient, fixed
values of β. Mimicking the above equations, the moment and axial force at a typical
position along the curved beam, that is, at α, are

My(α) = N1 R(1 − cos α) + V2 R sin α − M2 N(α) = −N1 cos α + V2 sin α.
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The three virtual load systems required for this three redundant load system are
shown in Figure 3.20(b). The values of the virtual axial forces and the virtual bending
moments for each of these virtual load systems (VLS) are

VLS1: δN(α) = −δN1 cos α δM(α) = R δN1(1 − cos α)

VLS2: δN(α) = δV2 sin α δM(α) = R δV2 sin α

VLS3: δN(α) = 0 δM(α) = −δM2.

The next step is to substitute the above actual loads and, in turn, the above virtual
loads into the equality between the complementary external virtual work and the
complementary strain energy. The result for the first virtual load system is

u1δN1 = R
EA

β∫
0

[−N1 cos α + V2 sin α][−δN1 cos α]dα

+ R
EI

β∫
0

[N1 R(1 − cos α) + V2 R sin α − M2][δN1 R(1 − cos α)]dα.

For the second virtual load system

w1δV2 = R
EA

β∫
0

[−N1 cos α + V2 sin α][δV2 sin α]dα

+ R
EI

β∫
0

[N1 R(1 − cos α) + V2 R sin α − M2][δV2 R sin α]dα.

For the third virtual load system

θ1δM2 = R
EA

β∫
0

[−N1 cos α + V2 sin α][0]dα

+ R
EI

β∫
0

[N1 R(1 − cos α) + V2 Rsin α − M2][−δM2]dα.

These three equations simplify as

u1 = N1

[
(β + 1/2 sin 2β)

2EA
+ R2

2EIyy
(β − 1/2 sin 2β)

]
− M2

[
R

EIyy
sin β

]

− V2

[
sin2β

2EA
+ R2

2EIyy
sin2β

]

w1 = −N1

[
sin2β

2EA
+ R2

EIyy
(sin2β − 2 + 2 cos β)

]
− M2

[
R

EIyy
(1 − cos β)

]
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+ V2

[
β − 1/2 sin 2β

2EA
+ R2

EIyy
(β − 1/2 sin 2β)

]

θ1 = −N1

[
R2

EIyy
(β − sin β)

]
+ M2

[
R

EIyy
β

]
− V2

[
R2

EIyy
(1 − cos β)

]
.

As before, these three equations can be cast in matrix form and the flexibility coef-
ficient matrix can be inverted to obtain the corresponding stiffness submatrix. The
inversion is possible because the beam is clamped at node 2, and thus no singularity
inducing rigid body motion is possible.

As in the case of out-of-plane bending, looking through the back of the paper that
bears the diagram for the generalized forces and generalized coordinates, so that
node 2 appears to the left and node 1 appears on the right, the above equations can
be adjusted so as to obtain the equations for u2, w2, and θ2 in terms of N2, V2, and
M2. Of course, there are necessary sign changes on the slope and moment, and the
axial displacement and axial force. The result is

u2 = N2

[
(β + 1/2 sin 2β)

2EA
+ R2

2EIyy
(β − 1/2 sin 2β)

]
− M5

[
R

EIyy
sin β

]

+ V4

[
sin2β

2EA
+ R2

2EIyy
sin2β

]

w2 = N2

[
sin2β

2EA
+ R2

EIyy
(sin2β − 2 + 2 cos β)

]
+ M5

[
R

EIyy
(1 − cos β)

]

+ V4

[
β − 1/2 sin 2β

2EA
+ R2

EIyy
(β − 1/2 sin 2β)

]

θ2 = −N2

[
R2

EIyy
(β − sin β)

]
+ M5

[
R

EIyy
β

]
+ V4

[
R2

EIyy
(1 − cos β)

]
.

Now, as above, it is necessary to cast these three equations into matrix form and invert
the flexibility coefficient matrix for the element generalized forces N2, V4, and M5 in
terms of the above three DOF. Then, using the previously determined equilibrium
equations that provide the element generalized forces (N2, V4, and M5) in terms of
(N1, V2, and M3), the quantities (N1, V2, and M3) can also be written in terms of the
above three DOF.

In the case of the three equations for the previous three DOF, v1, ψ1, and φ1,
there were no simplifications possible because GJ and EI are of the same order of
magnitude. It is often the case that R2 EA� EI. When that is the case, all of the
above terms with EA in the denominator can be discarded as too small to be of
concern. That greatly simplifies the inversion of these equations and makes the in-
plane curved beam more suitable for use in those cases where out of plane motions
are effectively constrained.
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4.1 Introduction

Structural dynamic analyses usually begin with the preparation of data input to a
commercially available finite element method (FEM) digital computer program with
the capability of processing time-varying loads. The geometric, material, mass, and
applied load data required are the same for all such programs and, for that matter, all
such hand calculations. Generally unseen by the analyst, the finite element program
takes the above input data and creates the computer’s equivalent of the structure’s
equations of motion. The purpose of this and the next chapter is to teach what such
FEM programs routinely do in the way of writing equations of motion for actual
elastic structures by developing in the reader the ability to write such equations of
motion by hand. Using FEM models of simple structures, this chapter concentrates
on the two indispensable aspects of all structural system equations of motion: (i) the
inertia forces in the form of a mass or inertia matrix multiplied by the second time
derivatives of the generalized coordinates (called the generalized accelerations),
−[m]{q̈}; and (ii) the linearly elastic restoring forces in the form of a stiffness or
elastic matrix multiplied by the generalized coordinates, −[k]{q}. The negative sign
is part of the elastic force description because, as will be seen, these are the forces
acting on the system masses, which are equal and opposite to the forces acting on the
system elastic elements. The negative sign on the inertia forces arises from rewriting
Newton’s second law as F − ma = 0 and treating the quantity −ma, the inertia force,
as just another force to be summed with the sum of the externally applied forces, F.

Even though a vibration can occur in the absence of externally applied loads rep-
resented mathematically by the time-varying generalized force vector, {Q(t)}, the
task of describing this vector is also addressed in this chapter by means of further
practice in writing virtual work statements. A detailed discussion of the final com-
ponent of the general linear form of the equations of motion, the energy dissipative
forces, – [c]{q̇}, is postponed to the next chapter. Later chapters deal with the pro-
cesses used to solve the equations of motion.

By way of review, recall from Chapter 2 that stable pendulums are defined as mech-
anisms where gravity, or another acceleration field, always contributes a restoring
force that causes the pendulum to swing back toward its static equilibrium position

157
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regardless of the direction of the deflection. Structures differ from pendulums in
that, although gravity almost always loads a structure, there is at least one deflec-
tion direction where the gravity field does not supply forces that tend to return the
structure to its static equilibrium position. The primary restoring forces for struc-
tures are their own internal elastic forces that result from the deformations of the
structure. This conclusion can be reached by considering an initially straight, long,
thin ruler. Let one end of the ruler (as a cantilevered beam) be held firmly at the
edge of a table and the other, unsupported, end be deflected downward (an initial
condition) and released. The ruler quickly moves back up to its originally straight
configuration and then beyond that straight configuration to an upward deflection
that closely resembles the initial downward deflection. The ruler then moves down-
ward and then upward, and so on. In other words the ruler vibrates after release from
its initial conditions. The forces that continually move the ruler up or down relative
to its original, straight configuration cannot be external contact forces, because there
are none. Nor can the restoring forces be because of the gravity field because the
gravity field acts only downward. The only other possibility is the internal forces that
result from the deformations of the ruler. Unless the deformations are large enough
that the material is stressed beyond its yield point, those internal forces are entirely
elastic forces and moments that can be closely approximated by familiar formulas
from strength of materials.

Elastic forces were first encountered in this textbook in a particularly simple form
in Chapter 2. Those were the forces that resulted from the inclusion of linearly elas-
tic springs in some of the pendulum systems of that chapter. Although coiled spring
elements are seldom found in actual structures, they are sometimes used in structural
analyses as convenient mathematical representations of other, generally complicated,
elastic bodies that the analyst does not want to model in detail. Therefore, for this
reason and because of their simplicity, spring elements are again used in the hand
calculations of this chapter. However, to give the example problems a greater resem-
blance to real structures, rod and beam structural elements are emphasized. Since
plate elements, plain stress elements, and so on, are commonly included in FEM
analysis in exactly the same way as spring, rod, and beam elements are included,
there is no need to include these types of linear finite elements in the example prob-
lems that follow. These more complicated elements are mentioned only to remind
the reader that they too could be included in the example problems in exactly the
same way that the beam and spring elements are included, but at the expense of
more computational bookkeeping.

4.2 Structural Dynamic Modeling

Every engineering structure has both inherent mass and elastic characteristics. The
elastic modeling of a structure for a dynamic analysis is not different in style from
that for a static analysis. Indeed, present computer speeds and storage capacities
have grown so fast and large that it is now sometimes practical to use a very highly
detailed static analysis model of a structure in a dynamic analysis. However, because
the solution process for the dynamic problem is more complicated than that for
a static analysis, the analyst is often prompted to select an elastic model for the
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dynamic analysis that is significantly simpler (fewer DOF) than that for the static
analysis.

The primary difference between a static and dynamic model of a structure is the
mass modeling. In a static analysis, the mass, by means of gravitational acceleration,
provides only a set of, usually minor, externally applied static forces. In a dynamic
analysis the inertia forces associated with the mass can be critical loads. To understand
the necessity of mass modeling, consider the uniform, simply supported beam of
length 8L shown in Figure 4.1(a). In addition to the weight loading, let that beam be
subjected to a uniform, external loading per unit length symbolized as f0. The force
per unit length because of the weight of the beam is ρg A, where ρ is the beam’s mass
density, g is the acceleration of gravity, and A is the beam’s cross-sectional area. The
usual sketch for a static analysis of this beam looks something like that shown in
Figure 4.1(b). Then, for example, the static deflection at midspan can be calculated
any number of ways with the result

w(4L) = −160
3

( f0 + ρg A)L4

EI
.

Now let the f0 portion of the external lateral loading vary with time in a rapid manner
and now be symbolized as f (t). Consider whether the solution for the midspan
deflection is now

w(4L, t) ?= − 160
3

[ f (t) + ρg A]L4

EI
.

This answer is incorrect because it does not account for the additional loading result-
ing from the accelerations experienced by the mass of the beam all along the beam
length as the beam moves. In other words, in a dynamic analysis, the motion of the
mass induces a set of inertia loads that depend on the beam deflections (via acceler-
ations) as well as the magnitude of the masses. Since these inertia loads in turn cause
or modify the beam deflections, there exists an interaction of masses and deflec-
tions. Algebraic equations, such as the above, can never reflect such a feedback loop.
Only differential equations, where the various load components can be written as
proportional to deflections and the time derivatives of deflections, can describe the
deflection–load feedback mechanism.

For the purposes of creating a mathematical model of the simple beam structure
shown in Figure 4.1(a), one that is suitable for a dynamic analysis, the mass character-
istics of the structure can be modeled in either of two distinct ways. The first form of
mass description is simply to describe the mass of any particular structural element as
being distributed as it actually is distributed throughout the structural element. This
distributed mass approach is, of course, in good agreement with the reality of any
individual structural element. However, when this approach is coupled with the FEM
to form the “consistent mass” approach, as discussed in Endnote (4) of this chapter,
the result is more computational expense without any increase in accuracy. When
the distributed mass approach is coupled with the differential equation method of
analysis, as discussed in Chapter 8, then closed-form, analytical solutions are gen-
erally feasible only when a beam structure consists only of one or two structural
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Figure 4.1. Beam mass modeling schemes. (a) Typical uniform beam of total length 8L. (b) Sim-
ply supported beam subjected to gravity and uniformly applied load. (c) A possible mass
modeling scheme. (d) An alternative mass modeling scheme.

elements, the mass density is constant, and the geometry is uniform.1 Even for such
simple structures as single plates, such restrictive conditions are necessary for open-
form analytical solutions. Thus the use of distributed mass modeling is of only sec-
ondary importance.

The generally far more useful approach to the mass modeling of engineering struc-
tures is discrete mass modeling. Discrete mass modeling for vibrating structures is the

1 There are some exceptions. See Chapter 8 for more on the benefits and difficulties of distributed mass
modeling.
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process by which the distributed mass of the real structure is collected by the analyst
in the form of rigid masses at discrete, that is, isolated, points within the geometry of
the structure. Mathematically, this mass discretization approach is equivalent to the
reduction of each partial differential equation2 of the distributed mass model into
a series of ordinary differential equations. As an example of this type of mass mod-
eling, consider again the simply supported, uniform beam of length 8L, total mass
8m, that is shown in Figure 4.1(a). Let the y and z axes be the principal3 axes of the
cross section, and let the beam-bending stiffness coefficient for the x, z plane be EI.
Let this beam undergo only an up and down bending motion within the plane of the
paper. To that end, let the loci of the beam cross section’s shear centers coincide with
the loci of centroids so that the beam is not twisting as it undergoes small bending
deflections. The first step in the discrete mass modeling procedure is to concentrate
all the uniformly distributed beam mass along the loci of the beam cross-section
centroids to temporarily form a line of mass. This step is consistent with the strength
of materials theory of beam bending in which the three-dimensional beam stress
resultants, such as internal forces and moments, are concentrated along the axis that
is the loci of the cross-section centroids. The second step is to gather up the mass
distributed along the loci of centroids, at a relatively small number of selected cen-
troidal points along the beam span, and thus form a necklace of discrete mass beads.
The collection of the individual discrete masses of each structural element forms the
model of the mass distribution for the entire structure.

In this beam example, a suitable mass modeling could be either of the two schemes
shown in Figures 4.1(c) and (d). In both of these approximations, the beam is divided
into eight equal lengths. In Figure 4.1(c), the first discretization scheme, the uniform
mass in each segment of length L is totaled, and half of the total is placed at the
end points of each segment. Thus at each interior end point, two segment masses
of magnitude m/2 come together from adjacent beam segments to form one mass
of magnitude m as shown in the figure. Now consider the half of the segment mass
that is sent to a point where there is a rigid support. Since this mass of magnitude
m/2 cannot move vertically as the beam bends (the only time-varying deflection
under consideration), this end mass cannot develop any kinetic energy. Since the
only energy a rigid mass can possibly develop is kinetic energy, this m/2 mass and
the other such mass at the other support make no contribution to the energy terms
of the Lagrange equations of motion for the beam. Thus all such nonmoving masses
can be omitted from the beam dynamic model.4

The kinetic energy associated with the beam mass moments of inertia about a
centroidal y axis, and the corresponding beam bending slope angular velocities, is also
omitted from the mass model because this form of the beam kinetic energy proves to
be quite small relative to the kinetic energy associated with the up-and-down motion

2 A partial differential equation is required to describe the beam motion because there are two inde-
pendent variables, distance, x, and time, t .

3 The beam cross-sectional area moments of inertia about the principal axes are the maximum and
minimum area moments of inertia, and the beam cross-sectional product of inertia is zero. Thus a
beam deflection in the plane of the paper can occur without a concurrent deflection out of the plane
of the paper.

4 This loss of mass, usually quite small, must be accounted for when summing the total mass for a
structural model as a check on the completeness of the mass modeling of the entire structure.
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of the discrete beam masses. However, although the mass moments of inertia of
the beam structural elements are not important, there is always the possibility that
nonstructural masses attached to the elastic structure contribute substantial mass
moments of inertia to the rigid masses of the mass model. These additional mass
terms can be modeled as either integral to the discrete mass or, as is usually the
case for computer-based models, as additional masses located at their own center
of mass and connected to the structural mass by means of a short, and therefore
rigid, connection. Both of these techniques are employed in example problems of
this chapter.

In the second mass scheme, shown in Figure 4.1(d), the structural mass of each
of the eight beam segments is collected at the midpoint of its segment. The elastic
elements that connect the discrete, rigid masses in both these mass models are the
same type of beam finite elements, but in this second case, there are nine beam ele-
ments (two with span lengths of L/2) connecting the eight masses, whereas in the first
scheme there are only eight beam elements connecting seven masses. Endnote (1)
presents results of calculations for the natural frequencies of this beam that is math-
ematically modeled using these two competing mass discretization schemes. Note
again that: (i) the natural frequencies are numbered according to their increasing
magnitude, (ii) the number of calculated natural frequencies cannot be greater than
the number of DOF, and (iii) the higher numbered of the calculated natural frequen-
cies for a given mathematical model are generally of poorer accuracy. The two tables
of Endnote (1) show that the computer-calculated natural frequencies for the case
where the beam segment mass is lumped at the segment ends and those frequen-
cies for the case where the mass is lumped at the segment center are the same for
equal numbers of beam segments. Moreover, the lower numbered half of either set
of calculated frequencies agree quite well with what are called the “exact” natural
frequency solutions that are calculated in Chapter 8. These exact solution results
are strength of materials solutions obtained from solving a differential equation that
models the beam as a mass and stiffness continuum. The Chapter 8 simply supported
beam solution for the nth natural frequency and the nth deflection pattern, wn(x), is

ωn = n2π2

64

√
EI

mL3
and wn(x) = sin

nπx
L

.

A brief explanation of why these two models, with their different total number of
masses, give the same natural frequency results is offered in Endnote (2). When the
mass properties are discretized from an infinite number of points to a small number
of points, the discrete model solution natural frequency results are, of course, only
approximate. There is one thing about the two beam models of Figures 4.1(c) and
(d) that is misleading. In these two models there are approximately equal numbers
of elastic elements and rigid masses (mass elements). In almost all finite element
models of engineering structures, the number of mass elements is much less than
the number of elastic elements. That is, the description of the mass properties of a
structural system does not have to be nearly as refined as the description of the elastic
properties to obtain the same accuracy of solution. Since the number of equations
to be solved depends on the number of masses, it is desirable to use as few masses as
reasonably possible.
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Mass static
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Figure 4.2. Simplest possible structural dynamic model: one spring element and one mass
element.

In summary, the modeling of structures for the purposes of dynamic analyses
almost always begins with (i) an elastic model that, with today’s computer capacity,
is sometimes as refined as it would be for a general static loading; and (ii) a far
less refined mass model consisting of discrete masses that, when summed, roughly
equal the mass of the structure.5 The discrete masses are commonly and accurately,
if inelegantly, referred to as “lumped” masses.

4.3 Isolating Dynamic from Static Loads

The previous section explained that structural dynamic models generally consist of
discrete, rigid masses and a variety of elastic elements ranging from the simplest ele-
ments, springs and beams, to the most complicated. Structural dynamic models may
also contain rigid elements other than lumped masses when one part of the structure
is very much stiffer than other parts. The use of rigid elements helps avoid numer-
ical ill-conditioning of the stiffness matrix. To illustrate the next important point,
the first lumped mass structure to be analyzed has the simplest possible dynamic
model: one lumped mass (with no flexibility) and one elastic spring (with no mass).
See Figure 4.2. Since the spring only stretches or contracts, this drawing is meant to
imply that the only motion possible for the single mass is an up-and-down motion.
Since there is only one motion for the mass, this is a one-DOF system. However,
the question arises as to which is the better choice for the zero value position of
the single generalized coordinate that locates the vertical deflection of the mass as

5 Again, one check on a computer generated mass model is to sum the mass properties and compare
them with design or experimental results.
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it vibrates up and down. Is it better to measure the position of the mass from the
spatially fixed static equilibrium position (SEP), using the DOF u(t) or is it better to
measure the time-varying position of the mass from the spatially fixed unstretched
spring position (USP), using the DOF v(t)? Note that, from the definition of spring
stiffness, k, the vertical distance between the SEP and the USP is the static deflection
of the mass ust = mg/k and v(t) = u(t) + ust or u(t) = v(t) − ust . First in terms of
the generalized coordinate v(t), and then in terms of the DOF u(t), the energies of
this system are, where the gravitational force is treated by means of the virtual work
equation rather than the potential energy,

T = 1/2mv̇2 V = 0 U = 1/2kv 2 δW = mgδv ⇒ Q = mg
T = 1/2mu̇2 V = 0 U = 1/2k(u + ust )2 Q = mg.

Substituting into the Lagrange equation, the respective equations of motion are

mv̈ + kv(t) = mg

and mü + k[u(t) + ust ] = mg or mü + ku(t) = 0.

The reader is invited to rederive these equations using the potential energy expres-
sion for the gravitational force rather than the virtual work expression. Clearly the
equation in terms of the DOF measured from the SEP produces a slightly simpler
equation by virtue of the fact that the static, gravitational force is offset in the equa-
tion of motion by the equal and opposite force in the spring that results from the
static deflection of the spring.

The slight advantage obtained in this simplest of all structural dynamic models by
using the static equilibrium position as the datum for the DOF u(t) can be a sub-
stantial advantage in more complicated cases. To demonstrate this advantage that
the general linear matrix equation of motion can be written without the least atten-
tion to any static (i.e., time-invariant) loads, consider the general, small-deflection
matrix differential equation that includes both static loads Qst and dynamic loads
Q(t) and their corresponding deflections. Such a division of loads into these two
categories is permissible because the basic viewpoint is that load systems are inde-
pendent of each other. Furthermore, these two categories are mutually exclusive
and exhaustive. As is soon to be seen, this general lumped mass equation for small
deflections is

[m]{q̈} + [c]{q̇} + [k]{q} = {Qst } + {Q(t)},

where, as discussed in detail in the next chapter, the square matrix [c] and the gen-
eralized velocity vector are mostly used to describe energy dissipative forces. This
matrix equation is a linear equation. Therefore, the total deflection vector {q(t)} is the
superposition of the static and dynamic deflections, that is, {q(t)} = {qst } + {qdy(t)}.
The static deflections are specifically the solution to the static load equation [k]{qst } =
{Qst }, which is the static equilibrium equation. This total deflection equation {q(t)} =
{qst } + {qdy(t)}means that the static deflections, {qst }, are as always measured from the
unloaded position of the structure (the USP), and the dynamic deflections, {qdy(t)},
are measured from the static deflection position (the SEP). Substitution into the



P1: ICD
0521865743c04 CUFX001/Donaldson 0 521 86574 3 September 9, 2006 23:32

4.4 Finite Element Equations of Motion for Structures 165

above matrix equation of motion of the total deflection in terms of its static and
dynamic components leads to

[m]{q̈dy} + [c]{q̇dy} + [k]{qdy} + [k]{qst } = {Qdy} + {Qst }
or [m]{q̈dy} + [c]{q̇dy} + [k]{qdy} = {Qdy},

where the second of these two equations results from subtracting the static equilib-
rium equation from the first equation. Thus the final form of the matrix equation of
motion involves only the dynamic loads and their corresponding deflections. There-
fore, all the static loads, regardless of their origins, have no place in the final form of
the linear equation of motion. Thus, for example, the dynamic analysis of an aircraft
need not, and thus would not, include the steady-state lift, thrust, or drag forces and
moments or the gravitational forces. The dynamic analysis of a large building would
not include steady-state winds or fixed gravitational loads. In summary, the effect of
this important superposition conclusion is that, for all subsequent linear analyses:

(i) All generalized coordinates for the motion of the structure are to be mea-
sured from the deflected position of the structure that is produced by all the
static loads acting on the structural system. That position is called the static
equilibrium position (SEP).

(ii) Since the internal forces that result from the internal stresses produced by the
static deflections, and the externally applied static loads cancel each other,
that is, −[k]{qst } + {Qst } = {0}, neither of these types of forces is to be part
of the equations of motion.

Remember that the simplicity obtained from totally ignoring all static loads and
their effects depends on the total deflections remaining sufficiently small that no
nonlinear effects become significant. Once the deflections become finite, that is,
become large enough to have a significant effect on either the magnitudes or the
lines of action of the internal and external loads relative to the geometry of the
structure, the superposition of the static and dynamic deflections is no longer valid,
and the generalized coordinates need to originate at the zero strain state.

There is one point of possible confusion that needs to be addressed. Following the
above conclusion, gravity forces are now to be completely ignored. Why were they
not also ignored in the analysis of pendulums where they are obviously essential to
the analysis? The answer to this question is that in the case of all pendulums, the
gravity field does not produce static generalized forces. Consider any of the pendu-
lum problems of Chapter 2. In each case the static gravity force, mg, acting on each
bob or center of mass has a time-varying moment arm. Hence, the static force and the
time-varying moment arm produce a time-varying moment that is the generalized
force for the system. However, for structures undergoing small displacements, the
moment arms of the gravity forces are either constant or too small to be significant.

4.4 Finite Element Equations of Motion for Structures

Again, almost all structural dynamics analyses today are carried out using a large or
a small commercial, finite element, digital computer program. When such programs
and a suitable computer are available, it is quite unusual for it to be possible to do
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a cheaper, quicker, or more accurate structural analysis using some method other
than the FEM. Before getting into the details of the use of finite element method
in a dynamic analysis, by means of example problems, an overview of the matrix
structural dynamics analysis is presented.

The basis for the structural equations of motion is the Lagrange equations. Thus it is
necessary to discuss the matrix forms of the kinetic energy, potential energy, and strain
energy. As is soon illustrated, a nice feature of elastic structures undergoing small
vibrations is that the kinetic energy always depends exclusively on the generalized
velocities of the discrete masses; that is, on the time derivatives of the DOF, and
not on the DOF themselves or time, t, explicitly. Thus, for elastic structures, all the
derivatives of the kinetic energy with respect to the generalized coordinates, the
second terms of the Lagrange equations, are always zero. Hence, as will be seen,
for the small vibrations of structures, the kinetic energy of the entire structure can
always be written as

T(q̇1, q̇2, . . . , q̇n) = 1/2�q̇�[M]{q̇}.

This expression is, of course, just another manifestation of the familiar kinetic energy
form of one-half the mass multiplied by the velocity squared. When developed from
a kinetic energy expression as indicated above, the system mass matrix [M] always
is a symmetric matrix. As mentioned in Chapter 1, the mass matrix is also a positive
definite matrix because the system kinetic energy (1/2Σmi ṙ i · ṙ i ) is never a nega-
tive quantity. See Exercise 4.17 for a proof of these assertions regarding the mass
matrix. As for the potential energy, the separation of dynamic from static (general-
ized) forces, as discussed previously, means that the gravitational potential energy of
structures, V, can always be set to zero.

The strain energy, U, from the finite element method theory for any single, linearly
elastic structural element, such as a small deflection beam element, has form parallel
to that of the kinetic energy, which is

U(q1, q2, . . . , qn) = 1/2�q�(e)[ke]{q}(e),

where the element stiffness matrix [ke] is symmetric. As was demonstrated in the pre-
vious chapter and will be again demonstrated shortly, a stiffness matrix for a structure
composed of a collection of connected linearly elastic structural elements, symbolized
as [K], is developed from such symmetric element stiffness matrices [ke] by a sum-
mation of all such element strain energies to obtain the system strain energy. That
summation guarantees that all such resulting system (or global) stiffness matrices
[K] are also symmetric. The symmetry characteristic for both the element and global
stiffness matrices follows from Maxwell’s reciprocity theorem.6 The positive defi-
niteness of the global stiffness matrix [K] is a direct result of the elastic strain energy,
as a form of stored work, always being a positive quantity for any nonzero strain
state. However, neither individual element stiffness matrices nor the summation of

6 The basis of Maxwell’s theorem is that the work done on an elastic body by a first set of loads moving
through deflections caused by a second, independent load set is equal to the work done by the second
load set moving through the deflections caused by the first load set. This leads to the conclusion that
flexibility matrices, and hence stiffness matrices, are symmetric.
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element stiffness matrices are positive definite until after the application of deflection
boundary or other conditions that prohibit or remove rigid body motion.

The individual Lagrange equations for each structural DOF can be ordered accord-
ing to the ordering of their DOF and then stacked one upon another to form the
matrix equation. Collectively these equations with the DOF vector {q} can be com-
pactly symbolized as

d
dt

∂T
∂{q̇} + ∂U

∂{q} = {Q}, (4.1)

where, as always, {Q} is the vector of generalized forces that are determined from
the virtual work expression for the time-varying forces and moments. The above
partial derivatives with respect to column vectors are not a new adventure in par-
tial differentiation. They are only a means of indicating a succession of individual
partial derivatives with respect to the individual elements of the column vector.
When the resulting equations are then stacked one on top of the other, they can be
recodified in the matrix form shown below. There is a reason, other than concise-
ness, for adopting this column vector notation for derivatives. That reason is that
this notation gives the appearance that when (i) the triple matrix product expres-
sions for the kinetic energy and the strain energy of the are formally substituted into
Eq. (4.1), (ii) the usual product rule for derivatives is observed with the understand-
ing that a derivative with respect to a row matrix is the same as a derivative with
respect to a column matrix, and (iii) transposes are taken of separate double products
involving the symmetric mass and symmetric stiffness matrices, the apparent result is

[M]{q̈} + [K ]{q} = {Q}. (4.2)

This “result,” Eq. (4.2), for the partial differentiation in Eq. (4.1) can be verified
by the much more rigorous reasoning presented in Endnote (3). Of course, the part
the finite element method plays directly is that of the construction of the system
or global stiffness matrix, [K], from the element stiffness matrices, [ke], for each of
the various elements of the total structure. The creation of the stiffness matrix is
generally, by far, the most time-consuming part of the structural dynamics analysis
preceding the solution of the matrix equation of motion. Thus nearly everything
else in the analysis preparation should be focused on simplifying the preparation of,
and reducing the size of, the stiffness matrix.

One possible way of reducing the size of the stiffness matrix, and thus the size of
the problem, is now illustrated by considering again the simply supported beam of
Figure 4.1(c). Let there not be any externally applied loads, nor any initial conditions
specified. As is discussed at greater length later, all that can be done with an unloaded
structure without specified initial conditions is to calculate the natural frequencies
and the deflections associated with those natural frequencies. Since this single-beam
structure is symmetric about its center, the mode shapes (the deflection pattern asso-
ciated with each natural frequency) of this lumped mass model are either symmetric
or antisymmetric about the beam center.7 This knowledge allows the division of this

7 Recall the statement that the nth mode shape for the distributed mass model beam of Figure 4.1(a)
is vn(x) = sin(nπx/8L). Thus odd values of n yield symmetric mode shapes, whereas even values of n
produce antisymmetric mode shapes about the beam center.
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Figure 4.3. Exaggerated, general, symmetric beam deflection pattern. Since the static (and
dynamic and combined) deflections are small, the beam static equilibrium position can be
taken to be the straight line between support points.

analysis into two smaller analyses: one tailored to the symmetric mode shapes and
frequencies and the second tailored to the antisymmetric mode shapes and frequen-
cies. In either case, it is necessary only to focus on, say, the left half of the beam. This
is, of course, just one example of an approach that greatly reduces the number of
DOF, and thus the size of the stiffness matrix, to be considered.

To carry out the symmetric analysis of this beam, choose the mass modeling of
Figure 4.1(c), which is more convenient for this hand analysis than the beam mass
model of Figure 4.1(d), because there are only four, identical beam elements with
which to contend. Each beam element has a lateral deflection DOF and a bending
slope DOF at each of its two ends. Each of these four beams has the element stiffness
matrix

for beam bending: [ke]{qe} = EI
L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w1

θ1

w2

θ2




(e)

.

Of course, each pair of global DOF are located also at the structural element con-
nection points, called the nodes of the structural system. See Figure 4.3. In terms
of the global degrees of freedom, the element stiffness matrices are as follows. For
beam element 10, where the first listed global lateral deflection DOF, w0, must be
zero because of the simple support BC at the left end of the beam element

[k10]{q10} = EI
L3


 4L2 −6L 2L2

−6L 12 −6L
2L2 −6L 4L2







θ0

w1

θ1


 .

For beam element 20, where none of the global DOF are zero,

[k20]{q20} = EI
L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w1

θ1

w2

θ2


 .
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For beam 30, which is just like beam element 20,

[k30]{q30} = EI
L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w2

θ2

w3

θ3


 .

For beam element 40, where θ4 must be zero because of the symmetry of the complete
beam deflection pattern in this analysis,

[k40]{q40} = EI
L3


 12 6L −12

6L 4L2 −6L
−12 −6L 12







w3

θ3

w4


 .

Assembling (i.e., superimposing) the four-element beam stiffness matrices to cre-
ate the global stiffness matrix is accomplished by placing all the element stiffness
matrix terms into the global matrix in row and column positions that correspond
to their respective global DOF and summing where necessary. For example, in the
third row of [K] corresponding to θ1, and the second column corresponding to w1,
add −6L, +6L, 0, 0 from elements 10, 20, 30, and 40, respectively, to get the global
stiffness matrix entry of zero. This summation process can be accomplished quickly
when it is done one element stiffness matrix at a time. In this example the assembly
process produces the following global stiffness matrix and deflection vector for the
eight global DOF of the left half of the complete beam

[K ]{q} = EI
L3




4L2 −6L 2L2 0 0 0 0 0
−6L 24 0 −12 6L 0 0 0
2L2 0 8L2 −6L 2L2 0 0 0

0 −12 −6L 24 0 −12 6L 0
0 6L 2L2 0 8L2 −6L 2L2 0
0 0 0 −12 −6L 24 0 −12
0 0 0 6L 2L2 0 8L2 −6L
0 0 0 0 0 −12 −6L 12







θ0

w1

θ1

w2

θ2

w3

θ3

w4




.

The global stiffness matrix and global degree of freedom matrix for the antisym-
metric analysis is assembled from the same matrices detailed above for beam ele-
ments 10, 20, and 30. The only difference between the symmetric and antisymmetric
analyses is in the matrices for beam element 40. For the antisymmetric case, w4 = 0,
and θ4 is not zero. The remainder of the detailing of the antisymmetric form of
the beam element 40 stiffness matrix, and the assembly of the antisymmetric global
stiffness matrix, are left to the reader as an exercise.

It is quite possible to combine the separate symmetric and antisymmetric analyses
into one analysis. The price to be paid for that action is the number of global degrees of
freedom for the combined analysis is fully twice that for either previous analysis, and
the stiffness and mass matrices have four times as many entries. This would roughly
mean four times the computational effort when solving Eq. (4.2). That choice still
may be the more convenient choice for a small problem such as this example problem.
However, for the analysis of a structure with many more elements and elements of
greater complexity than a few beam elements, it is likely that the analyst would want
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to take the time to sort out the symmetric modal solutions from the antisymmetric
solutions when possible.

The mass matrix for the symmetric beam analysis is determined from the kinetic
energy expression. After, for the sake of exposition, temporarily assigning moment
of inertias, H, to each full discrete mass, the kinetic energy for the half beam of
Figure 4.3 is

T = 1/2m
(
ẇ2

1 + ẇ2
2 + ẇ2

3 + 1/2ẇ
2
4

) + 1/2H
(

1/2θ̇
2
0 + θ̇2

1 + θ̇2
2 + θ̇2

3

)
.

Thus, the first part of Eq. (4.2) for the symmetric deflection analysis, [m] ¨{q}, is


1/2H
m

H
m

H
m

H
1/2m







θ̈0

ẅ1

θ̈1

ẅ2

θ̈2

ẅ3

θ̈3

ẅ4




.

The presence of the one-half factor in the first entry in the mass matrix is the result of
having only half of the distributed mass of beam element 10 assigned to the discrete
mass at the left support. The one-half of the last entry in the mass matrix is the result
of the beam’s center mass being located on the axis of symmetry. This central location
dictates that half of that mass be included in the description of the left half of the
beam, whereas the other half would be part of the model for the right half of the beam.

The moments of inertia for each mass, H, have not been mentioned in connection
with this beam model previous to this description of the kinetic energy. Recall that
the analyst rarely bothers to make moment of inertia estimates for structural mass.
Usually, only when the beam or other structural element directly supports nonstruc-
tural masses that move with the elastic element are mass moment of inertia estimates
included in the analysis. The nonstructural masses could be, for example, machinery,
in the case of heavy structures, or electronics, in the case of light structures. If the
nonstructural masses cannot be modeled as rigid, then at least a crude finite element
model would be necessary for these items, making them part of the structural system.
If the nonstructural masses are partially filled tanks of liquids, then the problem is
more complicated, and the reader is referred to the technical journals.

Although, it is seldom worthwhile to estimate the moment of inertia terms for
the beam itself, there is an elegant way to make such estimates about which the
reader should be aware. As mentioned previously, the mass moments of inertia of
the beam segments themselves can be estimated by the use of the consistent mass
matrix approach. This approach is based on the use in the beam kinetic energy
integral of the same cubic spline finite element shape functions that are used in the
strain energy integral to develop the element stiffness matrices. See Endnote (4) for
a discussion of this element mass matrix.

If there are no nonstructural masses to enter into the mass matrix, and, if the
routine decision is made not to undertake the expense of machine calculations for
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the mass moments of inertia terms of consistent mass matrices, then the mass matrix
and acceleration vector for the symmetric analysis of the beam of Figure 4.3 can be
rearranged to have the form

m




1
1

1
1/2

0
0

0
0







ẅ1

ẅ2

ẅ3

ẅ4

θ̈0

θ̈1

θ̈2

θ̈3




.

Any rearrangement of the rows and columns of the mass matrix and the rows of the
acceleration vector requires exactly the same rearrangement for rows and columns
of the stiffness matrix and the deflection vector. This rearrangement where null
submatrices are created in the mass matrix allows for a beneficial reduction in the
size of the matrix equations of motion. To be a bit more general, introduce an arbitrary
vector of externally applied time-varying generalized loads {Q(t)} and rewrite the
complete form of the reordered equations of motion as[

M 0
0 0

] {
ẅ

θ̈

}
+

[
Kww Kwθ

Kθw Kθθ

] {
w

θ

}
=

{
Qw

Qθ

}
.

When the matrix products of the submatrices are written out, the result is

[M]{ẅ} + [Kww]{w} + [Kwθ ]{θ} = {Qw}
[Kθw]{w} + [Kθθ ]{θ} = {Qθ }.

Using a matrix inverse, the second of these two matrix equations can be solved for
{θ}, and that result substituted into the first of these two equations. The result is

[M ]{ẅ} + [
Kww − Kwθ K −1

θθ Kθw

]{w} = {Qw} − {
Kwθ K −1

θθ Qθ

}
. (4.3)

This process is illustrated in Example 6.7.
The size of this equation of motion is only the size of {w}, which is always approx-

imately half the size of the original vector of unknown deflections. In addition, by
means of a judicious choice on where to locate the number of lumped masses nec-
essary for the accuracy desired, this process can be used to eliminate as much as
three-quarters or more of the original number of DOF. There is, of course, a price to
be paid for this important advantage. It is necessary to use software that causes
the computer to either invert the submatrix [Kθθ ] by whatever means and carry out
three matrix multiplications or follow the much more economical Guyan reduction
procedure discussed briefly in Ref. [4.1]. Especially with the choice of the Guyan
reduction procedure, it is worth this computational price in almost all circumstances.
Note that because [Kθθ ] is a square submatrix of a positive definite matrix, it is always
invertible. Also note that the new stiffness matrix [Kww − Kwθ K−1

θθ Kθw] is symmetric
because [Kwθ ] is the transpose of [Kθw]. The importance of the symmetry of the mass
and stiffness matrices is explained when solutions to the matrix equations of motion
are sought.
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The foregoing discussion of the details of a simple beam problem was made overly
long by excursions into the use of symmetry, the reduction of the number of DOF,
and modeling for moments of inertia. The writing of the finite element equations of
motion is normally done automatically by software after the creation of the finite
element model. Even the creation of the finite element model is now quite often com-
puter assisted using software referred to as “preprocessors.” Postprocessors display
the analysis results graphically in easily understood formats. The current software
trend is to integrate pre- and postprocessors with all sorts of analysis and design pack-
ages. To understand what the analysis program is doing for the analyst, the following
section offers example problems.

4.5 Finite Element Example Problems

The following example problems are intended to emphasize the creation of the
mass matrices and the applied load vectors of the finite element matrix equations of
motion. The stiffness matrices are also provided for those who would like to chal-
lenge themselves on the assembly of those matrices. The first two sets of problems
are planar grid problems, whereas the last pair of related problems are planar frame
problems. The planar beam grid and beam frame example problems are limited to
beams with zero and 90◦ angles of orientation. This restricted geometry is sufficient
for explanatory purposes. The reason that beams oriented at odd angles in three-
space are avoided here is because such beams, like all finite elements at odd angles,
require the introduction of a rotation matrix transformation between the element
DOF and the system DOF of the form {q}(e) = [Re]{q}. As explained in the latter
part of Section 3.5, the beam rotation matrix [R] is a matrix of direction cosines that
identifies the spatial direction of the beam axis. Thus the element stiffness matrices
in terms of system coordinates become [Re]t [ke][Re]. Although this requirement for
rotation matrices for beams with odd orientations makes hand calculations unnec-
essarily complicated, that is not the case for bars. Hence, one planar truss example
problem is provided.

The example problems are mostly presented in sets of three, where the first problem
of the set involves simpler mass modeling and externally applied, time-varying loads.
The middle example extends the first problem by slightly complicating the mass
modeling. The last of the related example problems deals with the same structure
as the middle problem, but this time the structure is subjected to a time-varying
base motion, also called a support motion. Base motions, which result in equivalent
applied loads, are particularly important because they are so common. Sources of
support motions range from earthquakes to rough roads, runways, and seas.

EXAMPLE 4.1 Write the matrix equation of motion for the small beam grid of
Figure 4.4(a) for lateral (bending and twisting) motions out of the plane of the beam
grid. The relatively very large beam axial stiffnesses prevent any significant motion
in the plane of the grid. At each of the two internal nodes, that is, at the internal
beam junctures, there is a large nonstructural mass that is modeled as a rigid body.
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Figure 4.4. Examples 4.1, 4.2 and 4.3.
(a) Exploded, isometric view of sym-
metric beam grid. (b) Selected DOF
and (later) enforced motions.
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Half the mass of adjoining beams is also assigned to the nodes at the beam junctures,
so that the mass properties at each juncture are m, Hx, and Hy. Let it be that this
two-internal-node model is sufficiently accurate for the purposes of this analysis.
Furthermore, for the sake of a simple, common stiffness factor, let GJ 0 = EI0. Since
such an equality of stiffness coefficients is unusual, Endnote (5) offers an example
of a thin beam cross section for which GJ 0 = EI0.

COMMENT This beam grid is modeled as having clamped boundary conditions (BCs)
at its supports. Even though clamped supports are uncommon in the physical world,
this choice is common throughout this chapter because fixed beam ends reduce the
number of required DOF. Thus fixed beam ends reduce the amount of required
effort to complete a hand calculation without affecting the purpose of the example.
This also illustrates the greater hand calculation convenience of the FEM, relative
to force methods, for highly indeterminate structures.

SOLUTION The doubly symmetric grid of Figures 4.4(a) and (b) is loaded so that
there is only one axis of symmetry (the axis of beam elements 20, 40, and 60) for
both the loading and the structure. Since symmetry has been discussed above, in this
example symmetry is initially ignored until the final equations show that the solutions
for the two twisting DOF, φ1 and φ2, can be determined separately from those of the
four bending DOF and that the solution for the twisting DOF are unrelated to the
applied force and moment. In other words, for this structure and loading, bending
and twisting are “uncoupled” and thus could be dealt with by separate analyses as was
done for the symmetric and antisymmetric bending of the above-discussed simply
supported beam.

With a blind eye turned toward symmetry, all seven beams and both masses of the
beam grid are modeled for the forced vibration analysis. Choose the global DOF
w1, θ1, φ1, w2, θ2, φ2 as illustrated in Figure 4.4(b). The directions of the global DOF
were selected to simplify the correspondences between the element DOF and the
global DOF as much as possible. The DOF shown in Figure 4.4(b) with zero subscripts
and enclosed within parentheses are for a later variation on this example problem
and thus are to be ignored at the present time.

The kinetic energy in terms of the first time derivatives of the six DOF, and then the
mass and acceleration matrices deduced directly from the kinetic energy expression
and the Lagrange equations, are simply

T = 1/2mẇ2
1 + 1/2Hx θ̇

2
1 + 1/2Hyφ̇

2
1 + 1/2mẇ2

2 + 1/2Hx θ̇
2
2 + 1/2Hyφ̇

2
2 .

So

[m]{ẅ} =




m
Hx

Hy

m
Hx

Hy







ẅ1

θ̈1

φ̈1

ẅ2

θ̈2

φ̈2




.
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As per usual the stiffness matrix requires a bit more effort for a hand calculation.
Consider beam element 10. As is the case for all subsequent beam elements, the
task here is to adapt the standard forms of the beam bending and twisting stiffness
matrices and their deflection vectors to the circumstances of beam 10. To this end, the
first thing to notice is that in response to the applied loading, M2, beam 10, like some
other beam elements of this structure, twists, as well as bends, as the grid vibrates
out of its plane. Therefore combine the standard element beam bending and twist-
ing stiffness matrices into one beam 10 element stiffness matrix. The beam 10 rows
and columns are arranged to conform with the ordering of the nonzero global DOF
at the juncture of beam elements 10, 20, and 30. In this text, the usual ordering of
the global DOF for any node of a planar structure is (i) rectilinear deflections by
alphabetical order, (ii) bending slopes, and (iii) angles of twist. In beam 10, the ele-
ment bending slope DOF correspond to the global twisting DOF, φ1, and the ele-
ment twisting DOF correspond to the global bending slope DOF, θ1. Thus the bend-
ing slope and twisting rows and columns in the standard beam element stiffness
matrix need to be interchanged so as to correspond to the order of the DOF in the
global stiffness matrix. The standard beam element stiffness matrix also needs to be
adjusted so that all three DOF at the left end of the beam element are zero, and
the bending stiffness factor is 2EI0 rather than simply EI0. When these adjustments
have been made, then the element stiffness matrix and its corresponding global DOF
vector are

[k10]{w10} = EI0

L3


 24 −12L

L2

−12L 8L2







w1

θ1

φ1


 .

The element stiffness equation for beam element 50 is exactly the same but for
subscripts two replacing subscripts one in the deflection vector. The same sort of
change in subscripts holds true for beam elements 30 and 70. The stiffness matrices
for element 30 and the remaining beam elements are

[k30]{w30} = EI0

L3


 24 12L

L2

12L 8L2







w1

θ1

φ1




[k20]{w20} = EI0

L3


 192 −48L

−48L 16L2

2L2







w1

θ1

φ1




[k60]{w60} = EI0

L3


 192 48L

48L 16L2

2L2







w2

θ2

φ2






P1: ICD
0521865743c04 CUFX001/Donaldson 0 521 86574 3 September 9, 2006 23:32

176 FEM Equations of Motion for Elastic Systems

[k40]{w40} = EI0

L3




6 6L −6 6L
6L 8L2 −6L 4L2

L2 −L2

−6 −6L 6 −6L
6L 4L2 −6L 8L2

−L2 L2







w1

θ1

φ1

w2

θ2

φ2




.

When all seven element stiffness matrices are assembled into the global stiffness
matrix, the result is

[K]{w} = EI0

L3




246 −42L −6 6L
−42L 26L2 −6L 4L2

19L2 −L2

−6 −6L 246 42L
6L 4L2 42L 26L2

−L2 19L2







w1

θ1

φ1

w2

θ2

φ2




.

As mentioned above, an inspection of the mass and stiffness matrices shows a
lack of matrix coupling8 between the w’s and θ ’s, on one hand, and the φ’s, on the
other hand. Therefore it is mathematically clear that physically the mass of this
beam grid can twist about the y axis without deflecting laterally (i.e., moving in the z
direction) or twisting about the x axis. This ability of the mass of this symmetric beam
grid to twist without having to have concurrent lateral deflections should be studied
until it is evident. Typically, this lack of coupling means the 6 × 6 matrix equation
could be separated into a 4 × 4 matrix equation and a 2 × 2 matrix equation, which
would reduce the solution effort. Such reductions would be important in a larger
problem.

The last step in the preparation of the finite element matrix equations of motion
is writing the expression for the virtual work to obtain the generalized forces acting
on the grid. In this case the virtual work expression is particularly simple:

δW = 0δw1 + 0δθ1 − M2δφ1 + F(t)δw2 − M1(t)δθ2 + 0δφ2 = �Q�{δw}
so �Q� = �0 0 −M2 + F(t) −M1(t) 0�.

Putting the three above parts of the equation of motion together provides the com-
plete matrix equation [M]{ẅ} + [K]{w} = {Q}. ★

Note the dashed line in Figure 4.4(b) that encloses the beam grid. Consider for
the moment that this dashed line is the edge of a thin, flat plate. Then the beam
grid becomes a reinforcement for this plate. The point is that this variation on the
problem does not require additional DOF to account for the deflections of the six
plate bending elements that are now part of the elastic model, as long as they, like the
beams, have clamped BCs at their outer edges. The inclusion of the plate elements

8 “Coupling” terms within a matrix are those off-diagonal matrix entries that mathematically connect
one type of displacement to another. For example, through the mechanism of the (1,2) term of the
above grid stiffness matrix, the y-direction bending slope term θ1 causes an internal, lateral force at
interior node 1. That force, in turn, causes a vertical deflection w1. Thus the (1,2), and the similar (2,1),
entries couple θ1 and w1 so that one cannot occur without the occurrence of the other.
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would require only the additional superposition of the plate element stiffness entries
(i.e., more stiffness) in the global stiffness matrix and the addition of parts of the
plate masses to the mass terms of the mass matrix.

EXAMPLE 4.2 Redo the previous example of Figure 4.4 where this time the cen-
ters of mass of both of the discrete masses at the beam junctures are a distance h
above the plane of the grid rather than located at the origins of the generalized
coordinates in the plane of the grid.

SOLUTION Since the mass centers are now higher relative to the plane of the beam
grid, they have more rotational inertia about the nodes. Thus it can be expected
that the natural frequencies of the beam grid are now lower than what they were
in Example 4.5 because (i) the stiffness of the structure has not been altered and
(ii), as touched upon lightly in Chapter 2, the natural frequencies depend on the
square root of the ratio of stiffness to mass terms.

Again, the stiffness matrix is wholly unaffected by the higher placement of the
lumped mass centers of mass. In the case of these three applied loads, the virtual
work is also unchanged. The only thing that changes is the kinetic energy expression.
The kinetic energy has to be augmented by the horizontal velocity components at
the centers of mass resulting from the rotations at the nodes where the DOF are
located. The new expression for the kinetic energy and the new mass matrix are

T = 1/2mẇ2
1 + 1/2(Hx + mh2)θ̇2

1 + 1/2(Hy + mh2)φ̇2
1

+ 1/2mẇ2
2 + 1/2(Hx + mh2)θ̇2

2 + 1/2(Hy + mh2)φ̇2
2

so

[m]{ẅ} =




m
Hx + mh2

Hy + mh2

m
Hx + mh2

Hy + mh2







ẅ1

θ̈1

φ̈1

ẅ2

θ̈2

φ̈2




.

★

EXAMPLE 4.3 Redo the beam grid problem of Example 4.1, where this time,
rather than externally applied forces and moments driving the structure, there are
the three following simultaneous base motions illustrated in Figure 4.4(b): (i) the
base support for beam element 10 is moving up and down with a time-varying motion
w0(t), (ii) the base support of beam element 20 is rotating about an axis parallel to
the y axis with a time variation θ0(t), and (iii) the base support of beam element 30 is
rotating about the x axis with a motion φ0(t). The other boundary conditions remain
unchanged. The positive directions of these known, enforced motions, as illustrated,
match the positive directions of the global DOF.

SOLUTION The substitution of enforced base motions for applied forces and moments
has no effect whatever on the system mass and stiffness matrices. They and
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their associated generalized acceleration and deflection DOF vectors are wholly
unchanged. The only changes take place in the generalized force vector. There is a
new generalized force vector {Q} because the applied base motions cause accelera-
tions in the mass of the structure, and acceleration multiplied by mass is the same
as force. The mathematically discrete masses of the analysis model are set in motion
through the agency of the elastic beams that connect the discrete masses to the mov-
ing supports. The generalized force vector, which is now a set of what are called
equivalent forces and moments, reflects this transmission of the support motion to
the masses by means of the stiffnesses of the structural elements connecting the
moving supports to the discrete masses.

The calculation of the magnitudes of these equivalent forces and moments is a
conceptually straightforward procedure using the element stiffness matrices. That is,
the procedure is simple if a software package keeps track of the sign conventions.
Consider beam element 10 as pictured in Figures 4.4(a) and (b). The bending and
torsional stiffness matrix for beam element 10, in terms of the global DOF and a
nonzero vertical motion at the left end, is

[k10]{w} = EI0

L3




24 −24 0 12L
−24 24 0 −12L

0 0 L2 0
12L −12L 0 8L2







w0

w1

θ1

φ1


 =




Force at wall
Force, rt. end

Torque, rt. end
Moment, rt. end


 .

Here, of course, the quantity w0(t) is not an unknown deflection as are the DOF
w1(t), φ1(t) and θ1(t). That is, w0(t) is already a known quantity, as opposed to the
DOF, which are to be determined in the solution phase of the analysis. Hence, to
facilitate the solution process, the known motion w0(t) needs to be separated from
the unknown deflections in the DOF vector. Separate w0(t) from the unknown DOF
in the following manner:


Force, rt. end
Mom’t, rt. end
Torque, rt.end


 = EI0

L3




−24
0

12L


 w0(t) + EI0

L3


 24 0 −12L

0 L2 0
−12L 0 8L2







w1

θ1

φ1


 ,

where the first row (the first equation) of the previous matrix equation has been set
aside as not being useful at this point in the analysis. It is not useful now because
that equation involves not only the unknown DOF but also the unknown reaction
at the wall and thus is no help in determining the solution for the unknown DOF.
However, this discarded equation can be used to calculate that reaction at the left
end of beam 10 after the DOFs have been determined.

Note that the second right-hand side part of the above equation is exactly the same
contribution that beam element 10 made previously to the global stiffness matrix as
shown in the previous problem. Thus, as stated above, this process does not lead to
any changes in the global stiffness matrix. Note also that the first part of the right-
hand side, the quantities associated with the equivalent load vector do have units of
force or moment as appropriate to that row.

The corresponding equivalent load terms for beam element 20 are obtained in
exactly the same way as those for beam element 10. In the original 6 × 6 beam bending
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and twisting element stiffness matrix, the (zero-valued) element bending slope DOF
at the previously fully clamped end is replaced by the known, now nonzero, deflection
function θ0(t). Then the θ0(t) stiffness factors in the rows corresponding to the retained
DOF are separated from the rest of the element stiffness matrix with the result


Force, rt. end
Mom’t rt. end
Torque, rt. end


 = EI0

L3




−48L
8L2

0


 θ0(t) + EI0

L3


 192 −48L 0

48L 16L2 0
0 0 2L2







w1

θ1

φ1


 .

The enforced motion at the right end of beam 30 is also a time-varying rotation.
However, the mathematics of this case require special care because the enforced
motion φ0(t), although a “twisting” motion for the grid as a whole, is an enforced
bending slope for beam element 30. That is, in usual FEM terms, the element DOF
relation to the global DOF is the relation θ

(30)
2 = φ0(t). Making this substitution and

substituting the other global DOF and BCs for the element DOF so that all references
are global, and reordering, yields


Force, left end

Torque, left end
Mom’t, left end


 = EI0

L3




12L
0

4L2


 φ0(t) + EI0

L3


 24 0 12L

0 L2 0
12L 0 8L2







w1

θ1

φ1


 .

When the three components of the equivalent force vector are transposed to the
right-hand side of Eq. (4.2) and combined, the result is

{Q} = EI0

L3




24w0 + 48Lθ0 − 12Lφ0

−8L2θ0

−12Lw0 − 4L2φ0

0
0
0




.

A partial check on this answer can be had by referring to Figure 4.4(b) and visualizing
that when the DOF at node 1 are required to have zero values, w0 causes a positive
(upward) force to act at node 1, and, in the global sense, a negative twisting moment
at node 1. Thus w0 entries should appear only in the first and third rows of the
generalized force vector, with the signs mentioned, as they do. Similarly, θ0 causes
a positive force, and, in the global sense, a negative bending moment at node 1.
Therefore this θ0 term should appear with those signs in the first and second rows of
the generalized force vector, as it does. Similarly φ0 causes both a negative force and
a negative twisting moment (torque) at node 1, and hence this term should appear
in the first and third rows with those signs, as it does. ★

Note that if there were both enforced motions and applied loads acting on a struc-
ture, then, if the total deflections are small, superposition is valid. That is, obtaining
the matrix equation of motion for both types of loading is simply a matter of putting
both the applied load vector and the equivalent load vector on the right-hand side
of Eq. (4.2) and then combining the two vectors into one.
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EXAMPLE 4.4 Using the FEM, write the equations of motion for the cantilevered
beam of Figure 4.5(a) in matrix form.

COMMENT Note that in addition to the usual elastic beam elements, the cantilevered
beam model of Figure 4.5(a) also includes two rigid elements that connect the lumped
masses to the nodes of the elastic elements. The mass of these rigid elements, as well
as the mass of the other structural components, is included in the lumped masses. This
rigid element type of modeling can be expected to be an option of any commercial
FEM program when the center of the lumped mass associated with the node point
is specified as being located away from the node point of the elastic elements. In this
example the offset distance is only in the y direction. It could just as well also be in
the x and z directions.

The use of rigid elements of any kind is desirable whenever one part of a structure
is much stiffer than other parts. Specifically, the use of rigid elements simplifies the
system model and avoids the matrix ill-conditioning that is possible when stiffness
matrix entries vary by a few orders of magnitude. In structural dynamics terms,
because the smaller stiffness terms are associated with the largest deflections, they
are more important than the larger stiffness terms. Eliminating those larger stiffness
terms by means of rigid elements avoids the larger stiffness terms obscuring the
lesser stiffness terms. In this case, the rigid element modeling is wholly appropriate
if e � L because the shorter the span length of an elastic element, the stiffer the
element. An example of an actual engineering structure that fits this circumstance
is an aircraft wing such as that of a glider or long-range aircraft. Modeling such a
wing as a beam, it is appropriate to note that the span length is much larger than the
chord length (planform width), which in turn is much larger than the wing thickness.
Therefore it is possible to model, at least for a preliminary analysis, the wing as
rigid across the short chord length and thickness, but flexible over the long span
length.

Rigid elements other than bar elements, and partially elastic, partially rigid ele-
ments are also common. For example, a later set of example problems again illustrates
the use of beam elements that are flexible in bending but rigid with respect to axial
deflections. The viewpoint that rigid elements are nothing more than a set of algebraic
relationships between DOF, relationships sometimes called multipoint constraints,
becomes more evident in those examples.

SOLUTION The first question to be answered is whether the system DOF should be
centered at the nodes of the elastic elements or at the centers of mass. Recall that the
description of the elastic properties of the structural system is more complicated than
the description of the system inertial properties. Placing the global DOF only at the
nodes of the elastic elements9 simplifies the description of the elastic forces. See Fig-
ure 4.5(b). The components of the velocities at the lumped masses, both translational
and rotational, necessary to write the kinetic energy expression, can be determined

9 Occasionally it is not possible to directly match global DOF to element DOF, say, at a beam element
end. See Example 4.12 for an illustration of this situation and its remedies.
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Figure 4.5. Examples 4.4, 4.5, and 4.6: (a) Beam grid featuring rigid elements. (b) Selected
degrees of freedom plus an enforced motion for Example 4.6.

by simply taking, one at a time, each of the DOF and visualizing the affected lumped
mass moving in response to that DOF while all the other DOF have zero values.
(This is much the same approach taken to write the virtual work expressions.) For
example, with all the other DOF being zero, a positive velocity dw1/dt at the inboard
node produces an upward component of velocity dw1/dt at the mass of magnitude
2m. The rotational velocity dθ1/dt does not produce a vertical motion at that same
mass, but the rotational velocity dφ1/dt does produce a downward velocity compo-
nent of magnitude e dφ1/dt . Hence the total vertical velocity at the inboard mass is
(ẇ1 − eφ̇1). Thus the total kinetic energy expression, which is not often much more
complicated than this, is

T = 1/2(2m)(ẇ1 − eφ̇1)2 + 1/2(2Hy) θ̇2
1 + 1/2(2Hx) φ̇2

1

+ 1/2m(ẇ2 + eφ̇2)2 + 1/2Hy θ̇2
2 + 1/2Hx φ̇2

2 .
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Hence the mass matrix and associated acceleration vector are

[m]{ẅ} =




2m −2me
2Hy

−2me 2(Hx + me2)
m +me

Hy

+me Hx + me2







ẅ1

θ̈1

φ̈1

ẅ2

θ̈2

φ̈2




.

The global stiffness matrix is easily obtained. Letting GJ0 = βEI0 the stiffness
matrix and deflection vector are

[k]{w} = EI0

L3




36 −6L −12 6L
−6L 12L2 −6L 2L2

3βL2 −βL2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

−βL2 βL2







w1

θ1

φ1

w2

θ2

φ2




.

Notice that although the stiffness matrix provides no coupling between the twisting
and bending DOF, the inertia matrix does. This mass matrix coupling reflects the fact
that the offset masses make it impossible for the beam to move upward without also
twisting. If this fact is not already clear, consider this matter from the point of view of
so-called inertia forces, which are masses multiplied by accelerations, with a negative
sign.10 For example, a positive (upward) acceleration d2w1/dt2 at the inboard node
causes a downward inertia force of magnitude md2w1/dt2 at the inboard mass. This
inertia force acting on the inboard mass produce a twisting moment and hence a
twist φ1 at node 1. Thus the deflection and the twist at the inboard node are inertially
coupled, as is reflected mathematically in the inertia matrix. The virtual work and
applied load vectors are

δW = F1 δw1 + 0 δθ1 − eF1 δφ1 + F2 δw2 + M1 δθ2 + (M2 + eF2) δφ2

so �Q� = �F1 0 − eF1 F2 M1 (M2 + eF2)�.
Again, the equations of motion for the cantilevered beam system are completed
when the above specified matrices are placed in the standard form of Eq. (4.2),
[M]{q̈} + [K]{q} = {Q}.

In review, the equations of motion are developed by using the FEM element
stiffness matrices to provide the necessary system stiffness matrix and, separately,
the kinematics of the masses to provide the necessary mass matrix. The virtual work
calculation provides the external generalized force vector. ★

10 Inertia forces are, for example, the forces people experience acting on their bodies during a carnival
ride or a ride on a high-speed elevator in a tall building. When the elevator starts (accelerates) upward,
a person’s body is pushed toward the elevator floor by those quite real forces. Thus all inertia forces
act opposite to the direction of the associated acceleration, a. This fact is accounted for by use of a
negative sign. That is, an inertia force acting on a mass m equals −ma.
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EXAMPLE 4.5 Repeat the above example problem where the one outboard mass
of magnitude m is now offset not only a distance e in the positive y direction but also
a distance � in the positive x direction.

SOLUTION The only changes necessary are changes in the mass matrix and the applied
force vector. The stiffness matrix does not change because the DOF are the same,
and the two beam elements have not been altered. As a result of the change in the
location of the outboard mass, the new kinetic energy expression is

T = 1/2(2m)(ẇ1 − eφ̇1)2 + 1/2(2Hy) θ̇2
1 + 1/2(2Hx) φ̇2

1

+ 1/2m(ẇ2 + eφ̇2 + �θ̇2)2 + 1/2Hy θ̇2
2 + 1/2Hx φ̇2

2 .

The new mass matrix and the (same) acceleration vector are

[m]{ẅ} =




2m −2me
2Hy

−2me 2(Hx + me2)
m m� me
m� (Hy + m�2) me�
me me� (Hx + me2)







ẅ1

θ̈1

φ̈1

ẅ2

θ̈2

φ̈2




.

The virtual work and the applied load vector have only one change

δW = F1 δw1 − eF1 δφ1 + F2 δw2 + (M1 + �F2) δθ2 + (M2 + eF2) δφ2

so �Q� = �F1 0 − eF1 F2 (M1 + �F2) (M2 + eF2)�. ★

EXAMPLE 4.6 State the matrix equation of motion for the previous problem
when the following changes are made: (i) remove all the applied loads F1 through
M2 and (ii) now drive the beam by means of an enforced twisting motion φ0(t) at the
wall support.

SOLUTION The mass matrix is unaltered because the kinetic energy is controlled
entirely by the time derivatives of the DOF, and the DOF are the same symbolic
values regardless of whether the structural system is driven by applied loads or by
support motions. The stiffness matrix is also the same because the elastic elements
and their DOF are unchanged. However, it is necessary to reexamine the element
stiffness matrix for the inboard beam element to obtain the new equivalent applied
load vector. After inserting the zero BCs, which eliminates the first two columns, and
therefore setting aside the first two rows, the remaining terms are

[k10]{w} = EI0

L3




2βL2 −2βL2

24 −12L
−12L 8L2

−2βL2 2βL2







φ0

w1

θ1

φ1


 .

Setting aside the first of these four rows because the associated full equation involves
the unknown torque reaction at the wall, the equivalent load vector for the entire
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Figure 4.6. Examples 4.7 and 4.8: Two bay planar frame with mass modeling and applied
loading.

system, from the above (4,1) entry, is, after transposing to the right-hand side of the
equation to better fit the page

�Q� = 2βEI0 φ0(t)
L

�0 0 1 0 0 0�.

★

EXAMPLE 4.7 Write the matrix equation of motion for the five-beam-element
planar frame of Figure 4.6 where, as per usual, the axial stiffness of each beam is much
greater than its bending stiffness, that is, EA0/L � EI0/L3. The applied loading is
the set of three external loads F1, F2, and M1, as shown. (The indicated base motion,
u0(t), is reserved for the next example problem.) Again, to reduce the number of
required generalized coordinates for this hand calculation, let the supports at the
system base be fixed supports.

SOLUTION Again begin the hand calculation by choosing the global DOF to achieve
the best fit with the element DOF. This means, for example, that for the beam element
10 right-hand vertical deflection DOF to coincide with the global DOF at node 1,
the global DOF u1 must be positive to the left. If u1 were instead to be positive to
the right, then minus signs would have to be introduced into the beam element 10
stiffness matrix. In a machine calculation, the software automatically accounts for
any such bothersome sign differences.
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Now, because each of the beams is ever so much stiffer axially than it is laterally
the axial stiffness of each beam is approximated as being infinite. This partly rigid
beam idealization is always accomplished by putting constraints on the appropriate
system generalized coordinates. In this case, the constraints are

v1 = v2 = v3 = 0 and u1 = u2 = u3 = u.

There are no constraints on the rotations. Thus the kinetic energy and the mass matrix
and acceleration vector are

T = 1
2

(m + m + m) u̇2 + 1
2

Hz θ̇2
1 + 1

2
Hz θ̇2

2 + 1
2

Hz θ̇2
3

[M]{ü} =




3m
Hz

Hz

Hz







ü
θ̈1

θ̈2

θ̈3


 .

The element stiffness matrices are the same for beam elements 10, 30, and 50.
Those for beam elements 20 and 40 are the same. The stiffness matrices for the beam
elements are

[k10]{u10} = EI0

L3

[
3 −3L

−3L 4L2

] {
u
θ1

}

[k30]{u30} = EI0

L3

[
3 −3L

−3L 4L2

] {
u
θ2

}

[k50]{u50} = EI0

L3

[
3 −3L

−3L 4L2

] {
u
θ3

}

and

[k20]{u20} = EI0

L3

[
4L2 2L2

2L2 4L2

] {
θ1

θ2

}

[k40]{u40} = EI0

L3

[
4L2 2L2

2L2 4L2

] {
θ2

θ3

}
.

The assembled structural stiffness matrix is

[K]{u} = EI0

L3




+9 −3L −3L −3L
−3L 8L2 2L2 0
−3L 2L2 12L2 2L2

−3L 0 2L2 8L2







u
θ1

θ2

θ3


 .

After writing the virtual work expression, the applied load vector is

{Q} =




−F1 − F2

−M1

0
0


 .
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Putting these matrices into the standard Lagrange equation form of [M]{q̈} +
[K]{q} = {Q} completes the example. ★

EXAMPLE 4.8 Redo the above problem after removing the applied forces and
moment and applying the same enforced base motion u0(t) simultaneously at all
three supports, as indicated in Figure 4.6.

COMMENT It is always implied, in these problems where beam-columns can be in
compression, that the compressive loads produced by the motion and weight of
the masses are below the beam-column buckling loads. Otherwise, the stiffness of
a perfect column with respect to lateral bending loads is drastically lessened at or
above the buckling load. In those circumstances, the problem becomes nonlinear.

SOLUTION Once again, neither the mass matrix nor the system stiffness matrix is
affected by the change in the loading. All that needs to be done is to determine the
equivalent load vector from the beam element stiffness matrices for elements 10, 30,
and 50. After, for each of these elements, inserting the zero bending slope at the base,
and setting aside the top two rows of the original 4 × 4 element stiffness matrix, the
equivalent generalized force vector (with units that check) is

�Q� = EI0 u0(t)
L3

�(3 + 3 + 3) − 3L − 3L − 3L�. ★

4.6 Summary

Since almost all modern engineering structures have, at the least, complicated
geometries, almost all structural dynamic analyses today are carried out by means
of digital computer software that encodes the FEM. This chapter begins the process
of clarifying what is accomplished by FEM software by here building the matrix
equations of motion by hand for small problems using relatively simple structural
elements. All structural dynamics software employing the FEM, and all such hand
calculations, must, at a minimum, (i) identify the system (global) DOF, (ii) create
the system mass matrix, (iii) assemble a global stiffness matrix from the individual
element stiffness matrices, and (iv) assemble the applied load vector from a virtual
work calculation and/or assemble a support motion equivalent load vector from
element stiffness matrices. Note that temperature changes are usually sufficiently
slow to develop that they fall within the static load category. Therefore, thermal
effects are ignored in this textbook. However, there are cases where thermal effects
occur sufficiently quickly (relative to the first natural period) or sufficiently affect the
system stiffness that they must be considered. For example, thermal deformations
can be part of the dynamic deformations of a spacecraft whose rotations produce
cyclic heating and cooling. For example, the Hubble space telescope, when first
launched, experienced a thermo-servo-elastic instability. If thermal expansion
results in large compressive loads (compared to buckling loads), then the stiffnesses
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of the affected structure may be lessened to the point where such changes need
incorporation into the dynamic analysis.

Return to the above four listed tasks performed by FEM software for dynamic
analyses. The hand calculations of this textbook are intended to produce an under-
standing of those software steps. Illustrations of the first, third, and fourth tasks began
in the previous chapter. For hand calculations, selection of the system DOF requires
an understanding of the major motions of the structural system. Again, commer-
cial FEM software usually approaches the DOF selection by presuming that at each
node there are three unknown, orthogonal, translational DOF and three unknown,
orthogonal, rotational DOF, and complete continuity of translational and rotational
connections from each structural element to all other structural elements connected
to that node. As was discussed in the previous chapter, if a DOF is inappropriate, or
a connection at a node is not “rigid,” as would be the case for a connection modeled
as a hinge, then the software would require data input that identifies which DOF are
to be removed or made not continuous for which structural elements.

EXAMPLE 4.9 Reconsider the one-beam and two-column frame/grid structure of
Example 3.8 shown in Figure 3.10, which shows the applicable DOF for this system.
The stiffness matrix for that structure was developed in that example. Let the mass
supported by this structure be modeled as shown in Figure 4.7(a), where the 1 stands
for m1, and so on. Using the given DOF, arranged in the same order as that used
for the deflection vector, write the mass matrix for this structure. For the readers
convenience, Figure 4.7(b) repeats a sketch of the applicable DOF.

COMMENT The mass modeling illustrated in Figure 4.7(a) is more common than
that where values for mass moments of inertia and mass products of inertia are
estimated for a given system node. Here there are no such mass moments of inertia
associated with any of the four masses because, for example, the first and third masses
and their small, rigid interconnections represent two representative parts of a single,
more complicated (nearly rigid) mass and similarly for the second and fourth masses.
This approach has the advantage that the software estimates the mass moments and
products of inertia to be associated with the node. For study purposes, note that
this example is not as complicated as the general case where there are rigid bar
extensions in three orthogonal coordinate directions, and a full set of three angular
DOF. This latter case is addressed in Exercise 4.13, and should be carefully studied
as an application of the material of Figure 1.7.

SOLUTION The motions of masses three and four are determined by the translations
and rotations at masses one and two. The kinetic energy expression can be written
as follows:

T = 1/2
{
m1

(
u̇2

1 + v̇2
1

) + m3[(u̇1 − ey ψ̇1)2 + (v̇1 + ex ψ̇1)2 + (ex θ̇1 + ey φ̇1)2]

+ m2
(
u̇2

1 + v̇2
2

) + m4[(u̇1 − ez θ̇2)2 + (v̇2 − ez φ̇2)2]
}
.
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Figure 4.7. Example 4.9. (a) Structure and mass modeling (b) Generalized coordinates.

After factoring the above kinetic expression into the form 1/2�q̇�[m]{q̇}, the above
kinetic energy expression leads via the Lagrange equations to the following mass
matrix and acceleration vector:


m0 0 0 0 −m3ey 0 −m4ez 0 0

0 m1 + m3 0 0 m3ex 0 0 0 0

0 0 m3e2
x m3exey 0 0 0 0 0

0 0 m3exey m3e2
y 0 0 0 0 0

−m3ey m3ex 0 0 m3
(
e2

x + e2
y

)
0 0 0 0

0 0 0 0 0 m2 + m4 0 −m4ez 0

−m4ez 0 0 0 0 0 m4e2
z 0 0

0 0 0 0 0 −m4ez 0 m4e2
z 0

0 0 0 0 0 0 0 0 0







ü1

v̈1

θ̈1

φ̈1

ψ̈1

v̈2

θ̈2

φ̈2

ψ̈2




,

where m0 = m1 + m2 + m3 + m4. ★

The previous example problems emphasized beam bending. Figures 4.8 and
4.9 illustrate other types of elastic systems eminently suited to FEM description.
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Figure 4.8. Examples 4.10a and 4.10b.

Regardless of the nature of the structural system under study, this chapter has devel-
oped two strategies and two facts regarding structural dynamic analyses that should
always be kept in mind. They are, again:

1. Ignore all static loads (including linear prestressing) and all static deflections as
long as the total deflections are small.

2. Use generalized coordinates associated with the elastic elements because the elas-
tic elements are more complicated than the mass elements.

3. Any mass matrix is always symmetric and positive definite.

4. Any system stiffness matrix compiled from elastic elements stiffness matrices also
is always symmetric, and after the application of BCs that prohibit rigid body motion,
the stiffness matrix is positive definite. (If rigid body motion is possible, the stiffness
matrix is merely nonnegative definite, and, as will be seen, there will be as many zero
valued natural frequencies as there are possible rigid body motions.)

EXAMPLE 4.10A Write the matrix equation of motion for the torsional system of
Figure 4.8. The spiral symbol at the near end of the bar system represents a linearly
elastic torsional spring, that is, a perfectly elastic spring that resists the twisting of
the beam with a twisting moment directly proportional to the twist at its point of
connection to the bar. The proportionality factor between the torque and the rotation
is the spring constant Kt . The element stiffness matrix for a torsional spring is of the
same form as that for a translational spring. With φ1 being the twist at one end of the
torsional spring and φ2 being the twist at the other end (often zero), the torsional
spring element stiffness matrix is

{Mt } = [ke]{φe} or
{

Mt1

Mt2

}(e)

= Kt

[+1 −1
−1 +1

] {
φ1

φ2

}(e)

.
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SOLUTION Only three twisting DOF are required: φ1, φ2, and φ3. In terms of the
global DOF, after the insertion of the zero rotation conditions at the left end of bar
element 10 and the zero twist condition at the outer end of the torsional spring, the
stiffness matrices and deflection vectors for the first bar element and the torsional
spring reduce to the scalar quantities, respectively, (2GJ0/L)φ1 and (3GJ 0/L)φ3. The
stiffness matrices and deflection vectors for the beam 20 and beam 30 are, respec-
tively,

GJ 0

L

[+1 −1
−1 +1

] {
φ1

φ2

}
and

GJ 0

L

[+1 −1
−1 +1

] {
φ2

φ3

}
.

Therefore the assembled stiffness matrix and deflection vector are

[K ]{φ} = GJ 0

L


 3 −1 0

−1 2 −1
0 −1 4







φ1

φ2

φ3


 .

The mass matrix and the applied load vector are

[M ] = Hx


 2

1
0


 and {Q} =




0
−M1(t)

0


 .

Substitution into [M ]{q̈} + [K]{q} = {Q} completes the setup of the matrix equation
of motion. ★

EXAMPLE 4.10B Redo the above example problem where now, rather than a
clamped boundary at the left end of bar 10, there is an enforced, rotational base
motion Φ(t).

SOLUTION The mass matrix is unaltered because there is no change where the two
rotational masses are located. The previous applied load vector is unchanged, but now
it must be augmented by the effects of the base motion. The process of determining
the equivalent applied loads created by base motions begins with the element stiffness
matrices of each element connected to a moving support. Here, to illustrate a very
slightly different style of analysis, the full element stiffness for beam element 10 is
assembled into the global stiffness matrix. As a result, [K] has been increased in
size to account for the additional (known) DOF-type motion at the left support. The
expanded global stiffness matrix is

{Mt } = [K]{φ} = GJ0

L




2 −2 0 0
−2 3 −1 0

0 −1 2 −1
0 0 −1 4







Φ

φ1

φ2

φ3


 ,

where {Mt (t)} is the 4 × 1 vector of external moments at the system nodes. The top
entry of this vector is the moment at the base support. Rewriting the right-hand side
form of this moment vector by reducing it in row size so that it corresponds only to
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(b)

Figure 4.9. Example 4.11: (a) Pin-jointed truss and applied loads. (b) Bar element DOF and
orientation angle β. (c) Selected global DOF.

the system DOF (in effect, setting aside the top row) and separating out the factors
of the time function Φ(t), leads to the three row result

{Mt } = GJ 0

L




−2
0
0


 Φ(t) + GJ 0

L


 3 −1 0

−1 2 −1
0 −1 4







φ1

φ2

φ3


 .

Therefore the complete matrix equation of motion is
 2

1
0







φ̈1

φ̈2

φ̈3


 + GJ 0

Hx L


 3 −1 0

−1 2 −1
0 −1 4







φ1

φ2

φ3


 = GJ 0Φ(t)

Hx L




2
0
0


 − M1(t)

Hx




0
1
0


.

★

EXAMPLE 4.11 Write the matrix equations of motion for the planar, five-bar,
pin-jointed truss, loaded as shown in Figure 4.9(a).

COMMENT Since the deformations in this truss structure are axial deformations, the
bar axial deformations cannot be neglected relative to other types of deformations
because there are no other types of deformation in this mathematical model. This
lack of other types of deformation is a result of approximating the truss joints as
being pinned, which means the joints cannot develop bending moments.
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SOLUTION Recall that the element stiffness matrix for rotated beam or other ele-
ments is [Re]t [ke][Re], where [Re] is the rotation matrix that relates the element DOF
to the system DOF as {q}(e) = [Re]{q}. In the plane of the truss there is only one rota-
tion angle, which here is called β. Beta, and the global DOF, are positive, as shown
in Figure 4.9(c). The global DOF are selected to be horizontal and vertical for ease
of assembly of the global stiffness matrix. From Chapter 3, the rotated bar element
stiffness matrix and associated global generalized coordinate vector between nodes
1 and 2 are as follows11:

[ke]{q} = EA
L




cos2β cos β sin β −cos2β −cos β sin β

cos β sin β sin2β −cos β sin β −sin2β

−cos2β −cos β sin β cos2β cos β sin β

−cos β sin β −sin2β cos β sin β sin2β







u1

v1

u2

v2


 .

As always for a hand calculation, select generalized coordinates for the structure so
as to achieve the simplest fit between the element and global DOF. This is only a
matter of having the element and global DOF going in the same directions at the same
points. The global DOF are shown in Figure 4.9(c). Write the bar stiffness matrices by
(i) applying the global BCs (u1 = v1 = u4 = v4 = 0) to the element stiffness matrices,
(ii) noting that the triangles of the truss are 5-12-13 type triangles, and (iii) arranging
to have the common multiplier EA/L in front of each element matrix. The element
matrix results are

[k1,2]{q} = 2EA
2.4L

[1]{v2} = EA
L

[0.83333]{v2}

[k3,4]{q} = EA
L

[0.83333]{v3}

[k2,3]{q} = EA
L

[+1.0 −1.0
−1.0 +1.0

] {
u2

u3

}

[k1,3]{q} = EA
L

[
0.05690 0.13655
0.13655 0.32772

] {
u3

v3

}

[k2,4]{q} = EA
L

[+0.05690 −0.13655
−0.13655 +0.32772

] {
u2

v2

}
.

The number of significant figures used in the above matrices is wholly sufficient for
numerical accuracy for a problem of this very small size. However, more significant
figures may well be necessary for larger problems to avoid computational inaccuracies
in the processing required by the matrix equation solution process. However, any
inaccuracy in the description of the angles in the actual construction is treated by

11 Setting β equal to zero causes the bar element to be horizontal and the element and global DOF
to coincide. The 4 × 4 element stiffness matrix then has two rows and two columns of only zeros,
whereas the other two rows and two columns contain the easily derived, original 2 × 2 bar stiffness
matrix, [ke], introduced in Section 3.4. Thus it is clear that the 4 × 4 element stiffness matrix cen-
tered in the product [Re]t [ke][Re] is just the original 2 × 2 matrix expanded by rows and columns of
zeros.
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altering the βs. Assemble the above five element matrices to obtain the following
global stiffness matrix:

[K]{q} = EA
L




1.0569 −0.13655 −1.0000
−0.13655 1.1610
−1.0000 1.0569 0.13655

0.13655 1.1610







u2

v2

u3

v3


 .

For the mass matrix, the kinetic energy is simply

T = 1
2

m1
(
u̇2

2 + v̇2
2

) + 1
2

m2
(
u̇2

3 + v̇2
3

)
,

which can be put into matrix form as

T = 1
2
�u̇2 v̇2 u̇3 v̇3�




m1

m1

m2

m2







u̇2

v̇2

u̇3

v̇3


 .

The generalized force vector, as always, is obtained from the virtual work expression
δW = F1δu2 + F2δu3. Therefore,

{Q}T = �F1 0 F2 0�,

Now it is simply a matter of placing the above mass matrix, stiffness matrix, gener-
alized coordinate vector, and generalized force vector into [M]{q̈} + [K]{q} = {Q}.

★

4.7 **Offset Elastic Elements**

The final example problem explores the matter of beam element DOF (or other
types of element DOF) offset from the global generalized coordinates. The direct
way of dealing with offsets is relating the local element coordinates to the global
DOF by writing a coordinate transformation matrix. As will be seen, this is exactly
analogous to the above example problem where a rotation transformation matrix
was introduced. Again, the local stiffness matrix ends up being sandwiched between
the transpose of this coordinate transformation matrix and the coordinate transfor-
mation matrix itself. Thus, in the example discussed below, which is an analysis of
the two-beam structure shown in Figure 4.9, the use of a coordinate transformation
matrix from the local beam coordinates of the short beam to the global DOF (the
DOF of the long beam) provides a short beam element stiffness matrix that is imme-
diately ready to be assembled into the global stiffness matrix. Of course, commercial
software accomplishes these steps without any effort on the part of the analyst.

EXAMPLE 4.12 The structure shown in Figure 4.10 is capable of moving up, down,
and sideways; that is, in both the zand the y directions. The very large axial stiffnesses
of the beams prevents motion in the x direction and also prevents rotation about the
z axis. Therefore, use the indicated global coordinates �q� = �w θ φ v� to write
the small-deflection, matrix equation of motion for this clamped, two-beam, one-
rigid-mass grid-frame structure. For the short beam, let EI yy = EIzz = EI, the (area)
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z
y

x

w v

2L, 2EI, 2GJ

θ

φ

L, EI, GJ

M(t)

F(t)
e

2e

Figure 4.10. Example 4.12.

product of inertia EI yz = 0, and let GJ = 1/2EI. Let the corresponding bending and
twisting stiffness coefficients for the long beam be twice those values. The rigid bar
of length 2e has a mass m, and mass moments of inertia Hx = Hy = 1/2me

2.

SOLUTION The kinetic energy of the rigid mass is T = 1/2m[v̇2 + (ẇ − eφ̇)
2
] +

1/4me
2[θ̇2 + φ̇2]. The system mass matrix and the stiffness matrix for the long beam are

[M] =




m −me
me2

2

−me
3me2

2
m




[k1] {q} = EI
L3




3 −3L
−3L 4L2

L2

4
3







w

θ

φ

v


 .

Since for the short beam the element DOF can be described in terms of the global
DOF as

�qshort� = �(w − 2eφ) θ φ v�,

then

[k2] = EI
L3




1 0 0 0
0 1 0 0

−2e 0 1 0
0 0 0 1







12 6L 0 0
6L 4L2 0 0

0 0
L2

2
0

0 0 0 12







1 0 −2e 0
0 1 0 0
0 0 1 0
0 0 0 1




thus

[k2] = EI
L3




12 6L −24e 0
6L 4L2 −12eL 0

−24e −12eL (1/2L2 + 48e2) 0
0 0 0 12




and

[K] = [k1] + [k2].
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The virtual work leads to �Q� = �−F(t) 0 (2eF(t) − M(t)) 0�. Now all the
components of [M]{q̈} + [K]{q} = {Q} are in place. ★
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CHAPTER 4 EXERCISES

4.1 (a) Reconsider the beam of Figure 4.5. At the free end of that two-beam-
element beam, add a third massless beam element of length L and double stiffness
values exactly like that of the inboard beam. Like that previously inboard beam ele-
ment, let the new beam element also be clamped at its outer end so that the new
three-element beam model is clamped at both its outer ends. Write the new stiffness
matrix.

(b) If the lumped masses of the structure pictured in Figure 4.5 are unaltered by the
addition of the third beam element as in part (a), does the mass matrix change? Does
the applied load vector change?

(c) What changes in the analysis would be necessary if the BC at the base of the
frame of Figure 4.6 were changed from those of fixed beam ends to simply supported
beam ends?

4.2 (a) The one-beam, three-spring system shown in Figure 4.11(a) is undergoing
small, force free vibrations. (“Force free vibrations” means that the system was set
into motion at time zero and, in the absence of energy dissipative forces, has been
vibrating ever since.) Each of the two masses rotate and move vertically within the
plane of the paper as indicated by the labeled DOF. Write the matrix equation of
motion for this system.

(b) As above, but now the vibratory motion is forced (caused) by a base motion
w0(t), positive up, at the left-hand support, a counterclockwise bending moment
M0(t) acting on the smaller of the two masses, and a downward force F0(t) acting on
the larger mass.

(c) The up-and-down displacement of the fixed support for the massless, cantilevered
beam shown in Figure 4.11(b) is described by the time function v(t). Let the beam-
supported mass be connected at its center of mass to the cantilevered beam tip by
a frictionless pin. Let the mass start its motion, u(t), at time zero without either an
angular deflection or an angular velocity. Note that from the concept of conservation
of angular momentum (which is Eq. (1.3b) in the absence of a moment acting on the
mass), the stipulated frictionless pin connection means that the mass continues to
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(a)
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H
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L3

3EI0
L

v(t)
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(b)

SEP

Figure 4.11. (a) Exercises 4.2(a) and (b). (b) Exercises 4.2(c)–(e).

have a zero rotation as the mass moves up and down. Thus this is a system that requires
only the single translational DOF, u(t). Use the finite element method beam element
stiffness matrix to write the small deflection equation of motion for this system in
terms of u(t).

(d) Write the equation of motion for the system in part (c) in terms of the DOF
w(t), which is the deflection of the beam tip relative to the beam support. Show that
either equation of motion provides the same expression for the natural frequency for
this single-DOF system. (Since the natural frequency of any system is independent
of any applied loads or enforced motions, in this case it can be interpreted to be the
vibratory frequency when v(t) = 0.)

(e) Would the equation of motion for the system of part (c) change if the rail guiding
the rigid beam support were horizontal rather than vertical as shown, and the beam
supporting the mass were vertical rather than horizontal?
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Figure 4.12. Exercise 4.3

4.3 (a) The three-mass-element, two-beam-element, two-spring-element structural
model of Figure 4.12 is one where the structural and nonstructural mass has been
lumped as shown. Note that the system is subjected to an applied force acting at node
4. If the beam ends at nodes 1 and 5 are fixed, then write the matrix equation for
up-and-down motion within the plane of the paper.

(b) As above, but this time there are simple supports at nodes 1 and 5.

(c) As in part (a), where the far beam ends are clamped, but this time there is a
frictionless hinge at the point (node 3) where the central, lumped mass is attached
to the two beam and two spring ends. In this case, the central mass does not rotate.

(d) As in part (a), but this time the applied force is removed, and the system is now
driven by means of a known vertical motion w1(t), positive up, occurring at node 1.

(e) As above, but now let the enforced motion be θ5(t).

4.4 (a) Write the stiffness matrix for the antisymmetric vibrations of the beam of
Figure 4.3.

(b) Is there any difference between the mass matrices for the symmetric and anti-
symmetric matrix equations of motion?

4.5 The example analyses of the beam grid of Figure 4.4 concerned the out-of-plane
bending and torsion of that structural system. Now consider the same structure as a
beam frame, where now the vibratory motion occurs entirely within the x, y plane.
Change the original applied loads to a single moment, M3, whose vector axis parallels
the z axis and that is located at the juncture of beam elements 40, 50, 60, and 70. That
is, replace F(t) with M3(t) and delete M1(t) and M2(t). Let the mass moments of
inertia about the z axis for both lumped masses be Hz, and let the bending stiffness in
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Figure 4.13(a). Exercise 4.9(a): Geared torsional vibration system. (b) Exercise 4.9(b).

the plane be the same as it is out of the plane. Write the matrix equations of motion
for this system. Treat the axial (i.e., longitudinal) stiffness of the beam elements as
infinite.

4.6 (a) Redo Example Problem 4.6 (Figure 4.5) where now the enforced motion at
the wall is only w0(t).

(b) Redo Example Problem 4.6 (Figure 4.5) where now the enforced motion at the
wall is only θ0(t).
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Figure 4.13(c). Exercise 4.9(c): Contilevered beam with mass modeling and selected global
DOF.

(c) Redo Example Problem 4.8 where now the enforced base motion is only a rota-
tion about the z axis at the right-hand base support.

4.7 (a) Reconsider the beam of Figure 4.1(a). Are the natural frequencies of this
beam increased or decreased when additional nonstructural mass is distributed along
the length of the beam?

(b) As above, are the natural frequencies of the original beam increased or decreased
if the beam cross section is rearranged so as to increase the beam cross-sectional area
moment of inertia Iyy without altering the beam mass per unit of beam length? That
is, increase Iyy without altering A, the beam cross-sectional area.

4.8 (a) Consider any simply supported, uniform beam. Is the first natural frequency
increased or decreased if all the mass of the beam is concentrated at the center of
the beam? (Only an answer based on the reader’s intuition is expected at this point.)

(b) As above, but this time in accordance with the discrete mass modeling techniques
discussed in this chapter, the entire distributed mass is replaced by half the total mass
lumped at midspan.

4.9 (a) Write the equations of motion in symmetric matrix form for the torsional
vibration of the geared system shown in Figure 4.13(a).

(b) Write the equations of motion in symmetric matrix form for the two-mass beam
grid shown in Figure 4.13(b). As per usual, treat all beam elements as inextensible
and be assured that all motions other than those indicated by the labeled DOF are
prevented by unseen constraints. Let GJ = EI, and be sure to note that the system
is being driven by a known, vertical motion, w0(t), at the left-hand support.

(c) The uniform, cantilevered beam shown in Figure 4.13(c) supports a three part
tip mass and is being driven by a support motion h(t) as shown. As pointed out
previously, it is generally more advantageous to select generalized coordinates that
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Figure 4.14. Exercise 4.10: Three-dimensional structure with eight columns.

simplify the writing of the stiffness matrix while allowing complications in the mass
matrix. Therefore, using as appropriate, the standard DOF indicated in the sketch
in the order {v2 ψ2 w2 θ2 φ2}, write the stiffness matrix for this beam. To that
end, as per usual, model the beam as having no shearing deformations, and note that
here

EIyy = 3EI0, EIzz = 2EI0, GJ = EI0, EA= ∞,

where, for example, Iyy is the area moment of inertia about the y axis. Hint: If you are
not sure a motion will occur, include that DOF to be safe. If the motion doesn’t occur,
the associated DOF will have a zero solution. Determine the equivalent generalized
force vector, {Qeff }.
(d) Write the mass matrix for the same single, cantilevered beam of part (c). Note
again that in lieu of estimating mass moments of inertia, the mass is modeled in three
interconnected parts as shown. Since L � e, each of the three short extensions e j is
to be considered rigid. Use the same DOF employed in part (c).

4.10 The structure of Figure 4.14 is a roof slab supported by eight identical beam-
columns that are fixed at their bases and rigidly attached to the roof. The roof is
sufficiently stiff in its own plane to be treated with respect to motion in the x, y plane
as a single rigid mass of lateral dimensions L by 3L. The bending stiffness coefficients
of the columns are EI0 about the y axis, and 2EI0 about the x axis. Crudely model
the individual beam torsional stiffness coefficients, GJ, as negligible.

(a) What is the natural frequency of this structure for a side-sway motion in the x
direction?

(b) As above, but for a side-sway motion in the y direction.

(c) As above, but for a rotation about the z axis.
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Figure 4.15. (a) Exercise 4.11: Two-story frame with mass modeling. (b) Exercise 4.11: degrees
of freedom.

(d) When the beam-columns are modeled as axially rigid as well as the roof being
modeled as rigid, are there natural frequencies for this model other than the three
considered above?

4.11 Consider the two-story, clamped frame shown in Figure 4.15(a). The beams that
comprise the frame have, as indicated in the sketch, uniformly distributed masses of
magnitudes m or 2m, where m is in units of mass per unit of beam length. The frame
also supports a rigid mass of magnitude 2.5mL at the top of each beam-column on a
rigid, vertical extension of magnitude e above the roof beam centerlines. These rigid,
vertical extensions are rigidly connected to the frame corners. As per usual, treat
all the beams as inextensible. Thus choose the two lateral DOF and four rotational
DOF shown in Figure 4.15(b).

(a) Convert the distributed masses of the beams to discrete masses. For the sake of
simplicity, lump mass only at the four beam joints. Do not make any provision for
mass moments of inertia associated with the mass of the beams.
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Figure 4.16. Exercise 4.12. Two beam structure with off-set mass.

(b) Write the mass matrix for this frame.

(c) Write the stiffness matrix for this frame.

(d) Write the applied load vector for this frame.

4.12 Consider the two-beam-element, grid-frame, shown in Figure 4.16. Note the
coordinate system and the required four nonzero, DOF and two enforced base
motions. Understand that beam 10 is being forced to bend about its y axis by the
enforced base motion u3(t). Beam 10 is also being forced to bend about its z axis and
twist about its x axis by the v3(t) enforced base motion. The two excitation functions,
u3(t) and v3(t) can be considered the x and y components of a single base motion.
There is only one mass and it is offset in the x and y directions from node 2 by two
rigid extensions of lengths ex and ey. The data for the beam stiffness coefficients are

beam 10: EIyy = 5EI0 EIzz = 3EI0 GJ = EI0

beam 20: EIxx = EI0 EIyy = 2EI0 GJ = EI0.
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Figure 4.17. Exercise 4.13. Mass with three offsets from its associated node.

(a) Write the kinetic energy expression and state the mass matrix when the deflection
vector entries are ordered as follows: v2, θ2, φ2, and ψ2.

(b) Write the stiffness matrix and equivalent force vector for this structure using the
same deflection vector.

4.13 Consider the lumped mass offset by rigid extensions from the beam node shown
in Figure 4.17. Write the kinetic energy expression for that mass m. All six of the pos-
sible DOF at the node are active except for the axial displacement u. Use the kinetic
energy expression to create the mass matrix and acceleration vector for this node.

4.14 Write the Lagrange equations of motion for the three-bar truss supporting the
mass m and the applied force F(t), as shown in Figure 4.18.

For the eager

4.15 Write the free vibration equations of motion in symmetric matrix form for the
cantilevered beam grid shown in Figure 4.19. Let the distance between the two beam
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Figure 4.18. Exercise 4.14: Planar truss.
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Figure 4.19. Exercise 4.15: Two beam elements connected by one rigid element.

tips be 2e, and model the structural element connecting the beam tips as rigid. Let
GJ = EI for the beam elements of length �. Be sure to understand that only the three
indicated DOF are necessary to describe this structural system because the motion
of the right-hand beam tip controls the motion of the left-hand beam tip through the
constraints imposed by the rigid connection between the two beam tips.

4.16 Chapter 8, which deals with continuous structural elements (for example,
beams, plates, etc., modeled with distributed mass), shows that the general descrip-
tion of the (small) motion for such a system is one or more linear partial differential
equations of the form

P[w(x, t)] + H[w(x, t)] = �(t),

where t is time; x represents spatial variable(s) in one-, two-, or three-space;
w(x, t) = wstat(x) + wdyn(x, t) is the unknown total deflection; P is a linear, even-
order, spatial, partial derivative operator involving geometric and material parame-
ters, such as (∂2

/∂x2)[EI(x)(∂2
/∂x2)] in the case of beam bending; H is a linear, even-

order, temporal, partial derivative operator involving geometric and material factors,
such as ρ A(∂2

/∂t2) in the case of beam bending; and �(t) = �stat (x) + �dyn(x, t) is
the total applied load. Mimicking the procedure followed in the case of matrix equa-
tions of motion, show that the dynamic small deflection and load equation can be
entirely separated from the static small deflection and load equation.

4.17 Prove that the global mass matrix [M] of the equations of motion, [M]{q̈} +
[K]{q} = {Q}, when derived from a valid kinetic energy expression for lumped
masses, is (a) a symmetric matrix and (b) a positive definite matrix. Hint: A proof
for symmetry can begin with Eq. (1.17) rearranged to form a matrix triple product
where the central matrix is a 6 × 6 matrix.

4.18 Determine what is logically invalid about the following proof that the mass
matrix is symmetric: Consider the general matrix expression for the kinetic energy.
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Since 2T = �q̇�[M]{q̇} is a scalar, which is a 1 × 1 matrix, its transpose is equal to itself:

∴ 2T = �q̇�[M]{q̇} = �q̇�[M]T{q̇}
∴ �q̇� (

[M] − [M]T) {q̇} = 0.

Since the velocity vector is entirely arbitrary, the false conclusion is that the mass
matrix equals its own transpose and hence is symmetric.

ENDNOTE (1): MASS REFINEMENT NATURAL FREQUENCY RESULTS

The Abaqus digital computer program is a large, commercially available, finite ele-
ment analysis program. In units of hertz (cycles per second, that is, f not ω), the
following natural frequency results were obtained using Abaqus for the simply sup-
ported beam model of Figure 4.1(c). For the purposes of these calculations, m =
1.0 lb.-sec2/in., total beam span length = 8L = 80.0 in., E = 10,000,000 psi, and
the square beam cross section is 2 in. × 2 in. Note again that natural frequencies
are always numbered and subscripted so that the lowest value is the first natural
frequency, the second lowest is the second natural frequency, and so on. This num-
bering system generally corresponds to the importance of those natural frequencies.
The mass modeling used for the first table numerical results placed half the beam
segment mass at the segment ends.

I. Natural frequencies for mass at segment ends

Freq.
no.

Two segments/
one mass

Four segments/
three masses

Eight segments/
seven masses

Exact strength of
material solution

1 2.8135 2.833 2.834 2.834
2 11.254 11.333 11.336
3 23.895 25.460 25.506
4 45.016 45.345

Notes: 1. The one mass of the one-mass case has magnitude 4m and is located at 4L = 40 in. from the
left-hand beam end.

2. Each mass of the three mass case is 2m, and they are located at 20, 40, and 60 in. of the span.

3. Each mass of the seven mass case is m, and they are located at 10-in. intervals.

4. Since the two-segment, one-mass case is a one-DOF system, there is only one natural frequency
and similarly there are only three natural frequencies for the three-mass case, and so on.

5. Symmetry was not used in this analysis.

The frequency result for a one-beam-segment, one-mass case (a one-DOF system),
where the part of the beam mass is discretized at the beam center, can easily be
calculated by hand because the discrete stiffness k at the simply supported beam
center is 48EI/(8L)3. If, for example, the entire beam mass 8m is placed at the beam
center, the estimate of the first natural frequency, the square root of k/(8m) is 1.99 Hz,
a very poor estimate. However, if only half the beam mass, 4m, is placed at the beam
center, as is done using the discretization process of the first table, then the result is
the much more accurate value of 2.813 Hz. Further, notice that this one-mass case,
and all the other discrete mass cases, do not include any estimates for the beam mass
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moment of inertia. Be advised that the strength of materials “exact” solution also
does not include any effect of the beam mass moments of inertia. Thus it is not correct
to use this data to support the correct conclusion that those beam mass moments of
inertia are unimportant.

For the sake of comparisons, the mass modeling for this second table placed the
lumped mass at the center of the beam segment.

II. Natural frequencies for mass at segment centers

Freq.
no.

Two segments/
one mass

Four segments/
three masses

Eight segments/
eight masses

Exact strength of
material solution

1 2.8135 2.833 2.834 2.834
2 7.758 11.254 11.333 11.336
3 23.895 25.460 25.506
4 31.831 45.016 45.345

Notes: 1. Each mass of the two mass case has magnitude 4m, and they are located at 2L = 20 in. and
6L = 60 in.

2. Each mass of the four mass case is 2m, and they are located at 10, 30, 50, and at 70 in.

3. Each mass of the eight mass case is m, and they are located at 10-in. intervals with the left-most
mass located at a distance of 5 in. from the left end.

The conclusion is that there is no difference between the two approaches to creating a
discrete mass model with respect to the accuracy of the calculated results. (The reason
why this is so is discussed in the next endnote.) However, placing the discretized mass
at the beam segment ends sometimes leads to a slightly simpler model per beam
segment, as is the case here, in that there are one fewer masses and one fewer beam
finite elements with that approach relative to placing the mass at the beam segment
center.

As an aside, note that the lower the number of the natural frequency, the better
the accuracy of the FEM calculation.

ENDNOTE (2): THE RAYLEIGH QUOTIENT

The two purposes for this endnote are (i) to first introduce the Rayleigh quotient,
which is a special application of the Rayleigh–Ritz or Ritz method of analysis; and
(ii) to explain why the two different mass models of Figures 4.1(c) and (d) pro-
duce the same finite element solutions for their first four natural frequencies. Today,
the frequency of use of the Rayleigh quotient is much like that of the Rayleigh–
Ritz method (RRM), which is seldom used. In the wake of the development of the
computer based FEM (which can be viewed as a subcase of the RRM), the useful-
ness today of the Rayleigh–Ritz method is mostly confined to providing qualitative
insights rather than quantitative answers. That is the reason why this once-important
topic is now discussed in an endnote.

As for the second purpose of this endnote, recall that the segment centered beam
mass model has eight equal masses of magnitude m, whereas the segment end beam
mass model has only seven masses of magnitude m, each of which is located halfway
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between the positions of two of the masses of the eight-mass model. That is, the
models are different enough to raise the question as to why they produce the same
natural frequency results. Since an extensive introduction to the Rayleigh quotient
is necessary before proceeding further, the purpose of explaining the equivalence of
the two mass models is not realized until the last two paragraphs.

As for the Rayleigh quotient, consider the simply supported beam of Figure 4.1(a)
as it undergoes bending vibrations within the plane of the paper. As the figure indi-
cates, there are no external loads acting on the beam system, so the beam’s vibration
is termed natural or (force) free. Let the vibration be solely the result of an initial
displacement. Furthermore, as has been done in all the previous analyses, allow the
approximation that all energy dissipative forces, which are always present in any real
system, are absent here. In this circumstance, the beam is said to be “undamped.”
(As is seen later, this is a good approximation over a short period of time.) Then, the
total energy of the beam system, the sum of the kinetic and internal strain energies, is
a positive constant. That is, � = T + U = const. > 0, where neither T nor U is ever a
negative quantity.12 (Recall, that because this is a linear structural dynamics problem,
the static gravitational forces and their potentials can be ignored when calculating the
purely dynamic results such as natural frequencies and natural vibration deflection
shapes.) At the time the beam starts its vibration from its initial deflection shape,
and at each later point in time when each point along the axis of the beam reaches
its peak deflection position, before reversing direction in its back-and-forth motion,
the velocity of every point on the beam axis is zero.13 Hence at this point in time the
kinetic energy is necessarily zero. Since the total energy is a positive constant, this
must also be the point in the vibration cycle when the positive valued strain energy is
a maximum. Therefore, � = Umax. There is also another point in time when the entire
beam passes through its horizontal static equilibrium position. At that point in time,
because there are no deflections beyond the SEP, the dynamic portion of the beam
strain energy is zero. Thus, as above, it is also true that � = Tmax. This specialized
form of the conservation of energy equation, Tmax = Umax, can be used to estimate the
natural frequencies of structures such as the vibrating beams of Figures 4.1(c)
and (d).

To estimate the value of the small-deflection, first natural frequency for the two
different beam mass models under discussion, it is necessary only to estimate (i.e.,
carefully guess) the distribution of vibratory amplitudes of the masses (called the
mode shape) of each beam as it vibrates at its first natural frequency. To explain, a
mode shape is a set of the relative amplitude values of the various mass components
of the structure. Mode shapes are often arranged as simply the ratios of deflection

12 The fact that T is “positive definite,” the mathematical way of saying never negative, stems from the
basic notion that any motion imparts (positive) kinetic energy to a mass. This positive definiteness
is reflected in the general kinetic energy equation, Eq. (1.17). When the body axes are chosen to be
principal axes that cause the matrix [H ] to be a diagonal matrix, it is clear that T always depends on the
squares of velocities. Ref. [4.2], Chapter 1 exercises, establishes the positive definiteness of the strain
energy.

13 Verification that undamped motion is such that all points along the beam length reach their maximum
deflections at the same time, and together pass through the static equilibrium position at the same time,
must wait until Chapter 5.



P1: ICD
0521865743c04a CUFX001/Donaldson 0 521 86574 3 September 9, 2006 23:34

208 FEM Equations of Motion for Elastic Systems

amplitudes of each mass element to the maximum deflection amplitude of the
structure as the structure undergoes a natural frequency vibration. The estimation
of the relative amplitudes is at the heart of the Rayleigh quotient. These estimates of
the true deflection shapes are sometimes called assumed modes. See Refs. [4.3, 4.4].
When there is only one assumed mode, the analysis method is called the Rayleigh
quotient or Rayleigh method. Ritz extended the Rayleigh method by using more
than one assumed mode.

Confidence in estimating the required deflection patterns of force free vibrating
structures with simple geometries and isotropic materials comes quickly with expe-
rience gained by observing mode shape solutions obtained by other methods. If
no guide in the form of previous experience is available, a satisfactory estimate of
the vibratory amplitudes associated with the first natural frequency for even a very
complicated structure is any set of amplitudes proportional to the structure’s static
deflections due to gravity. See also Ref. [4.1]. The reason that the Rayleigh quotient
once held considerable importance is that even if the guess for the deflection pat-
tern for the vibrating structure is only a rough approximation to the true amplitude
shape, the calculated result for the natural frequency is much more accurate than
that of the selected deflection amplitude estimate. It is worth repeating that even a
somewhat crude deflection estimate produces a satisfactory approximation for the
natural frequency [4.3].

To use the Rayleigh quotient for the estimation of the first natural frequencies
of the lumped mass beams of Figures 4.1(c) and (d), guess that the approximate,
overall deflection shape of both beams vibrating at their first natural frequencies is
the function sin(πx/8L). This is an easy approximation to make for the lumped-mass
beam models because, as noted previously, that is the “exact” strength of materials
solution for the similar, uniformly distributed mass beam model. Thus, where the
constant A is a small14 but arbitrary amplitude (not an area), the vertical deflection
of any point along the beam can be written as the continuous function

w(x, t) = Asin(πx/8L) sin ωt .

Then the velocity and curvature of any point along the beam are, respectively,

(d/dt)w(x, t) = Aω sin(πx/8L) cos ωt .

and (d2/dx2)w(x, t) = −A(π/8L)2sin(πx/8L) sin ωt .

On the way to writing Tmax = Umax, the general equations for the beam kinetic energy
and elastic strain energy are [4.1,4.3]

T = 1/2

∫
�

m(x)[ẇ(x, t)]2dx

and U = 1/2

∫
�

EI(x)[w′′(x, t)]2dx

14 “Small” so as to avoid nonlinear elastic effects.
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where here m(x) =
n∑

i=1

miδ(x − xi )

and EI(x) = EI = const., (4.4)

where � is the total beam length (8L in this case), mi = m, xi is the lengthwise coor-
dinate location of the lumped mass, and the upper summation index n is 7 for the
beam model of Figure 4.1(c) and 8 for the beam model of Figure 4.1(d). The Dirac
delta function, δ(x − xi ), of the mass summation expression is explained in detail in
Chapter 7. For the moment, just consider that roughly it produces a unit value in the
evaluation of the integral whenever x = xi , and zero elsewhere.

At the respective maximum values of the kinetic and strain energies, their associ-
ated sine and cosine time functions have their maximum values, 1. Therefore,

Tmax = 1/2
n∑

i=1

A2miω
2

8L∫
0

δ(x − xi )sin2
(πx

8L

)
dx

= 1/2A2miω
2

n∑
i=1

sin2
(πxi

8L

)

Umax = 1/2EI
( π

8L

)4
A2

8L∫
0

sin2
(πx

8L

)
dx

= 1/4EI
( π

8L

)4
A2

8L∫
0

[
1 − cos

(πx
4L

)]
dx

= EI
( π

8L

)4
A2(2L).

With the deflection amplitudes canceling, Tmax = Umax produces the result

ω2 = π4 EI
1024 mi L3

1
γ

where γ =
n∑

i=1

sin2
(πxi

8L

)
.

It should be clear that the use of the Rayleigh method is simpler when the mass
distribution is modeled as being distributed.

From the above solution for the square of the natural frequency, it is clear that
the only difference between RRM analysis for the beam of Figure 4.1(c) and that of
Figure 4.1(d) lies in the computation of γ . The simplest way to show that γ is the
same for both beam models is to make a hand calculation for both cases. Using the
symmetry of the sine function about the beam center makes each calculation consist
only of summing four terms. The required values of xi for the beam of Figure 4.1(c)
are simply L, 2L, 3L, (each term to be counted twice) and (to be counted just once)
4L. The xi values for the beam of Figure 4.1(d) (each term to be counted twice) are
L/2, 3L/2, 5L/2, and 7L/2. The result for each sum is the same value 4.0. Hence
the RRM estimate for the first natural frequency is the same for both forms of mass
modeling.
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ENDNOTE (3): THE MATRIX FORM OF THE LAGRANGE EQUATIONS

The matrix form of the Lagrange equations presented in Eq. (4.2) can be justified
as follows. Start with the demonstrated forms of the kinetic energy and the strain
energy,

T = 1/2�q̇�[M]{q̇} U = 1/2�q�[K]{q},
where, again, this form of the kinetic energy comes directly from the previously
derived equation T = 1/2

∑
mj ṙ j • ṙ j and a representation of the position vector as a

function of the generalized coordinates. The above form of the strain energy was here
obtained from a virtual work expression for the elastic forces acting on the discrete
masses. The variation of these two quantities, because of the symmetry of the mass
and stiffness matrices, is

δT = �δq̇�[M]{q̇} δU = �δq�[K]{q}.
Using the chain rule for differentiation, the variation of the kinetic energy and the
variation of the strain energy can also be represented as

δT = Σ
∂T
∂q̇ j

δq̇ j = �δq̇�
{

∂T
∂q̇ j

}
δU = Σ

∂U
∂qj

δqj = �δq�
{

∂U
∂qj

}
.

Subtract the corresponding quantities of the above two sets of equations and obtain

0 = �δq̇�
(

[M]{q̇} −
{

∂T
∂q̇ j

})
0 = �δq�

(
[K]{q} −

{
∂U
∂qj

})
.

Now the argument is made that in each of the above two equations, the row matrix
of the varied quantity is entirely arbitrary with respect to the quaintity within the
parantheses. That is, the terms of either row matrix can be chosen arbitrarily. What-
ever the choices made for the row matrices, the matrix product is zero. The only way
that this is possible is that the quantities within the parantheses must be zero. Thus
the conclusion

[M]{q̇} =
{

∂T
∂q̇ j

}
[K]{q} =

{
∂U
∂qj

}
.

Insertion of the right-hand side vectors into the Lagrange equation, and noting that
the mass matrix is a matrix of constants, yields Eq. (4.2).

ENDNOTE (4): THE CONSISTENT MASS MATRIX

The FEM consistent mass matrix for the distributed mass of a single, uniform beam
element that is bending in the x, z plane, is derived, as are all mass matrices, from
the kinetic energy expression for the beam element. Without accounting for rotary
inertia effects for the beam cross section, the beam bending kinetic energy expression
is

T = 1/2
�∫

0
ρ(x)A(x)[ẇ(x, t)]2dx. (4.5)

Let the area and mass density be constants. Then use the same four beam bending
shape functions, N1(x) through N4(x) (the four cubic splines) for the element lateral



P1: ICD
0521865743c04a CUFX001/Donaldson 0 521 86574 3 September 9, 2006 23:34

Endnote (5): A Beam Cross Section with Equal Bending and Twisting Stiffness 211

deflection that are used to obtain the beam bending element stiffness matrix (the
reason for the characterization of the mass matrix as “consistent” with the stiffness
matrix). That is, use the velocity distribution description

ẇ(x, t) = �N1(x) N2(x) N3(x) N4(x)�




ẇ1

θ̇1

ẇ2

θ̇2


 ,

where

N1(x) = 2(x/�)3 − 3(x/�)2 + 1

N2(x) = �[(x/�)3 − 2(x/�)2 + (x/�)]

N3(x) = −2(x/�)3 + 3(x/�)2

N4(x) = �[(x/�)3 − (x/�)2],

in the kinetic energy integral. Then evaluate the integral, and cast the result in the
usual matrix form of T = 1/2{qe}t [me]{qe}. Insertion of this kinetic energy expression
into the Lagrange equations leads directly to the result

[me]{q̈e} = ρ A�

420




156 22� 54 −13�

22� 4�2 13� −3�2

54 13� 156 −22�

−13� −3�2 −22� 4�2







ẅ1

θ̈1

ẅ2

θ̈2




(e)

.

This result has the apparent advantage that it provides an estimate of the rotary inertia
effects associated with the element nodal rotations that result from the distribution of
the mass along the beam axis. However, studies have shown that this advantage does
not seem to lead to increased numerical accuracy. Moreover, this consistent mass
matrix requires many more machine calculations than the unrefined mass matrix
previously discussed, which is, for the sake of comparison, when the element mass is
lumped at the element ends,

[me]{q̈e} = ρ A�

420




210 0 0 0
0 0 0 0
0 0 210 0
0 0 0 0







ẅ1

θ̈1

ẅ2

θ̈2


.

Hence distributed mass matrices are not often used.

ENDNOTE (5): A BEAM CROSS SECTION WITH EQUAL BENDING
AND TWISTING STIFFNESS COEFFICIENTS

The material properties G and E are related by the formula

G = E
2(1 + ν)

,

where ν is the Poisson ratio. Therefore, to begin this example design problem in a
reasonable manner, choose the Poisson ratio for steel, which is 0.25. Then G = 0.4E.
Therefore to obtain the equality GJ = EI, it is necessary for J = 2.5I. A beam cross
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15.352t
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Figure 4.20. Endnote (4): A steel beam cross section for which GJ = EIyy.

section with such a relationship between the torsion constant and the area moment
of inertia must be relatively stiff in torsion. Hence the easiest way to create such
a beam is to look at closed-beam cross sections. A thin circular cross section falls
short in that the J/I ratio is only 2.0 rather that the required 2.5. See Ref. [4.1].
Considering thin rectangular cross sections, fixing the thickness as t and the depth at
6t , and then calculating the required width produces the result shown in Figure 4.20.
For this compact cross section, J = 795t4 and Iyy = 318t4.
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5 Damped Structural Systems

5.1 Introduction

The purpose of this chapter is to introduce damping forces into the structural equa-
tions of motion. Simply speaking, damping forces are internal or external friction
forces that dissipate the energy of the structural system. Although damping forces
are usually much smaller than their companion inertia and elastic forces, they nev-
ertheless can have a significant affect on a vibratory motion, especially after many
periods of vibration, or when the system is vibrating at one of certain important fre-
quencies called the system’s natural frequencies. This chapter describes various ways
of characterizing damping and explains how the damping properties of a vibratory
system can be measured. Solutions for the motion of one-DOF systems are presented
for force free and certain applied forces to better explain the role that damping plays
in structural systems.

5.2 Descriptions of Damping Forces

When an actual, force free, structural system is set in motion by means of initial
deflections or initial velocities, or both, any point within the system generally vibrates
with amplitudes that are very little different over short time intervals; that is, time
intervals lasting typically five or fewer periods of the vibration. Figure 5.1(a) shows
the calculated amplitude–time trace of such a vibration where the period T of the
vibration is 1 sec and the initial displacement has a unit value. As will soon be
seen, the sinusoidal expression that describes the force free motion of a one-DOF
undamped system, has to be modified, in this case by an exponential multiplier, when
one representative form of system damping is present. The Mathematica instruction
is at the top of the graph and is easy to read as plot

e(−0.01t) cos 2π t , 0 ≤ t ≤ 10.

The selected value of the friction measure (the 0.01 of the exponential function)
is on the low side for a typical structure but somewhat representative of a new
aluminum structure that is well built, firmly supported (or wholly unsupported, such

213
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Plot[{E∧(−.05t) Cos[2 Pi t]},{t,0,10}]

Figure 5.1. Typical vibratory time histories (from Mathematica).

as an aircraft), and well maintained.1 Figure 5.1(a) demonstrates for such a structure
that the effects of friction can be entirely omitted from the mathematical model
of the structure, and still the change in the original value of the amplitude of the
vibration during the first few cycles is still within engineering accuracy. If, however,
the structure is “loose” (i.e., the rivets or bolts are not tight so that there is a lot of
sliding friction or the supports are not wholly firm), then the decay in the vibratory
amplitudes can be such as shown in Figure 5.1(b) or even greater. In this latter figure,
there is a very noticeable decrease in the vibratory amplitudes over five cycles that
well exceeds the limits of engineering accuracy if the effects of the frictional forces
are ignored.

The loss of deflection amplitude is also a loss of strain amplitude. For example, from
FEM theory, the general, small deflection matrix equation suitable for any structural
finite element is {ε} = [B]{q}, where {ε} is the vector of engineering strains and [B] is
a coefficient matrix of spatial variables. This linear equation shows the unsurprising
relationship that the strain magnitudes are directly proportional to deflection (DOF)

1 From Ref. [5.1], the measure of damping used in the exponential function for a riveted steel structure
is 0.03 (and less for a welded steel structure). For aluminum aircraft, it is usually set at 0.02 or a bit
more.
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magnitudes. The loss of deflection magnitude is a loss of strain energy, because, as
before, U = 1/2{q}t[K]{q}. Since, as will be seen, velocity amplitude is nearly propor-
tional to deflection amplitude, there is also always a loss of kinetic energy. The kinetic
energy for structural systems undergoing small displacements, from Section 4.4, can
always be written as T = 1/2{q̇}t[M]{q̇}. Therefore the decrease in amplitude indicates
a decrease in the sum of these two energies, T + U, which is the total mechanical
energy of the structural system at any time. Dissipated energy is the name applied to
the reduction in the total mechanical energy. The dissipative energy can take the form
of an increase in heat energy, the work of (local) plastic deformations, sound energy,
and so on. From a use of the above strain energy and kinetic energy expressions, the
reverse argument can be made that a loss of total mechanical energy can be seen
as a cause for the loss of vibratory amplitude. The reason that friction forces always
involve an energy loss is simply that, by definition, friction forces always oppose the
motion and hence always do negative work. Doing negative work on any system is
the same as decreasing the total mechanical energy of that system.

To avoid any possible confusion, note that the so-called friction force associated
with an ideally round body rolling on an ideally flat surface, the force that enforces
the nonslip rolling condition discussed in Chapter 2, is actually a force of constraint
and as such does zero work. The loss of energy (i.e., the source of negative work done
on the system) that occurs when an actual wheel, of, say, an automobile, rolls on a flat
surface is mostly because of the otherwise round wheel base being flattened by the
weight the wheel supports. As a result of this flattening, to maintain its kinetic energy,
the wheel requires a constant applied torque, say, from the engine, to overcome the
resisting moment that is the product of the weight on the wheel and half the chord
length of the flattened arc that is in contact with the surface. The wheel weight also
slightly depresses the flat surface. Hence the wheel will always be situated in a slight
depression and therefore always rolling uphill.

Returning to the discussion of friction, note that friction is everywhere. Therefore
every system in motion has negative work done on it by friction forces. If that lost
energy is not offset by positive work done on the system by some external source,
the sum of the kinetic and strain energy will continuously decrease. It should be
intuitively clear that a continued decrease in the total mechanical energy means
that the magnitude of a vibratory motion of the system will decrease and eventually
cease. This effect of a lessening of the magnitude of the vibratory motion, because
of energy-reducing friction is called damping. There are only three general types of
damping (friction) forces acting on a structure in motion. They are (i) the internal
friction forces in the structural material itself that arise when that material is strained;
(ii) the external friction forces that are system boundary contact forces between the
structure being studied and another dry, solid body; and (iii) the external friction
forces that are system boundary contact forces as the solid object moves within a
viscous fluid or is otherwise in contact with a viscous fluid moving relative to all or
part of its boundary surface. These latter friction forces are generally called drag
forces. The mathematical descriptions of these three types of damping forces have
been, of necessity, determined experimentally.

The first type of damping, that due to internal friction, is called material damping or
solid damping. The energy lost through the mechanism of solid damping in structural
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Figure 5.2. Cyclic force–deflection plots for (a) amplitudes below and above the elastic limit
(σe), and for (b) amplitudes at or slightly above the yield stress (σy), where σy > σe.

materials is largely independent of the frequency of the vibration but is proportional
to the square of the strain amplitude. Thus in a structural system undergoing small
displacements, where the strain amplitude is proportional to the deflection ampli-
tude, the energy loss is proportional to the square of the deflection amplitude. This
type of energy loss can be related to an engineering description of the material that is
centered on the material’s stress–strain (force–deflection) diagram. Consider a struc-
tural material specimen undergoing a constant amplitude vibration. Figure 5.2(a) is
a plot of the vibratory linear force–deflection history over many cycles for what is
termed an elastic material. A (perfectly) elastic material is an idealization that, by def-
inition, is a material where there are no internal friction forces, and thus no energy is
dissipated internally during loading or unloading. Thus, in the absence of other types
of damping, too, the repeated loading and unloading curves of the force–deflection
(or stress–strain) plot lie on top of each other, and all work2 done on the material
when the material is loaded is wholly recovered during the unloading. Hence the

2 Since for a force–displacement plot, an increment in the ordinate (force) multiplied by any increment in
the abscissa (collinear displacement) is work, the area under a force displacement plot represents work
done on the system. Similarly, as discussed in Endnote (1) of Chapter 1, the area under a stress–strain
plot is work per unit of material volume.
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undamped vibration of a (perfectly) elastic system can maintain constant vibratory
amplitudes without the need for an externally applied force to supply energy to the
system. Therefore, from an energy viewpoint of an elastic material, the lack of energy
loss and the impossibility of energy gain (because there is no external force) during
a vibratory cycle also means that when the force or stress returns to its zero value, so
too must the deflection or strain. No real solid material is perfectly elastic. All real
structural materials possess internal frictional forces. However, on much the same
basis that damping effects can be ignored for a few cycles of vibration as discussed
above, the even smaller deviations from the single line plot of Figure 5.2(a) for struc-
tural materials such as steel, aluminum, fiber-reinforced composites, and so on, can
be approximated as nonexistent when the number of loading cycles are few. From
Ref. [5.1], the equivalent material damping values for steel and aluminum are just
0.0006 and 0.0002, respectively, which are a lot less than the structural damping value
0.01 used in the demonstration of slow amplitude decay shown in Figure 5.1(a).

Figure 5.2(b) is another stress–strain history for a structural material, but in this
case the applied stress clearly exceeds the yield stress, and there are readily apparent
inelastic (i.e., plastic) deformations. The resulting full cycle loading and unloading
path is called a hystereses loop. The area within the hystereses loop, the difference
between the loading and unloading lines, represents the large quantity of energy lost
per cycle. The lost energy needs to be replaced by work done on the material by
an externally applied force for the amplitude of the motion to remain constant as
indicated in the figure. This type of severe material damping is also called hystereses
damping. The stress in Figure 5.2(b) is, for the most part, proportional to the strain
in this case where the stress equals or only slightly exceeds the yield stress. Therefore
it is possible to argue on this geometric basis for the experimental result that the
energy loss per cycle is proportional to the square of the strain amplitude. That is,
because the area under both the loading and unloading curves is proportional to the
product of stress and strain, so is the difference between the two curves. With stress
proportional to strain as cited above, the area of the hystereses curve is thus almost
proportional to the strain amplitude squared. The analytical treatment of material
damping is postponed to the next section (5.3) in order to first establish some simpler
mathematical results.

Now consider the second type of damping force named above, the friction force
that arises at the contact surface between two dry solid objects. Specifically, con-
sider a clean, flat block sliding on a clean, flat tabletop. From elementary physics,
the Coulomb (or dry) friction force between the block and the tabletop is solely
proportional to the force normal to the plane of contact, which here is sim-
ply the weight of the block. The proportionality constant is called the dynamic
Coulomb, or dry, friction coefficient. Actually there are two Coulomb friction
coefficients. The static friction coefficient describes the force in the plane of the
boundary surface between the block and the tabletop when the block is at rest
and the dynamic friction coefficient describes the force between the two when the
block is moving on the tabletop. The dynamic friction coefficient is a lesser value
than the static friction coefficient. The fact that the Coulomb friction force dis-
sipates energy is evident if the block resting on the tabletop is given an initial
velocity. The block soon comes to a complete stop. Its initial kinetic energy is
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Figure 5.3. (a) Coulomb-damped oscillator. (b) Time history of same after initial deflection
u0 of the left.

totally dissipated into noise, heat, and some polishing of the tabletop and block
bottom.

To understand the effect that this type of dry friction force has on a vibration, first
recall that the simple spring mass system of Figure 4.2 (called an oscillator) is all
that is necessary to represent inertial and elastic forces. Thus this one-DOF system is
used here as a simple device to investigate different types of damping. Consider the
oscillator with Coulomb damping shown in Figure 5.3(a). In the figure, the oscillator
is shown moving to the right during its first half cycle of motion. At the time shown in
the figure, the mass has a positive horizontal deflection u(t) after starting at a point
u(0) = −u0 to the left of the zero deflection point. The zero deflection point is the
unstretched spring position that also would be the static equilibrium point of the
system if there were no Coulomb friction present in the system. The starting point
for this motion, the deflection point −u0, is chosen to be sufficiently to the left of the
SEP that the magnitude of the force in the deflected spring, ku0, a force to the right,
is greater than the leftward directed static friction force opposing the start of the
motion. Therefore, when the system was released at time zero, the mass immediately
starts its motion to the right.

With this problem setup, at the time illustrated in the figure, the system has both a
positive deflection and a positive velocity. Since the friction force opposes the motion
to the right, the friction force acts toward the left. In general, the friction force always
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acts in the direction opposite to that of the velocity, u̇. To mathematically describe the
motion of this sliding block, use the following notation: (i) µ (mu without a subscript)
is the dynamic Coulomb friction coefficient, which again is a lesser value than the
static Coulomb friction coefficient µstat; (ii) ω1 is the natural circular frequency, the
square root of the ratio of the stiffness factor, k, to the mass value, m, as discussed in
Chapter 2; and (iii) µstatmg is the static friction force that must be overcome before
motion can be initiated once the mass is stationary. Then from Newton’s second
law, the equation for the first half cycle of motion, whether u is positive or not, is
simply

mü = −ku − µmg

or
ü + ω2

1u = −µg.

For initial conditions of u̇(0) = 0 and u(0) = −u0, where again it is stipulated that u0

is such that the initial spring force ku0 is large enough to overcome the static friction
force, the solution to this first half cycle equation of motion for the deflection u(t)
is3

u(t) = −u0 cos ω1t − µg

ω2
1

(1 − cos ω1t).

Again, this solution is only valid during the motion to the right. Differentiating this
solution to obtain the equation for the velocity, and then setting that velocity equal
to zero to determine the time when the mass slows to a stop (i.e., obtaining the time
that marks the end of the first half cycle) leads to the equation(

u0 − µg

ω2
1

)
ω1 sin ω1t = 0.

Consider the possibility of the factor in parentheses being zero. Reasoning from

µstatmg > µmg

and multiplying the factor in parentheses by the nonzero quantity k leads to the
result

ku0 − µmg > ku0 − µstat mg > 0.

Therefore, being greater than zero, the factor in parentheses is not zero. Hence,
the sine function must produce the zero. This leads to the conclusion that the mass
slows to a stop at time ts = π/ω1. Substitution of this time value into the equation
for the deflection shows that when the mass stops, it is located at u(t = π/ω1) =
+u0 − 2 µg/ω2

1. This result shows that over the period of one half cycle the amplitude
decreases by the amount 2 µg/ω2

1. This result is the same for every half cycle, so the
reduction in amplitude for a full cycle is twice that value. Repeating this procedure
for each cycle reveals the deflection amplitude time history shown in Figure 5.3(b).

3 A solution technique for this type of ordinary differential equation is discussed shortly. For the time
being, the solution can be validated by substitution into the original differential equation and boundary
conditions.



P1: JZP
0521865743c05 CUFX001/Donaldson 0 521 86574 3 September 10, 2006 1:46

220 Damped Structural Systems

The motion stops when at the end of a half cycle the amplitude of the motion is such
that the spring force can no longer overcome the static friction force.

Now consider the first of the two subcases of the third type of friction force,
which is the drag force acting on a solid object moving through a viscous gas or
a viscous liquid. The motion opposing drag force defies any simple mathematical
characterization. The usual mathematical approach is to write that the drag force is
equal to a nondimensional drag coefficient, Cd, multiplied by the dynamic pressure
(one half the mass density of the fluid, ρ, multiplied by the velocity of the object
relative to the fluid squared) multiplied by (typically) a cross-sectional area, S. The
difficulty with this formulation is that the drag coefficient varies with the velocity
(more precisely, the Reynolds number), although there are large ranges of velocity
for which it is reasonably constant. See, for example, Ref. [5.2], p. 17.

Consider again the oscillator of Figure 4.2. Let the oscillator be immersed in a
gas or a liquid, and let the drag caused by this fluid be the only source for energy
loss. Let most of the velocity range of the mass be such that the drag coefficient is
nearly a constant throughout most of that range. Then, because the drag force is
then proportional to the square of the velocity of the mass, and it is always directed
opposite to the velocity vector, the oscillator equation of motion for the majority of
the motion, after division by the mass value, is

ü(t) + 0.1 u̇2sgn[u̇] + u(t) = 0,

where the value of k/m is chosen to be 1.0 and the middle term numerical coefficient
of 0.1 is chosen for the value of the ratio CdρS/2m. This nonlinear differential equa-
tion does not have a known analytical solution. However, Figure 5.4 shows two
Runge-Kutta numerical solutions obtained from Mathematica.4 Both time histories
are for a zero initial velocity. The first trace is for an initial deflection of 0.5 and the
second trace is for an initial deflection of 1.0. Since the damping force is proportional
to the velocity squared, and, as is soon seen, the velocity is nearly proportional to
deflection, it is therefore understandable that the amplitudes in the case of the larger
initial deflection decrease more rapidly than the amplitudes of the case of the smaller
initial deflection. In both cases the decrease in the amplitudes is not linear as it is in
the case of Coulomb damping. Rather, the decrease diminishes with time in a manner
suggestive of an exponential function; that is, very much as in Figure 5.1.

The second facet of the third type of damping force is viscous damping. This is
the type of damping that occurs approximately when two lubricated solid objects
move relative to each other in such a way that the fluid lubricant between them is
mostly sheared. It is also the type of approximate drag force acting on bodies moving
through a fluid at low speeds; for example, cylinders and spheres at Reynolds num-
bers of 0.1 to 4.0 [5.1, p. 16]. The viscous damping force is then closely proportional to
the first power of the relative velocity and oppositely directed. The proportionality
constant, c, is called the viscous damping coefficient. Consider again the oscillator
of Figure 4.2. This time let the oscillator be subjected only to viscous damping. The

4 Mathematica is software for doing mathematics developed by Wolfram Research of Champaign, Illi-
nois. Its Runge-Kutta (see Chapter 9) numerical integration routine was verified over 10 cycles against
as exact solution for an oscillator with viscous damping, a form of damping soon to be discussed.
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NDSolve[{u''[t] + 0.1(u'[t])∧2 Sign[u'[t]] + 
u[t]==0,u'[0]==0, u[0]==0.5}, u, {t,0,46}]

NDSolve[{u''[t] + 0.1(u'[t])∧2 Sign[u'[t] + 
u[t]==0,u'[0]==0, u[0]==1.0}, u, {t,0,50}]

Out[1]=
{{u->InterpolatingFunction[{0.,46.},
<>]}}

Out[2] =
{{u->InterpolatingFunction[{0.,50.},
<>]}}

In[2]: =
 Plot[u[t]/.%,{t,0,46}]

In[3]: =
 Plot[u[t]/.%,{t,0,50}]

Figure 5.4. Oscillator response to velocity-squared damping for two different initial deflections
(ω = 1) from Mathematica.

standard mathematical model symbol for representing the presence of viscous damp-
ing is a massless dashpot.5 An example of actual dashpots are the “shocks” used to

5 Energy is dissipated when the piston shears the viscous fluid encased within the cylinder. Work done
on a viscous fluid is obviously lost because the fluid returns to its equilibrium condition without storing
energy in any form.
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Figure 5.5. Damped oscillator and its free body diagram of external forces acting on the mass:
(a) System at rest. (b) Free body diagram of deflected system.

dampen rough road induced automobile vibrations. See Figure 5.5(a). Let the base
of this oscillator of this figure undergo a known upward deflection w(t). Then the
elastic force (positive upward since u and its time derivatives are positive upward)
acting on the mass at its point of contact with the spring is −k(u − w) regardless of
whether u is greater than w. Similarly, the force acting on the mass at its point of
contact with the dashpot is always the damping coefficient multiplying the relative
velocity of the ends of the dashpot, to the first power; that is, the viscous damping
force is −c(u̇ − ẇ). See Figure 5.5(b). Therefore from Newton’s second law

mü = −k(u − w) − c(u̇ − ẇ)

or mü + cu̇ + ku(t) = cẇ + kw(t). (5.1)

Since this is a linear, ordinary differential equation with constant coefficients, it is
a much easier differential equation to deal with mathematically than those of solid
damping and moderate- to high-speed motion through a fluid.

Now, for the first time in this textbook, it is time to derive, as opposed to merely
stating, an analytical solution for an equation of motion. For the oscillator of Fig-
ure 5.5, first consider the situation where the excitation base motion w(t) is zero.6 In
this situation, the mass-spring-dashpot system undergoes force free, damped motion.
Then the equation of motion is merely the homogeneous portion of Eq. (5.1). This
equation statement can be improved by dividing by the mass value. This step shows
that the force free, damped motion is dependent only on two system parameters, k/m
and c/m. Let k/m be again defined as ω2

1, which again is the square of the undamped
natural frequency of this one-DOF system. Let c/m be defined as 2ζ 1ω1, where the
nondimensional parameter ζ is called the viscous damping factor. A quick calculation
shows that the algebraic relationship between the damping factor and the damping
coefficient is

ζ1 = c

2
√

km
.

6 Section 5.3 and Chapter 7 discuss general solutions to this type of equation where the equivalent applied
force is not zero.
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Now that the two parameters, ω and ζ, of the vibratory motion have been defined,
let the solution process for the above homogeneous ordinary differential equation
begin with the standard (and always successful) trial solution u(t) = A exp(r t), where
A and r are constants whose values are to be discovered. Substitution of this trial
solution into the equation of motion leads to

(
r2 + 2ζ1ω1r + ω2

1

)
Aert = 0.

Since the exponential function is never zero even for complex values of r , and because
a zero value for A would lead only to a (rejected) trivial solution u(t) = 0, both these
terms can be canceled from the left-hand side of the above equality. The conclusion is
that r must have the two values that satisfy the remaining quadratic equation, called
the “auxiliary equation.” Those values of r are

r1 = −ζ1ω1 − ω1

√
ζ 2

1 − 1 and r2 = −ζ1ω1 + ω1

√
ζ 2

1 − 1.

Substitution of these roots into the solution form u(t) = Aert leads to the two inde-
pendent solutions to the homogeneous portion of Eq. (5.1). Hence, the total homo-
geneous solution is

u(t) = exp(−ζ1ω1t)
[

A1 exp
(

−ω1t
√

ζ 2
1 − 1

)
+ A2 exp

(
+ω1t

√
ζ 2

1 − 1
)]

. (5.2a)

The nature of this force free solution clearly depends on the value of the parameter
ζ relative to 1.0. First consider the case where ζ is greater than 1. Then

√
ζ 2 − 1 is a

positive number that is less than ζ . Thus the solution that is Eq. (5.2) is the sum of
two independent exponential functions each of which decreases monotonically with
time. The term with the exponent(

−ζ1 +
√

ζ 2
1 − 1

)
ω1t

decreases more slowly over time than the other term and thus dominates the motion.
The important conclusion is that for this range of values for the damping factor, that
is when ζ1 is greater than 1, the motion of the mass described mathematically by the
sum of the two exponential terms in Eq. (5.2) is not vibratory. That is, the mass never
passes through the static equilibrium position, but merely approaches the SEP as an
asymptote. This nonvibratory case where ζ is greater than 1 is called the overdamped
case.

Consider the case where ζ equals 1. This borderline case is called the critical
damping case. In this case the two quadratic roots are both r = −ω1. This repeated
root case means that the solution, Eq. (5.2), must be modified by the insertion of a t
factor for one of the now-identical exponential terms to obtain a second independent
solution for the second-order differential equation of motion. Therefore the solution
for the case of equal roots for the auxiliary equation is, as can be checked by insertion
back into the equation of motion,

u(t) = B1e−ω1t + B2te−ω1t .
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Here again both parts indicate that the motion is one of exponential decay rather
than a vibratory motion, where the second term dominates. Figures 5.6(a) and (b),
which offer response curves for both initial velocities and initial deflections when ζ

is 1 or greater, illustrate the important fact that the return to the (near-) static equi-
librium position is quickest when the damping factor equals 1. This is an important
observation for designing dashpots for vibratory systems like automobiles, large gun
carriages, and so on, where it is desirable for the mass to return to its nominal position
as quickly as possible.

Now consider the case where ζ is less than 1. This case is called the underdamped
case. With ζ less than 1, the quantity within the radical in the solution for the roots r1

and r2 is now less than zero. To clearly identify the radical as an imaginary number,
rewrite the radical as √

ζ 2
1 − 1 = i

√
1 − ζ 2

1 .

Now the rewritten radical itself is always a real number. Using this notation, the
underdamped solution for the oscillator motion is

u(t) = exp(−ζ1ω1t)
[

C1 exp
(

−iω1t
√

1 − ζ 2
1

)
+ C2 exp

(
+iω1t

√
1 − ζ 2

1

)]
. (5.2b)

Having the solution in terms of the sum of complex quantities is not convenient.
Since u(t) is a real quantity, so too must be the right-hand side of the above equality
when taken as a whole. To rewrite the right-hand side in a form that is unmistakably
that of a real expression, recall that

eiθ = cos θ + i sin θ.

Using this relation, Eq. (5.2b) can be rewritten as follows

u(t) = exp(−ζ1ω1t)
[(

C1 + C2
)

cos
(

ω1t
√

1 − ζ 2
1

)
+ i(C2 − C1) sin

(
ω1t

√
1 − ζ 2

1

)]
or

u(t) = exp(−ζ1ω1t)
[

C1 sin
(

ω1t
√

1 − ζ 2
1

)
+ C2 cos

(
ω1t

√
1 − ζ 2

1

)]
, (5.3a)

where the constants of integration have been regrouped so that

C1 = i(C2 − C1) and C2 = (C2 + C1).

Each term on the right-hand side to the solution for u(t) is now apparently a real
quantity for all values of time. To establish this as fact, first note that because ζ ,
ω, time, and the radical are real quantities, the only possible quantities that could
possibly be complex are the two constants C1, C2. Since they are constants, their
value does not change with time. Therefore look at, for example, the specific times

t = π

2ω1

√
1 − ζ 2

1

and t = π

ω1

√
1 − ζ 2

1

.

At the first of these two time points, the cosine function has a zero value and the sine
function has the value 1. This isolates the C1 factor. Divide the real left-hand side by
all the remaining terms on the right-hand side but for C1. Since the new left-hand
side is the ratio of real numbers, it too must be real. Therefore C1 must be real.
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Figure 5.6. (a) Critically damped and overdamped oscillator response to an initial deflection
for different values of the damping factor. (b) The response to an initial velocity. All plots for
ω = 1.0.
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Repeating this argument for the second of the above times shows that C2 is also real.
This means that the original constants of integration, those with the overline, are a
complex conjugate pair.

The presence of the sine and cosine functions shows that this deflection solution is
the vibratory solution that has been sought and that the viscously damped oscillator
vibrates only if the damping factor is less than 1. (Unless energy dissipating devices are
purposely installed into a structure constructed of the usual structural materials and
fastenings, the damping factor for built-up structures is generally between 0.005 and
0.1.) To mathematically clarify that the motion is what is called a damped harmonic
motion, introduce the following transformations on the constants of integration

C1 = C0 cos ψ and C2 = C0 sin ψ

into Eq. (5.3a). After use of the identity for the sine of the sum of two angles, the
result, with the definition ωd= ω1(1 − ζ

2
1)1/2, is

u(t) = C0e−ζ1ω1t sin(ωdt + ψ). (5.3b)

This result for the movement of the mass clearly shows a decreasing sinusoidal (i.e.,
vibratory) motion with a circular frequency ωd, called the damped natural frequency,
and a phase angle, ψ , that is just another constant of integration. This conclusion justi-
fies the introductory plots of Figure 5.1. The adjective “natural” is appropriate for the
above terms because this result is for a force free vibration. Thus the damped natural
frequency is an inherent characteristic of the damped system just as the undamped
natural frequency is an inherent characteristic of an undamped system. Note that if
there is no damping (ζ equals zero), then the natural frequency is simply ω1, exactly
as before. If the value of ζ is small, as it usually is, then the difference between the
damped and undamped natural frequencies is still smaller. Finally, the mathematics
again fully reflects the common experience that the time-varying amplitude of the
sinusoidal vibration, which can be viewed as the product of the constant of integra-
tion and the exponential function, decreases with time. The decaying exponential
function is spoken of as the “envelope” for the otherwise constant amplitudes.

The last step in the development of this solution is to apply the initial conditions
of initial deflection u(0) = u0, and initial velocity u̇(0) = u̇0 to this case of force free
vibration. Substituting the above solution for the motion, Eq. (5.3), into these initial
conditions determines the values of the constants of integration C1, C2. The result is

u(t) = e−ζ1ω1t√
1 − ζ 2

1

[(
u̇0

ω1
+ ζ1u0

)
sin ωdt + u0

√
1 − ζ 2

1 cos ωdt
]

. (5.4)

Similarly, the constants of integration for Eq. (5.3b) are

C0 = 1
ω1

√
u̇2

0 − 2ζ1ω1u̇0u0 + ω2
1u2

0 and tan ψ = ωdu0

u̇0 + ζ1ω1u0
.

Figures 5.7(a), (b), (c), and (d) show the effects of different initial conditions and
different subcritical damping factors.

The last type of damping to be discussed is unlike material damping, or Coulomb
damping, or any damping dependent on some power of a relative fluid velocity. This
damping is not related to a specific physical phenomena, but it is a representation
of a composite of all three forms of damping. Rather than introduce this type of
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In[1]:= u1[t_, zeta_,idf1t_] = Exp[-zeta*2*Pi*t]
 ((zeta/Sqrt[1-zeta∧2])idf1t*Sin[2*Pi*
  Sqrt[1-zeta∧2]*t] + idf1t*Cos[2*Pi*
  Sqrt[1-zeta∧2]t])

In[4]:= Plot[{u1[t,0.05,1.5],ul[t,0.05,1],
 ul[t,0.05,.5]},{t,0,2.2}]

Out[4]= -Graphics-

Out[1]= E−2 πt zeta(idf1t Cos[2πt√1-zeta2] 
  +idf1t zeta Sin[2πt √1-zeta2])

√1-zeta2

(b)

0.4

0.2

−0.2

0.5 1 1.5 2

Large u(0)

Small u(0)

.

.

In[11]:= u2[t_,zeta_,ivel_]= Exp[−zeta*2*Pi*t]
  (ivel/(2*Pi*Sqrt[1−zeta^2])) Sin[2*Pi
  *Sqrt[1−zeta^2] t ]

Out[11]= E −2 πt zeta  ivel Sin[2 π t √1−zeta2]
2π√1-zeta2

In[13]:= Plot[{u2[t,0.05,1],u2[t,0.05,2],
  u2[t,0.05,3]},{t,0,2}]

Out[13]= -Graphics-

Figure 5.7. (a) Time history responses of a lightly damped oscillator for large, medium, and
small initial deflections (idf1t) when the initial velocity is zero. (b) Time history responses
of a lightly damped oscillator for large, medium, and small initial velocities (ivel) when the
initial deflection is zero.
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(c)
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ζ = 0.01
ζ = 0.10

In[1]:= ul[t_,zeta_,idflt_] = Exp[−zeta*2*Pi*
  t](zeta/Sqrt[1−zeta^2]) idflt*Sin[2*Pi
  *Sqrt[1−zeta^2]*t] + idflt*Cos[2*Pi*
  Sqrt[1−zeta^2] t ])

Out[1]= E −2 π t zeta idflt Cos[2 π t √1−zeta2]+
  idflt zeta Sin[2 π t √1−zeta2]

√1−zeta2

In[3]:= Plot[{ul[t,0.01,1],ul[t,0.05,1],ul[t,
  0.1,1,]},{t,0,2.2}]

Out[3]= -Graphics-

)
)

(d)

0.5 1 1.5 2

−0.1

0.1

0.2

−0.2

ζ = 0.02

ζ = 0.10

Out[5]= E −2πt zeta ivelSin[2 π t √1−zeta2]

2 π √1−zeta2

In[15]:= Plot[{u2[t,0.02,1],u2[t,0.05,1],u2[t,
  0.1,1]},{t,0,2},PlotRange->{−0.2,0.3}

In[5]:= u2[t_,zeta_,ivel_]= 
  Exp[−zeta*2*Pi*t](ivel/2*Pi*Sqrt
  [1−zeta^2])) Sin[2*Pi*Sqrt[1−zeta^2]t]

Out[15]= -Graphics-

Figure 5.7. (c) Time history responses for oscillators with zero initial velocity, the same initial
deflection, and light damping factors having values 0.01, 0.05, and 0.10. (d) Time history
responses for an oscillator having the same initial velocity, zero initial deflection, and damping
factors of 0.02, 0.05, and 0.10.
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damping with a single-DOF system as was used above, now consider a multidegree
of freedom structural system that is undergoing some sort of vibratory motion in
response to applied, time-varying applied loads, or equivalent loads. Furthermore,
recall the concept of “dynamic equilibrium,” which is simply rewriting Newton’s
second law as Σ F − ma = 0 and noting that the quantity −ma has the units of force.
Since it has the units of force, the −ma term can be labeled the inertia force and
grouped with all the other forces to allow the original equation to appear as simply
Σ F = 0. Since on its surface, this latter equation looks like the static equilibrium
equation, but it actually includes a force that is acceleration dependent, this equation
is called the equation of dynamic equilibrium. Dynamic equilibrium says that the
vector sum of all the forces acting on a mass system, including the those forces that
are motion dependent like the inertia forces, is zero. From the above viewpoint,
rewrite Eq. (4.2), as follows, where again {Q(t)} is the vector of applied loads, and
the force vector representing all the system damping has been introduced

{Q(t)} − [m]{q̈(t)} − [k]{q(t)} + {Qdamp(t)} = {0}. (5.5)

Again, this form of the standard undamped matrix equation of motion can be inter-
preted as the zero vector sum of the four types of forces acting on the vibratory system:
applied, inertial, elastic, and damping, respectively.7 Consider the damping force vec-
tor, {Qdamp}, as another, separate, set of applied forces. Recall that the mathematical
linearity of viscous damping provides the only easily solved single-DOF differential
equation. Thus the first step toward writing a linear, multiple-DOF, matrix differen-
tial equation for a damped system, one that can be readily solved, is accomplished by
writing the damping force vector in the coefficient matrix form −[C]{q̇}, where the
generalized velocities are only raised to the first power. This, too, is viscous damping.

As shown in Chapter 7, it turns out that the standard solution process is further
greatly simplified if the damping matrix [C] can be written as a weighted sum of the
mass and stiffness matrix. Although this result is not really what happens in real
structures, it is nevertheless not a too unreasonable mathematical description of the
damping matrix for the following reasons. Consider, for example, the truss of Figure
4.8 when it is subjected to a dynamic loading. The back-and-forth deflections of the
truss may produce dry friction damping at the bolted and riveted joints. The energy
dissipated by the Coulomb damping for any joint of the truss will be dependent on,
along with the tightness of the joint, the time-varying elastic forces in the bars that
cause the slippage at the joints. Thus it is not unreasonable to say the damping force
vector is somewhat proportional to [K]{q}. However, in the same rough way, the aero-
dynamic and material damping is generally going to occur where the mass is found.
Hence, mathematically, it is not unreasonable to say that the damping force vector
is somewhat proportional to the mass matrix. Putting these two ideas together, the
damping matrix for proportional damping, sometimes known as Rayleigh damping,
is written as

[C] = α[M] + β[K], (5.6)

7 The minus sign on these elastic forces, for example, results from the fact that these are the elastic forces
acting on the masses, whereas +[k]{q} are the elastic forces acting on the elastic elements themselves.
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where α and β are constants of proportionality with different units. The discussion
concerning the utility of proportional damping and the determination of these pro-
portionality constants is postponed to Chapter 7.

Finally, an even more convenient approach to linearizing the damping contribution
to the equations of motion is used in later chapters. This approach is not to estimate
the damping coefficient matrix at all, not even in the form of proportional damping.
Rather, this approach is to wait until the equations of motion have been reduced by
means of a transformation (explained in Chapter 7) and then, even for cases where
there are hundreds of DOF, estimate a very small number of what will be called
modal damping factors to be used in the final solution for the motion of the structural
system.

5.3 The Response of a Viscously Damped Oscillator
to a Harmonic Loading

The previous section detailed the solution for the force free vibratory motion of an
oscillator whose damping is modeled as viscous damping. That free vibration solution
contains the two constants of integration and is, of course, without reference to any
(equivalent) externally applied force. This section continues the discussion of the
viscously damped oscillator and the solution for its motion by adding to the osciallator
system an externally applied force that varies significantly with time. For present
purposes, time-varying forces can be conveniently divided into two categories. The
first category contains those forces that vary over many, many periods of the vibration.
The second category contains those forces that vary over only several periods of
vibration, or an even shorter time interval. The most prominent of the forces in
the first category is the harmonic force, which is a force that can be represented
mathematically as

Q(t) = Q0 sin ωf t , (5.7)

where Q0 is the constant amplitude of the force, and ω f is the vibratory frequency of
this external force. Other long-acting, time-varying forces are often also periodic and
thus can be represented by a Fourier series. For an oscillator with a single discrete
mass of magnitude m, with a spring constant k, and an viscous damping coefficient
c,8 subjected to the above applied force, the equation of motion is

mq̈ + cq̇ + kq = Q0 sin ωf t

or q̈ + 2ζω1q̇ + ω2
1q = ω2

1
Q0

k
sin ωf t , (5.8)

where again, ζ the damping factor, equals one-half the ratio of the damping coeffi-
cient, c, to the square root of the product of the mass, m, and the spring stiffness, k.
The solution to this second-order differential equation is, as usual, obtained in two

8 The application of a harmonic force to a Coulomb-damped oscillator is examined in the exercises at
the end of this chapter.
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parts. The first part of the total solution is the complementary solution, which is the
solution to the homogeneous equation

q̈(t) + 2ζω1q̇(t) + ω2
1q(t) = 0.

This equation already has been solved in the previous section. The solution to the
above differential equation is Eq. (5.3b), which is, again,

qcomp(t) = C0e−ζω1t sin(ωdt + ψ). (5.3b)

Again, the quantities C0 and ψ are the two constants of integration that are to
be expected to be part of the complementary solution of a second-order ordinary
differential equation. The second part of the solution is called the particular solution.
It does not contain any constants of integration. It simply is the function that when
substituted into the left-hand side of Eq. (5.8) produces the right-hand side term.
The simplest procedure for obtaining the particular solution for this equation is to
use the differential equation solution technique called the method of undetermined
coefficients. This technique calls for a trial solution that includes all the distinct
derivatives of the function found on the right-hand side of the original equation.
Thus, in this case, the trial solution has the form

qpart (t) = A1 sin ωf t + A2 cos ωf t ,

where A1 and A2 are the coefficients to be determined by substituting this trial
solution into the original differential equation and then equating the coefficients of
the sine and cosine functions. Those coefficients must be equal because the sine and
cosine functions are linearly independent.9 This is an unnecessarily lengthy process.
However, for the sake of comparison between this standard approach that uses only
real functions and the more efficient complex algebra approach that is used below,
Endnote (1) details the real function approach, which, of course, produces the same
end result as that obtained below.

It turns out that, because of presence of the damping force, the solution for the
deflection function q(t) is not just in (+) or out (−) of phase with the input force
Q0 sin ω f t but differs by a phase angle less than 180◦. To recall the meaning of
phase angles, recall that the sine function lags the cosine function by 90◦ because
sin ω f t = cos(ω f t − π/2), and the sine function leads or lags the negative of the sine
function by 180◦ because − sin ω f t = sin(ω f t ± π). In other words, the constant
term in the argument of a sine or cosine function is the phase angle.

The best way to deal with any phenomenon involving phase angles is to use complex
algebra. This amounts to just replacing the real trigonometric function sin(ω f t) with
the complex exponential function exp(iω f t). This replacement is not done on the
basis that their functional values are equal, because they are never equal. The replace-
ment is done on the basis that both functions possess the same vital characteristic of

9 Two functions f (t) and g(t) are linearly independent if c1 f (t) + c2g(t) = 0 for all values of t only if
the constants c1 and c2 must be zero for this equality to hold. Note that (functional) independence is
different from linear independence. For example, by the above definition, the function sin x is linearly
independent of cos x, but because sin x can be easily calculated from cos x, these two functions are not
(functionally) independent.
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repeating themselves, that is, being periodic, with period 2π/ω f . Thus either function
can be used to mathematically represent a harmonic motion. Hence, the procedure
that is used here to obtain the particular solution for the generalized coordinate q(t)
is to recast the force input and the trial solution in complex notation as

Q(t) = Q0 eiω f t and qpar (t) = A0 eiω f t .

The one complication here is that, whereas Q0 is a real number, the to-be-determined
magnitude of the deflection response, A0, can be a complex constant. This greater
generality for the amplitude of the response allows for the phase angle difference
between the force input and the deflection output. With these simply stylistic changes
in the representation of the force and the deflection, Eq. (5.8) becomes

q̈ + 2ζω1q̇ + ω2
1q = ω2

1
Q0

k
exp(iω f t).

Substituting the complex trial solution qpart = A0 exp(iω f t) leads to the result

[(
ω2

1 − ω2
f

) + 2iζω1ω f
]

A0 exp(iω f t) = ω2
1

Q0

k
exp(iω f t).

Since the exponential function is never zero, it can be canceled. Dividing by the
first natural frequency squared, defining the frequency ratio as ω f /ω1= Ω1, and then
solving for the nondimensional ratio A0k/Q0, leads to

A0k
Q0

= 1(
1 − Ω2

1

) + 2iζΩ1
. (5.9a)

Both the amplitude |A0| and the phase angle of the deflection response relative to
that of the force input, where the force input has a zero phase angle because Q0

is a positive real number, can be obtained from this complex expression. For the
amplitude, note that |kA0/Q0| = |kA0|/|Q0| = k|A0|/Q0, and similarly for the right-
hand side. Note further that the amplitude of any complex number is the square root
of the sum of the squares of its real and imaginary parts. Then

k|A0|
Q0

= 1√(
1 − Ω2

1

)2 + (2ζΩ1)2
. (5.9b)

The phase angle between the force input and the deflection output is obtained
from the complex form of the quantity kA0/Q0. To determine its magnitude, it is
necessary to write the right-hand side ratio in the form a + bi . This is accomplished
by multiplying the numerator and denominator by the complex conjugate of the
denominator. That result is

kA0

Q0
= 1(

1 − Ω2
1

) + 2iζΩ1
∗

(
1 − Ω2

1

) − 2iζΩ1(
1 − Ω2

1

) − 2iζΩ1

=
(
1 − Ω2

1

) − 2iζΩ1(
1 − Ω2

1

)2 + (2ζΩ1)2
.
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A plot of this right-hand side complex number on the complex plane10 in the form
of an amplitude line from the origin to its real and imaginary coordinates shows
that, when the frequency ratio is less than 1, the amplitude line lies in the fourth
quadrant because its real part is positive, and its imaginary part is negative. When
the frequency ratio is greater than 1, this amplitude line lies in the third quadrant.
Recall that the positive rotations represented by ω f t are counterclockwise as time
increases. Thus deduce that the lesser angle between the real number of the input
force and the complex number representing the deflection output is a negative angle,
or in physical terms, a lag angle. Calling the lag angle φ, from the complex plane
plot

φ = arctan
(

2ζΩ1

1 − Ω2
1

)
. (5.10)

It makes sense that the deflection response lags the force input because the system
deflection, as a response to the applied (equivalent) force, must first experience the
magnitude and direction of the force before it can respond. That is, the deflection can-
not anticipate the force. Thus the deflection must lag the force, which is represented
mathematically by a negative phase angle.

The above results can reorganized as follows. From Eq. (5.9) and the basic rela-
tionships

Q(t) = Q0 eiω f t and qpar (t) = A0 eiω f t ,

the particular solution can be written in complex algebra form as

qpar (t) = 1/k(
1 − Ω2

1

) + 2iζΩ1
Q0 eiω f t ≡ Q0 H(iΩ1) eiω f t ,

where the definition of the important new function, H(iΩ1), called the frequency
response function, for this case, is clear. The square root of −1 is part of the argument
of the frequency response function only as a reminder that this a complex function.
A frequency response function is a dynamic form of a flexibility coefficient.11 Fre-
quency response functions play important roles in vibratory analyses such as random
vibration analyses. Appendix II demonstrates that frequency response functions are
essentially Fourier transforms of impulse response functions, which are introduced
in Chapter 7 and which form the basis of much of the solution processes discussed in
this textbook.

The particular solution can also be formed from the above in terms of real quan-
tities. First, from (i) the fact that any complex number z = x + iy can be written in
its polar form ρexp(iθ), and thus A0 = |A0| exp(−iφ); (ii) from Eq. (5.9b)

|A0| = Q0/k√(
1 − Ω2

1

)2 + (2ζΩ1)2

10 The standard representation of the coordinate axes of the complex plane is one where the real axis is
the horizontal axis and the imaginary axis is the vertical axis. Of course these axes cross at 0 and 0i .

11 See Endnote (2) of Chapter 3 for a discussion of flexibility coefficients and flexibility matrices, which,
in general terms, are the inverse of stiffness matrices.
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and (iii) qpar(t) = A0 exp(iω f t); the result is, where φ is defined in Eq. (5.10),

qpar(t) = Q0/k√(
1 − Ω2

1

)2 + (2ζΩ1)2
exp(iω f t − iφ).

Now the conversion to a real form is the reverse of what was done originally, which
then was simply replacing the sine function with the complex exponential function.
Hence, reversing that procedure, the particular solution in wholly real terms is

qpar(t) = Q0/k√(
1 − Ω2

1

)2 + (2ζΩ1)2
sin(ω f t − φ). (5.11)

Substitution of Eq. (5.11) into the original differential equation, Eq. (5.8b) demon-
strates the validity of this expression for the particular solution and that of the
complex algebra process that produced this expression. When making that check
substitution, realize that from Eq. (5.10) that for the lag angle φ

sin φ = 2ζΩ1√(
1 − Ω2

1

)2 + (2ζΩ1)2
and cos φ = 1 − Ω2

1√(
1 − Ω2

1

)2 + (2ζΩ1)2
.

The total solution for the response is, of course, the sum of the complementary
solution, Eq. (5.3b), and the particular solution, Eq. (5.11), which is

q(t) = C0 e−ζω1t sin(ωdt + ψ) + Q0/k√(
1 − Ω2

1

)2 + (2ζΩ1)2
sin(ω f t − φ). (5.12)

Again, this is the total one-DOF viscously damped deflection response to a constant
magnitude harmonic input force Q0 sin ω f t . The constants of integration are, again,
determined by the initial conditions. Be sure to understand that when an applied
force is present, the process of determining the constants of integration must include
the particular solution.

Note again that because the negative exponential factor, −ζω1t = −2πζ (t/T1),
the first part of this deflection response fades away to very near zero after just a few
periods. However, the second part of the solution maintains a constant amplitude
for as long as the applied force persists. Hence, the first part of the solution is called
the transient solution,12 whereas the second part of the solution is called the steady-
state solution. The peak displacement, and hence the peak internal force, may occur
in the first few cycles. This matter is investigated in Chapter 7. However, for long-
term effects, such as fatigue considerations, or for any circumstances beyond a few
cycles, only the steady-state solution is of interest. Therefore, for the remainder of
this section the focus is on the steady-state solution.

There is an important conclusion to be drawn from the above steady-state solu-
tion for the magnitude of the deflection response and a point worth noting about
the phase angle of the deflection response relative to the input force. Examine the
nondimensional solution for the amplitude of the deflection response, Eq. (5.9b), or
the similar deflection amplitude function that is part of Eq. (5.12). The deflection

12 In the case of a damping factor equal to 0.08, which is representative of some small steel structures,
after just nine cycles, the damped amplitude solution of Eq. (5.12) is only 1% of its initial value.
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Figure 5.8. Nondimensional amplitude of the steady-state harmonic response as a function of
the frequency ratio Ω and the damping ratio ζ as a plot parameter.

amplitude clearly depends on two parameters, the frequency ratio, Ω1, and the vis-
cous damping factor, ζ . A plot of this amplitude response, using the frequency ratio
as the abscissa and the damping factor as the parameter of the family of curves, is
shown in Figure 5.8. When the frequency ratio is zero, the applied force is a static
force, and the applied force is entirely opposed by the spring force. As the frequency
ratio increases to a value close to 1, the deflection response increases rapidly to a
sharp peak when the damping factor is small, as it often is. At this point, as shown
in Figure 5.9(a), the phase angle of the deflection response, and hence the spring
force that is proportional to the deflection response, is 90◦. Hence the spring force
no longer opposes the applied force because the spring force is perpendicular to the
applied force. As illustrated in Figure 5.9(b), a force polygon with the correct phase
angles would show that the spring force now only opposes the inertial force, whereas
only the damping force opposes the applied force. Therefore it is clear that when the
frequency ratio is 1, the damping force is quite important.

Large deflections mean large internal (spring) forces, which means that the
integrity of the structure is threatened. This phenomenon of a dynamic response
many times the magnitude of a corresponding static response, when the forcing fre-
quency nears or equals the natural frequency, is called resonance. Despite the fact
that, in this case, the peak response occurs slightly before ω f = ω1, resonance is
defined to occur at a frequency ratio of 1. The ratio of the resonant response to
the static response is called the magnification factor. Even though the above conclu-
sions were drawn on the basis on just a one-DOF structure, in the next two chap-
ters it will be demonstrated that an N degree of freedom structure has N natural
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Figure 5.9. (a) Variation of lag angle with frequency ratio and damping factor. (b) Phase
relationships among the applied, spring, damping, and inertia forces for harmonic motion for
frequency ratio values less than one-half, equal to one, and equal to one and a half.
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frequencies, and resonance is possible for each of those natural frequencies. How-
ever, the increased damping associated with the higher numbered natural frequencies
means that only the first several frequencies are of interest. Nevertheless, obviously,
resonance is a major concern whenever machinery with rotating (even slightly unbal-
anced) parts are attached to a structure.

Returning to Figure 5.9(a), the plot that shows how the lag angle varies with respect
to the frequency ratio and the damping factor. For typically low values of the damping
factor, the phase angle at resonance changes rapidly from near zero to near 180◦.
The benefit that can be had from this rapid change in phase angle is that it can be
used to more precisely locate a resonant peak, where the phase angle is 90◦, than is
possible just looking at an amplitude response, which for higher numbered natural
frequencies, can be somewhat broad.

There is another similar, complex algebra oscillator solutions worth noting. Con-
sider the case where the oscillator is driven by a base motion h(t) = h0 sin ω f t . The
equation of motion for the generalized coordinate u(t) is

mü(t) + cu̇(t) + ku(t) = cḣ(t) + kh(t)

or ü + 2ζ1ω1u̇ + ω2
1u = 2ζ1ω1ḣ + ω2

1h.

The task is to determine the amplitude and the phase angle of the response u(t) in
terms of the frequency ratio, Ω1= ω f /ω1, and the damping factor, ζ . Again, complex
algebra is used to obtain the solution for |u0/h0|, where here u0, as opposed to its
absolute value, is a complex quantity. Of course the input amplitude h0 is a real num-
ber. Thus the first step of the solution process is to represent the enforced deflection
input h(t) = h0 sin ω f t by its associated complex form, which is h0 exp(iω f t), and
to similarly represent the response as u0 exp(iω f t). Substituting these two complex
forms into the equation of motion leads to[(

ω2
1 − ω2

f

) + 2iζ1ω1ω f
]

u0 = [
ω2

1 + 2iζ1ω1ω f
]

h0.

Dividing by the first natural frequency squared and solving for the nondimensional
response u0/h0 leads to

u0

h0
= 1 + 2iζ1Ω1(

1 − Ω2
1

) + 2iζ1Ω1
and u(t) = h 0 H(iΩ1) e iω f t .

Clearly the input amplitude, in this case h0, identifies the type of frequency response
function. Since |u0/h0| = |u0|/|h0| = |u0|/h0, similarly, for the right-hand side,

|u0|
h0

=
√

1 + (2ζ1Ω)2√
(1 − Ω2)2 + (2ζ1Ω)2

.

Note that here, too, there is a large amplitude at a unit value of the frequency ratio
whenever, typically, ζ is small. So, again, define resonance as occurring when the
frequency ratio is 1. At resonance, the amplitude ratio in this case is quite close to
the previous high value of 1/(2ζ 1) when the damping ratio is small. Thus it matters
little if the input is a harmonic force or a harmonic base motion.

The phase angle, which is again a lag angle, is obtained from the above complex
form of the quantity u0/h0. Again, to determine its magnitude, it is necessary to write
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the above deflection ratio in the form a + bi . Again this is accomplished by multiply-
ing the numerator and denominator by the complex conjugate of the denominator.
That result is

u0

h0
= 1 + 2iζ1Ω

(1 − Ω2) + 2iζ1Ω
∗ (1 − Ω2) − 2iζ1Ω

(1 − Ω2) − 2iζ1Ω

= [(1 − Ω2) + (2ζ1Ω)2] − 2iζ1Ω
3

(1 − Ω2)2 + (2ζ1Ω)2
.

Therefore, in this case the phase angle φ is equal to

φ = arctan
[

2ζ1Ω
3

(1 − Ω2) + (2ζ1Ω)2

]

and it is a lag angle because the imaginary component of the complex deflection
response is negative.

As is seen above, a lightly damped oscillator has a large resonant peak response of
a magnitude close to 1/2ζ relative to the static deflection produced by a static form
of the same magnitude. It is possible that the resonating oscillator could fail at such a
large deflection magnitude. Then, if the applied load, or a base motion, were to start
at a zero frequency and increase to some constant operating frequency greater than
the oscillator’s natural frequency, the question arises as to the feasibility of actually
reaching that higher operating frequency. This question, called the start-up problem,
can be addressed by investigating the response of the oscillator in its corresponding
most severe situation. To this end, let the input force be a harmonic force whose
forcing frequency is the same as the oscillator’s natural frequency. To further pursue
a worst-case scenario as well as to simplify the problem, let the damping be zero.
Then the equation of motion can be written as

ü(t) + ω2
1u(t) = ω2

1
F0

k
sin ω1t.

Since there is no damping, there is no need to resort to the use of complex algebra.
The complementary solution is now well known to the reader as

u(t)comp = C1 sin ω1t + C2 cos ω1t.

Note that the particular solution, for this situation where the input (driving) fre-
quency is ω1, cannot be a constant multiplied by sin ω1t or cos ω1t because those
functions, parts of the complementary solution, will always yield zero when substi-
tuted into the left-hand side of the differential equation. Thus the simplest method
for finding a particular solution, the method of undetermined coefficients fails in this
circumstance. The particular solution for this linear equation is obtainable by use of
the always successful mathematical method for linear equations called variation of
parameters. Rather than follow that lengthy procedure, it is easier just to confirm the
solution given below by substituting back into the given differential equation. The
sum of the complementary and particular solutions is

u(t) = C1 sin ω1t + C2 cos ω1t − 1
2
ω1t

F0

k
cos ω1t.
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Figure 5.10. The increase in the amplitude of the motion of a one-DOF system mass when
both the initial deflection and the initial velocity are zero, and the forcing frequency coincides
with the natural frequency.

Initial conditions of zero deflection and zero velocity for the generalized coordinate
u(t) yield C2 = 0 and C1 = 1/2 F0. Therefore the solution incorporating these zero
initial conditions is

u(t) = −1/2 F0 (ω1t cos ω1t − sin ω1t) .

A plot of this undamped response is shown in Figure 5.10. Clearly, even with the forc-
ing frequency “dwelling” at the natural frequency, the very large deflection response
of the undamped system is reached only after many periods of time. Therefore it
may be concluded that after a start-up from zero frequency, a fairly rapid increase
in the rotator rpm to reach the operating frequency value causes a rapid traversal of
a natural frequency, and this circumstance does not cause any difficulties whatever
because the response amplitude does not have sufficient time to build.

5.4 Equivalent Viscous Damping

An important conclusion to be drawn from the above calculations of oscillator
amplitude and frequency response for Coulomb, aerodynamic or hydrodynamic,
and underdamped viscous damping, as evidenced from the previous figures of this
chapter, is that the shape of the oscillator response is similar in all these cases. The
one-DOF responses are either sinusoidal with an exponentially decreasing ampli-
tude or, in appearance, very close to that. Not only is the form of the amplitude
envelope similar, but the previous calculations show also that the damped frequency
of vibration is close in value to the undamped natural frequency. Thus, from its sim-
ilar response vis-à-vis the other damping cases, and from its simplicity because of
linearity, it is apparent that viscous damping, although not common in itself, can be
conveniently used to represent all common forms of structural system damping in
all such circumstances. This is the standard approach to the mathematical represen-
tation of damping. That is, the standard procedure is to use an equivalent viscous
damping coefficient for all types of actual damping, singularly or in combination.
The precise equivalence between viscous damping and another type of damping is,
quite reasonably, based on equal amounts of energy dissipated per cycle of a constant
amplitude vibration.
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Consider the case where the amplitude of the viscously damped oscillator is main-
tained at a constant value by an externally applied load. As has been seen, the load
that maintains a constant vibratory amplitude for a viscously damped oscillator can
be written as F0 sin ω f t , where again F0 is a constant force amplitude and ω f is the
forcing frequency of this harmonic force. Again, ω f is arbitrary, that is, it is wholly
independent of any of the natural frequencies of the oscillator, such as ω1. How-
ever, as seen in Figure 5.9(b), the damping force, and hence the damping coefficient,
are most important at resonance. Therefore choose ω f = ω1. Then the equation of
motion for the oscillator is

mü + cu̇ + ku(t) = F0 sin ω1t. (5.8′)

As has been seen, the solution for u(t) consists of a transient part and a steady-
state part. Since the transient part of the motion can be very short lived, only the
steady-state portion of the motion, u(t) = Asin(ω1t − φ1), will be considered. With
that simplification, it is a straightforward matter to calculate the work done by the
viscous damping force per cycle, which is the object of this discussion. Using the
standard definition of work, and integrating over the time interval of one cycle,

Wcycle =
T∫

0

(−cu̇)du = −c

2π/ω1∫
0

u̇
du
dt

dt.

The velocity terms in the above integrand can be written as

u̇(t) = ω1 Acos(ω1t − φ1).

Therefore the work done by the viscous force each cycle is

Wcycle = −cω2
1 A2

2π/ω1∫
0

cos2(ω1t − φ1)dt

= −1/2cω
2
1 A2

2π/ω1∫
0

[1 + cos 2(ω1t − φ1)]dt

= −πcω1 A2,

where the second term of the integrand produces a zero result. The negative sign
attached to the value for the work done per cycle means, of course, that the work
done by the viscous force is dissipative. This loss of energy is entirely offset by the
energy added to the system by the applied force because it turns out that the inertial
force and the elastic force do no work on the mass of the oscillator. In other words, this
viscous force–applied force energy balance is necessary to maintain the stipulated
constant amplitude of forced vibration.

With the above result in hand, it is now possible to return to the idea of obtaining
equivalent viscous damping coefficients for “other” types of damping on the basis
of equal work dissipated per cycle at the maximum amplitude response. Let the
work dissipated per cycle by some other type of damping be −Wother. Then equating
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this value for the energy loss to that for viscous damping, where the viscous
damping coefficient is now replaced by an equivalent viscous damping coefficient
ceq, leads to

ceq = Wother

πω1 A2
.

The above result was obtained for an oscillator, which, of course, is a single-DOF
system. Multidegree of freedom systems have many natural frequencies. Therefore,
the choice is usually made that there is an equivalent viscous damping coefficient, and
hence an equivalent viscous damping factor, associated with each natural frequency.
Indeed that is the choice made in Chapter 7.

It is now convenient to complete the characterization of the solid or material or
hystereses damping case. Recall that within the elastic range, the energy lost from
hystereses damping is independent of frequency and proportional to the deflection
amplitude, A, squared. Thus mathematically, Wmat = −αA2, where α is the constant
of proportionality. Equating this energy loss to that for equivalent viscous damping
leads to the result ceq= α/πω. Substituting this result into the viscous damping equa-
tion, the pseudo material damping equation, with an arbitrary applied force F(t),
becomes

ü + α

πω
u̇ + ω2u(t) = F(t).

Again it is quite useful to introduce complex algebra into the representation of
the deflection or force because of the ease with which complex algebra represents
phase angles. Expect the above response u(t) to be very nearly harmonic. Then, for
example, if the deflection is represented by the function sin ω1t , then the velocity is
represented by the product ω1cos ω1t . The cosine leads the sine by a phase angle of
90◦. In the terms of complex algebra, a phase angle advance of 90◦ is accomplished
by a multiplication by i = (−1)1/2. Therefore the cosine function of the velocity term
can be replaced by the factor iω multiplied by the sine function, which is associated
with the deflection function. Therefore, the differential equation for the material
damped oscillator can be, and is, rewritten as

ü +
(

k + iα
π

)
u(t) = ü + k(1 + iγ ) u(t) = F(t), (5.13)

where γ is called the material damping factor and k(1 + iγ ) is called the complex
stiffness or, occasionally, the complex damping. The steady-state solution for the
above differential equation is developed in Example 5.5.

The above transition from solid damping into equivalent viscous damping is a
bit misleading in that, in other damping type cases, the translation is not quite so
simple. For example, consider a velocity-squared-type damping. Approximating the
deflection response as A sin ωt , the damping force is proportional to A2cos2ωt . The
integration of the damping force over the distance of one cycle produces a energy
loss proportional to A3. Equating that result with the equivalent viscous damping
result leads to an equivalent viscous damping coefficient dependent on the ampli-
tude of the response, A, which would generally be unknown. Thus an iteration would
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generally be necessary to obtain the best estimate of the equivalent viscous damping
coefficient or equivalent viscous damping factor. Fortunately, in many cases, a some-
what rough estimate is all that is necessary to account for the effects of damping in
many circumstances. Finally, note that proportional damping, discussed above, is an
example of equivalent viscous damping because it leads to damping terms that are
proportional to the first powers of the velocities.

5.5 Measuring Damping

More so than mass and stiffness, damping is measured indirectly. Mass is measured by
measuring weight, which can be measured by means of balances, calibrated deflection
devices, and so on. Stiffness is measured by measuring deflection responses to known
loads. Damping is measured by setting the system in motion, postulating equivalent
viscous damping, and then measuring the amplitudes of its successive peaks. Consider
any two successive peaks. These peaks are separated in time by one damped period,
Td= 2π/ωd. Using Eq. (5.3b) as the representation of this (equivalently) viscous
damping response, the ratio of the amplitude of the first peak to the amplitude of the
second peak is

u(t)
u(t + Td)

≡ A1

A2
= e−ζωt sin(ωdt + ψ)

e−ζω(t+Td) sin(ωdt + ωdTd + ψ)
.

However,

ωdTd = 2π and because sin(θ + 2π) = sin θ

A1

A2
= e+ζωTd = exp

(
2πζ√
1 − ζ 2

)
or

ζ√
1 − ζ 2

= 1
2π

ln
A1

A2
.

The natural logarithm of the amplitude ratio is often referred to as the logarithmic
decrement, often symbolized by δ. The difficulty here is that if the trace of the vibration
response is like that pictured in Figure 5.1(a), then the measurement of the ratio
A1/A2 is quite likely to be inaccurate. To overcome this measurement difficulty,
consider n products of such amplitude ratios, each equal to exp(ζωTd). That is,
consider the product

A1

A2

A2

A3

A3

A4
· · · An

An+1
= (

eζωTd
)n = enζωTd = exp

(
2nπζ√
1 − ζ 2

)

thus ζ ≈ ζ√
1 − ζ 2

= 1
2nπ

ln
A1

An+1
. (5.14)

The above approximation is valid only when the damping factor is small; that is, when
ζ is less than 0.1. Since the ratio A1/An+1 can be measured much more accurately
than the ratio A1/A2, the above formula is a practical means of estimating the
equivalent damping factor of a structural system whose vibratory amplitudes have
been measured as above.
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Figure 5.11. (a) Vibratory system of Example 5.1. (b) Free body diagram.

5.6 Example Problems

The following example problem are ones where dashpots are used to explicitly indi-
cate the presence of equivalent viscous damping. These simplified examples could
represent those circumstances where the structure or mechanism (or its design) has
(or calls for) specific energy dissipating devices, such as the shocks of automobiles,
artillery pieces, buildings, the landing gear of flight vehicles, and so on. The dashpots
could also be placed in the structural model where the analyst expects there to be
significant sources of inherent dry or wet friction to represent that friction. Dash-
pots could also be part of an analysis that seeks to answer the question whether the
dynamic amplitude response of the structure under study is better curtailed by adding
more stiffness (and its attendant mass) or adding damping devices or materials (and
their attendant cost and mass). However, in the chapter after next the presence of
the “dashpots” is implicit rather than explicit.

EXAMPLE 5.1 Consider the rigid bar and elastic spring system shown in Fig-
ure 5.11(a). The bar has a mass m and a mass moment of inertia about its CG of
magnitude H. Using the two DOF u1, u2 shown in Figure 5.11(b), write the matrix
equations of motion when (i) the vertical deflections are within the linear range of the
springs and (ii) the rigid bar rotations are sufficiently small that the sines or tangents
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of all angles can be approximated by the angles themselves. Use the Lagrange equa-
tions so that all square matrices are certain to be symmetric.

SOLUTION The kinetic energy and strain energy expressions are

T = 1/2m
(

a
L

u̇2 + b
L

u̇1

)2

+ 1/2H
(

u̇2 − u̇1

L

)2

U = 1/2k1u2
1 + 1/2k2u2

2.

It is possible to write a nonnegative definite, potential-like function for the energy dis-
sipative dashpot forces that was called the “dissipation function” by Lord Rayleigh.
See Ref. [5.3], p. 390. The dissipation function, like any potential, will always produce
a symmetric damping matrix. In cases like this exercise, it is as least as easy to include
these nonconservative dashpot forces in the virtual work expression. Using this latter
approach, the virtual work expression is

δW = −c1u̇1δu1 − c3

(
au̇2 + bu̇1

L

)
b
L

δu1 − c2u̇2δu2

− c3

(
au̇2 + bu̇1

L

)
a
L

δu2 + F
b
L

δu1 − M
L

δu1 + F
a
L

δu2 + M
L

δu2.

Substitution into the Lagrange equations, factoring into matrix form, and multiplying
through by L2 leads to[

H + mb2 −H + mab
−H + mab H + ma2

] {
ü1

ü2

}
+

[
c1L2 + c3b2 c3ab

c3ab c2L2 + c3a 2

] {
u̇1

u̇2

}

+
[

k1L2 0
0 k2L2

] {
u1

u2

}
= L

{
Fb − M
Fa + M

}
.

Notice that the damping matrix [C] is also symmetric. In the absence of gyroscopic
forces, the velocity coefficient matrix is always symmetric. ★

EXAMPLE 5.2 The mass center of mass of the circular object of Figure 5.12 is at
its geometric center. The mass moment of inertia of the circular object about the
geometric center is H. Write the matrix differential equation of motion for this rigid
body-spring-dashpot system on the basis that all energy dissipating friction in the
system is modeled by the dashpots shown in the sketch. Use only the generalized
coordinates u(t) and θ(t) shown in the sketch. Note that the system is being driven
by an enforced motion h(t) at the far left of the system.

SOLUTION Without loss of generality, let the relative magnitudes of the two-DOF
u, θ be such that the springs, and therefore the dashpots, are in tension. (The reader
can confirm that any other choice concerning the relative magnitudes of the DOF
will produce the same equations of motion.) The expressions for the kinetic energy,
strain energy, and the virtual work are as follows:

T = 1/2mu̇2 + 1/2Hθ̇2 and U = 1/2k1(u − h)2 + 1/2k2(Rθ − u)2

δW = +c1(r θ̇ − u̇)δu − c1(r θ̇ − u̇)rδθ − c2(Rθ̇)Rδθ.
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h(t)
u(t)

m
k1 c1

c2

θ(t)

k2

2R

2r

Figure 5.12. Damped mechanical system of Example 5.2.

Substituting into the Lagrange equations, and organizing the various terms into
matrix form, leads to[

m 0
0 H

] {
ü
θ̈

}
+

[
c1 −rc1

−rc1 (r2c1 + R2c2)

] {
u̇
θ̇

}

+
[

(k1 + k2) −Rk2

−Rk2 R2k2

] {
u
θ

}
=

{
k1h(t)

0

}
.

Notice that all square matrices are symmetric. ★

EXAMPLE 5.3 Consider the pin-jointed mechanism sketched in Figure 5.13(a).
Each of the two uniform bars is a rigid link. Each bar has a length 2L, a mass m,
and a mass moment of inertia about its center of mass, H. The translating mass M
is undergoing a forced horizontal motion h(t) that results in only a small rotation
θ(t) (positive clockwise), of the left-hand link from its static equilibrium position at
45◦. Write the differential equation of motion, and from that equation, determine the
expressions for the undamped natural frequency of this mechanism and its equivalent
viscous damping factor.

SOLUTION This example serves as a connection to the geometric reasoning of
Chapter 2, and a review of the fact that only mass whose motion needs to be described
by one or more generalized coordinates needs to be included within the system math-
ematical model. As with pendulums, the expression for the kinetic energy, which is
a point function, is obtained by choosing a simply understood path for the center of
masses from their static equilibrium position at time zero, to their displaced position
at time t . The lateral velocity of the left-hand bar center of mass is simply obtained.
In particular, there is no axial velocity component for this center of mass, just the
lateral component. The velocity components for the right-hand bar center of mass
can be ascertained one step at a time. First let the right-hand bar be rigidly fixed to the
left-hand bar as the latter rotates clockwise through an angle θ from the original 45◦
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(a)

45°45° k
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Original position of the
centerlines of the two bars

Position of right hand bar if it
remained perpendicular to the

left hand bar

Right hand bar swung
through an angle 2θ to
achieve its true position

Figure 5.13. (a) Example 5.3: System. (b) Geometry of the deflection of the CG of the right-
hand bar.

orientation. As shown in Figure 5.13(b), in this step the right-hand bar also rotates
clockwise through an angle θ . As a result of this motion, the right-hand bar center
of mass moves along its original longitudinal axis a distance 2Lθ , and it also moves
a lateral distance Lθ downward and to the left. In the second step, swing the right-
hand bar counterclockwise until the right-hand end of the right-hand bar is once
again on a horizontal line from the left-hand hinge. Since the two bars always form
an isosceles triangle, this upswing is through an angle 2θ . With this step the center of
mass moves laterally upward through the distance L(2 θ). Therefore the net lateral
movement of this center of mass is only Lθ upward. Hence, the kinetic and strain
energy expressions, and the virtual work expression, are

T = 1/2m(L θ̇)2 + 1/2m[(2Lθ̇)2 + (L θ̇)2] + 2(1/2Hθ̇2) + 1/2Mḣ2

U = 1/2k(h − 2
√

2Lθ)2 and δW = −c(2
√

2L θ̇)2
√

2Lδθ.

Substitution into the Lagrange equation, and division by 2, leads to

(H + 3mL2)θ̈ + 4cL2θ̇ + 4kL2θ =
√

2kLh(t)

ω2
1 = 4kL2

H + 3mL2
and ζ = cL√

k(H + 3mL2)
.

★
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5.7 Harmonic Excitation of Multidegree of Freedom Systems

It is appropriate to consider briefly, but only briefly, a steady-state solution to the
N-DOF, equivalent viscous damping equations put forth at the beginning of the
previous section, Eqs. (5.8a). It is not often that these equations are ever written in
this form because determining the entries to the damping matrix is not often possible
with any precision. However, for those rare occasions when such an equation can
be written in a reliable fashion, it is possible, on the basis of a lot of computation,
to directly obtain a limited solution for the steady-state deflection amplitudes for
a fixed value of the forcing frequency, and, as later shown, a solution for arbitrary
values of the forcing frequency. A full explanation of the latter result must await the
material of Chapter 7.

If the applied loading were to be described by {Q(t)} = {Q0} exp(iωf t), where all
Q0 entries are real numbers, then it would mean that all the applied forces would
be in phase with each other, if positive quantities, or 180◦ out of phase, if negative.
However, it is an easy matter when there are N loads to allow for phase differ-
ences between the applied loads as well as amplitude differences. Let the amplitudes
and phasing of the applied loading vector {Q(t)} be described by means of the vec-
tor of complex quantities {Q(r) + i Q(i)} so that {Q(t)} = {Q(r) + i Q(i)} × exp(iωf t).
Since the input has complex amplitudes, it is to be expected that the output, the
steady-state structural response,13 as described by the time-varying generalized coor-
dinates, also requires a complex algebra description. Therefore write {q(t)} = {q(r) +
iq(i)} exp(iωf t). Now substitute these complex algebra representations for the force
and deflection into the N-DOF equation. Note that the vector of velocities {q̇(t)} =
iω f {q(r) + iq(i)} exp(iωf t) and then {q̈(t)} = −ω f

2{q(r)+iq(i)} exp(iωf t). Both sides
of the resulting equation involve complex quantities. For the equality to hold, as it
does, the real terms on the right-hand side must equal the real terms on the left-hand
side. The imaginary terms on the two sides of the equality sign must also be equal.
Thus, after canceling the common factor that is the exponential term, the original n-
sized matrix equation becomes the following set of 2N linear, simultaneous algebraic
equations in the 2N unknowns {q(r)} and {q(i)}

[
K − ω2

f M
] {

q(r)} + ω f [C]
{
q(i)} = {

Q(r)}
− ω f [C]

{
q(r)} + [

K − ω2
f M

] {
q(i)} = {

Q(i)}.
For a fixed value of the forcing frequency, Gaussian elimination or the Gauss-Seidel

method, depending on the magnitude of N, is often the best approach to solving
for the complex components of the deflection vector. However, a solution for an
arbitrary value of the forcing frequency cannot be readily obtained from the above
equations. However, as mentioned above, the steady-state deflection amplitudes can
be obtained for arbitrary values of the forcing frequency using the transformation
approach outlined in Chapter 9. In that manner, creating a matrix of frequency
response functions is possible. The details of this procedure are set forth in an endnote
of that chapter.

13 It is possible to obtain a complementary solution in terms of these matrices and thus demonstrate that
in the N-DOF case, too, the complementary solution is transient. See Chapter 9.
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5.8 Summary

From an energy viewpoint, an undamped structural vibration is an interchange
between kinetic energy and strain energy where the total mechanical energy, T + U,
is constant. For an undamped system, all the deflections are either in or out of phase.
That is, the deflections have either positive or negative values. When the undamped
system passes through it static equilibrium position, the dynamic strain energy is zero,
but the velocities, and hence the kinetic energy, are a maximum. When the system
reaches its maximum deflections, the strain energy is a maximum, but because the
velocities are changing direction, the velocities and the kinetic energy are zero. When
friction is present, as it is in all real structures, some of the mechanical energy is con-
tinually dissipated, that is, channeled into unrecoverable forms of energy such as local
plastic deformations and heat. The dissipated energy is viewed as the result of the
work done by forces, called damping forces, that oppose the various system motions,
relative and absolute. For example, damping forces act on any mechanical system
that undergoes elastic or plastic deformations because of internal friction between
the crystals or grains of the material as they move relative to each other. Damping
forces also act on any mechanical system that is in contact with, and moving relative
to, any fluid or other solid. Most mathematical descriptions of actual damping forces
lead to differential equations that are cumbersome to solve analytically if they can
be solved at all in that manner. On the basis that the general response of a structure
to any one form of damping differs little from that of viscous damping, at least when
the amplitudes of the motion are large, the engineering approach to an analytical
description of damping forces is to merge all the actual damping forces acting on
the system into a single equivalent viscous damping force. Viscous damping forces
are chosen to represent all types of damping forces because they are proportional to
the first power of the velocity of the mass, and thus they lead to linear differential
equations whose analytical solutions are easy to obtain. The basis for the equivalence
between the equivalent viscous damping force and all the actual damping forces is
an equal amount of energy dissipated per cycle at the appropriate system natural
frequency.

When employed, the dashpot symbol represents the location and orientation of a
specific equivalent viscous damping force in a structural system mathematical model.
The magnitude of the dashpot damping force is the product of the relative velocity of
the dashpot ends and the associated equivalent viscous damping coefficient, ceq = c.
In other words, dashpots in association with their relative velocities represent damp-
ing forces in exactly the same manner that springs in association with their relative
deflections represent generic elastic forces. If there are no known significant, localized
sources of damping, then it is better that dashpots not be an explicit part of the system
mathematical model. There are three other options for modeling without dashpots.
The first of these options lacking dashpots is to introduce general system equivalent
viscous damping force vector (i.e., an N × 1 matrix) as being proportional to a com-
bination of the inertial and elastic forces. This option is called using proportional
damping. The coefficients of proportionality are best estimated after the transfor-
mation introduced in the chapter after next is accomplished. Thus this approach is
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c1 c2

m, Hm, H
M(t)

L, EI0L, EI0

(a)

v1(t) v2(t)

θ1(t) θ2(t)

(b)

Figure 5.14. Example 5.4: (a) System. (b) Degrees of freedom.

equivalent to the second option, where equivalent viscous damping can be intro-
duced by means of what are called modal damping factors, which are explained in
the chapter after next. The third option is to simply ignore damping forces altogether,
and thus greatly simplify the analysis, while realizing what are the general energy dis-
sipative effects of damping forces on the motion of the system and its components.
For example, realize that because of damping, any maximum vibratory amplitude for
an actual system will be less than that calculated for an undamped system. Chapter 7
further examines the role of damping with regard to limiting vibratory amplitudes.

EXAMPLE 5.4 (a) Write the matrix equations of motion for the lumped mass,
cantilevered, elastic beam model shown in Figure 5.14(a). Not shown on the sketch,
but nevertheless present at each of the two masses, is a rotary damper that produces
a moment opposing the rotation. The magnitude of this damping moment is αc1L2θ̇1

at the first mass, and αc2L2θ̇2 at the second mass, where α is a small, nondimensional
parameter.

(b) Make the following modifications to the above structure and loading (i) below
the beam, add a vertically oriented spring of stiffness k1 = 7EI/L3 that is attached
at its top to the midspan mass and at its bottom to a rigid support that is undergoing
a known, positive upward, vertical motion w(t), (ii) let the colocated dashpot with
damping coefficient c1 also have its lower attachment point undergo the same known
upward vertical motion w(t), and (iii) remove both of the rotary dampers. Then write
the modified matrix equations of motion.

SOLUTION (a) Using the DOF shown in Figure 5.14(b), the virtual work expression
can be written as

δW = −c1v̇1δv1 − c2v̇2δv2 − αc1L2θ̇1δθ1 − αc2L2θ̇2δθ2 + M(t)δθ2.
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Therefore, after writing the kinetic and strain energy expressions, the matrix equation
of motion is


m

H
m

H







v̈1

θ̈1

v̈2

θ̈2


 +




c1

αc1L2

c2

αc2L2







v̇1

θ̇1

v̇2

θ̇2




+ EI
L3




24 −12 6L
8L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







v1

θ1

v2

θ2


 =




0
0
0

M(t)


 .

(b) The first option is to follow previous procedures by including the newly added
spring in the structural system, as is done routinely in previous chapters. Then it is
a matter of using the FEM to write the element stiffness matrix for the spring and
replacing the top and bottom spring element DOFs by, respectively, the beam global
DOF and the enforced motion. However, because the spring structural element is
such a simple element, an alternative approach to the equations of motion is offered.
In this alternate approach, do not include the spring in the structural system. Then,
to begin with, the mass and stiffness matrices are exactly as they are in part (a). The
new external force acting on the system from the spring is k1(v1 − w), downward,
regardless of whether v1(t) is greater than w(t). Similarly, from the colocated dashpot,
the force transmitted to the structural system is c1(v̇1 − ẇ), also acting downward,
again irrespective of whether the top of the dashpot moves upward more or less
than the bottom of the dashpot. Then the virtual work expression for the modified
structure becomes

δW = −c1(v̇1 − ẇ)δv1 − k1(v1 − w)δv1 − c2v̇2δv2 + Mδθ2.

Now the above −c1v̇1 and the −c2v̇2 terms are transposed to the left-hand side (as
positive terms) to form the 4 × 4 damping matrix as before, but now there are zero
entries for the terms corresponding to the angular velocities. The remaining known
equivalent force +c1w(t) becomes part of the known generalized force vector {Q}.
The spring term in the δW expression is similarly broken into two parts. The known
quantity +(7EI/L3)w(t) becomes part of the known input, {Q}. The unknown DOF-
dependent term −(7EI/L3)v1(t) is transposed to the left-hand side and incorporated
into the only place where it can be included, which is in the stiffness matrix. Therefore
the end result is


m

H
m

H







v̈1

θ̈1

v̈2

θ̈2


 +




c1

0
c2

0
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v1

θ1
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 =




c1ẇ + 7EI
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w
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0

M(t)




.

★
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EXAMPLE 5.5 Determine the steady-state response of a one-DOF (m, k) oscil-
lator to a harmonic input F(t) = F0sin ω f t when the damping is material damping.
That is, find the steady-state solution to the equation of motion

mü(t) + k(1 + iγ )u(t) = F0 sin ω f t.

SOLUTION The first step is to divide by m and recast the applied load in complex
form as

ü(t) + ω2
1(1 + iγ )u(t) = ω2

1
F0

k
eiω f t .

The solution for the motion of the mass is now written in complex form, too,
as u(t) = A0 exp(iω f t), where A0 is a complex quantity or, alternately, writing
u(t) = B0 exp(iω f t − φ), where B0 is a real quantity and the phase difference, φ,
appears explicitly in the exponential function rather than being hidden in the com-
plex amplitude A0. Substituting the first form, where

ü(t) = −ω2
f A0eiω f t ,

canceling the common exponential term, dividing by the natural frequency squared,
and factoring leads to the following form for the nondimensionalized response
amplitude:

A0k
F0

= 1(
1 − Ω2

1

) + iγ
.

The amplitude of the response is the absolute value of this complex number, which
is

k|A0|
F0

= 1√(
1 − Ω2

1

)2 + γ 2
.

This solution closely parallels that for viscous damping in that at a frequency ratio
value of 1, the amplitude of the deflection response is 1/γ , a large number because
the material damping factor is a small quantity corresponding to twice the equivalent
viscous damping factor. In other words, there is a resonance phenomena with material
damping just like there is for viscous damping.

The solution for the phase angle is obtained from the separated real and imaginary
parts of the above complex solution. Therefore, multiply both the numerator and the
denominator of the above complex solution by the conjugate of the denominator.
Then

A0k
F0

=
(
1 − Ω2

1

) − iγ(
1 − Ω2

1

)2 + γ 2
.

Since the imaginary part of this complex number is negative, the phase angle in the
complex plane is in the fourth or third quadrant of the complex plane and thus is a
lag angle of magnitude

tan φ = γ

1 − Ω2
1

.
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Again, the phase angle is a small angle at low values of the frequency ratio, sharply
rises to 90◦ at resonance, and then slowly approaches 180◦ as the frequency ratio
becomes large. ★

As a final comment, the equations of motion for base motion problems can be
written so that the equivalent force vectors either involve (i) displacements and
velocities as Eq. (5.1) and the above example problems illustrate or (ii) accelerations.
To illustrate the latter case, again consider the oscillator of Figure 5.5 and the resulting
equation of motion

mü(t) + cu̇(t) + ku(t) = cẇ(t) + kw(t). (5.1)

This writing of the equation of motion is appropriate if the input record is provided
in terms of measured displacements over time. In that case the velocities of the
small damping force can be carefully approximated as the slopes of the displace-
ment record. If, however, the original input record is in terms of accelerations, two
integrations would be required to obtain the displacement record. The numerical
errors associated with those integrations may well make that approach impractical.
Nevertheless an acceleration record is often the basis for input, as it would be for
an earthquake. The way to use the acceleration record directly is to use general-
ized coordinates that describe the relative motion of masses. For example, for the
oscillator of Eq. (5.1), rewrite that equation of motion as

mü + c(u̇ − ḣ) + k(u − h) = 0.

Now add and subtract the quantity −mḧ and define the generalized coordinate
q = u − h, which is the measure of the motion of the mass relative to the support.
Then the equation of motion becomes

mq̈ + cq̇ + kq = −mḧ.

Since the elastic force on the mass is −kq(t), the force on the elastic element, the
spring, is +kq(t). Hence a solution for q(t) is useful because the force borne by the
elastic element, the object of the structural analysis, is thereby determined. What is
true for the oscillator is also true for more elaborate structural systems. Exercises
5.7(b) and (c) examine the same building model using first generalized coordinates
that are referenced to fixed coordinate axes and then generalized coordinates that
describe increments in deflection.

REFERENCES
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1971.
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m

L L

c

c

k
k

m, mL2 = H, Rigid
3
1

Figure 5.15. Exercise 5.4(a).

CHAPTER 5 EXERCISES

5.1 Determine the transformation for the constants of integration C1, C2 so that
Eq. (5.3a) can be written in terms of a cosine function rather than a sine function.

5.2 (a) Redo Example 5.1 using the Lagrange equations and the following two gen-
eralized coordinates: u(t) measured upward at the center of mass and θ(t) mea-
sured counterclockwise about the center of mass. Obtain the matrix equations of
motion.

(b) Redo part (a), but this time use Newton’s equations of motion to write the matrix
equations of motion.

(c) Redo part (a), but this time use as DOF u1(t) ≡ v(t), the upward deflection of
the left-hand end of the system, and θ(t) the counterclockwise rotation about the
left-hand end of the system.

(d) Redo part (c), but this time use Newton’s equations of motion to write the matrix
equations of motion.

5.3 Write the equation for the equivalent viscous damping coefficient for the follow-
ing types of damping forces.

(a) Coulomb damping. (Also see Exercises 5.8 and 5.9.)

(b) A damping force for which the energy dissipated per cycle is independent of
frequency and proportional to the amplitude of the vibration raised to the 1.75 power.
(This represents a fluid drag force acting on a cylinder for a Reynolds number range
from 4 to 1000.)

5.4 Write the matrix differential equations of motion for the rigid body-spring-
dashpot system shown in:

(a) Figure 5.15, for small rotations of the bar where the mass is uniformly distributed
over the rigid bar length.
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L L L

c
k

2c

2m,

2H

2k

v(t)

u(t)

θ(t)

SEP

m,

H

Figure 5.16. Exercise 5.4(b).

(b) Figure 5.16, for small rotations. Here all the mass is lumped at two locations. Note
that the DOF are u(t), θ(t), while v(t) is the enforced motion. In order to simplify
the algebra, let H = mL2/6.

(c) Figure 5.17. Use the DOF u1(t), u2(t) that are measured from fixed points.

(d) Figure 5.17, but now use the DOF u1(t) as above and the DOF u3(t) that is the
relative motion between m1 and m2.

(e) Figure 5.18, where the left bar is shown rotated through a small angle θ , the single
DOF for the system. The rotational spring with stiffness coefficient K that connects
the two uniform, rigid bars of length L and mass m near their mutual hinge point
provides a moment resisting their relative rotation equal to K multiplied by the angle
of their relative rotation. Let H = mL2/12. Furthermore, linearize the equation of
motion to obtain the damped natural frequency.

(f) Figure 5.15, but this time let each bar segment be flexible with a stiffness coeffi-
cient EI0 = const.

(g) Figure 5.16, but this time let each bar segment be flexible with a stiffness coeffi-
cient EI0 = const.

u1(t) u2(t)

F(t)

c3
k2

k1

c2

c1
m1

m2

Figure 5.17. Exercises 5.4(c) and (d).
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m, H
K

L
L

M(t)
θ(t)

c

Figure 5.18. Exercise 5.4(e).

(h) Figure 5.19. Use only symmetric matrices to write the equations of motion in
matrix form. Note that the system is being driven by an applied moment at the base
of the rod.

5.5 The pen trace on a strip chart shows that the amplitudes of a certain vibratory
mode decreased to one-third the initial value after 10 cycles. What is the (equivalent)
viscous damping factor for this vibration?

5.6 Determine the damped natural frequency of the following flexible, single-DOF
systems shown in their deflected state if the (equivalent viscous) damping factor for
each indicated motion is 0.2. All beams have a stiffness coefficient EI in each plane
of motion and a length L. In some cases, use of the FEM beam stiffness matrix is
helpful and in other cases the use of a force (flexibility) method of analysis such as

l

l

c

M(t)

u(t)
θ(t)

c k

Rigid,  2m, H = 2
3

 ml2

m

Figure 5.19. Exercise 5.4(h).
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(a)(a) (b)(b) (c)(c)

u(t)

m

u(t) u(t)

m m

Figure 5.20. Exercise 5.6(a)–(c).

the unit/virtual load method (or Castigliano) or a beam differential equation method
[EIw′′(x) = M(x)] is more advantageous for determining the stiffness of the structure
at the single mass location.

(a) Figure 5.20(a), where the three columns are fixed at their supports and at the
rigid top of the structure. All the mass of the structure, m, is concentrated at the rigid
top of the structure.

(b) Figure 5.20(b), as above, but now there are hinges between each of the column
tops and the rigid top of the structure.

(c) Figure 5.20(c), as in part (a), but now all the columns are hinged at their supports.

(d) Figure 5.21, where all the mass of this beam grid is lumped at the center mass
m. In this vibratory motion the mass only moves vertically a distance w(t), and it
is connected to the ends of the four cantilevered beams by hinges. The beams are
circular pipes with stiffness coefficients EI0.

(e) As above, but now the central mass has fixed (i.e., clamped) connections to the
four cantilevered beams.

(f) As in part (e) where the mass if fixed to the beam ends, but this time the mass
only rotates through and angle ψ(t) about the z axis, which is perpendicular to the
plane of the beam grid. About that axis, the lumped mass has a mass moment of
inertia Hz.

y
z

x

ψ

φ

w(t)

Hinge (typ.)

Figure 5.21. Exercises 5.6(d)–(h).
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(a)

2F(t)

2F(t)

F(t)
m

m

u3

u2

αm

u1

Figure 5.22. (a) Exercise 5.7(a).

(g) As in part (e), but this time the mass rotates through an angle φ(t) about the
longitudinal axis of one of the beams, say the x axis. The mass moment of inertia
about this axis is Hx. Be sure to understand that this motion involves the twisting
of two beams and the bending of the other two beams. Let the torsional stiffness
coefficient GJ0 = αEI0.

(h) As in part (g), but this time the mass rotates about an axis that lies at a 45◦ angle
to the x and y axes. This means that all four beams simultaneously bend and twist.
Let Hy = Hx.

5.7 (a) Write the matrix equations of motion for the force free vibration of the
simplified three-story planar building model shown in Figure 5.22(a). The build-
ing sways back and forth in the plane of the paper. Each clamped–domped beam
column has a length L and a bending stiffness coefficient EI. Let the damping in
the three-DOF structure be modeled as proportional to the strain energy. That is,
let the damping matrix entries be the same as the nondimensional entries of the
stiffness matrix (after division by m and removal of the greatest common factor
36EI/mL3). Then let the common factor for the damping matrix be 12ζ (EI/mL3)2.
Thus this choice means that there is a single damping parameter ζ for the entire
structure.

(b) As above, but now let the damping in the structure be modeled using the dash-
pots shown in Figure 5.22(b). Each dashpot has the same equivalent viscous damping
coefficient, c. Furthermore, now remove the applied loads F(t), but let the base sup-
port have a known horizontal motion described by the time function h(t). With
the value of α being 2, write the matrix equations of motion using generalized
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c

c

c

αm

m

m

u3

u2

h h h

u1

h h h

(c)

c

c

c

αm

m

m

u3

u2

(b)

u1

Figure 5.22. (b) Exercise 5.7(b). (c) Exer-
cise 5.7(c).
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k

u(t)

F0 Sin ω t

µmg

m 1

Figure 5.23. Exercise 5.8.

coordinates, as above, that measure the motion of the mass relative to a fixed vertical
axis.

(c) Repeat part (b), but this time use generalized coordinates that measure the posi-
tion of the mass relative to the mass (or support) below the mass under consideration.
See Figure 5.22(c). This formulation may be more convenient if the accelerations of
the input base motion are the known data rather than the deflection time history of
the base motion.

For the eager

5.8 Consider the Coulomb-damped oscillator shown in Figure 5.23. This case
differs from that previously discussed within the chapter in that there is an applied
harmonic load. The frequency of this applied force is the same as the system natural
frequency. At time zero the mass m is released with zero initial velocity from a
position u(0) = 0, which is located a distance � to the left of the unstretched spring
position. Let � be such that the initial spring force, +k�, is greater than the static
friction force. Thus the mass starts in motion to the right immediately even though
the applied force has a zero magnitude at time zero.

(a) With ω1, the oscillator natural frequency, being the square root of the ratio k/m,
and ustat being F0/k, ug= mg/k = g/ω2

1, verify that the differential equation of the
motion is

ü(t) + ω2
1u(t) = ω2

1(−µug) + ustatω
2
1 sin ωt.

(b) Verify that the solution to this equation of motion is

u(t) = C1 sin ω1t + C2 cos ω1t − 1/2 ω1t ustat cos ω1t − µug.

(c) Verify that the application of the initial conditions u(0) = 0, u̇(0) = 0 leads to
the result

u(t) = 1/2ustat[sin ω1t − ω1t cos ω1t] − µg

ω2
1

(1 − cos ω1t).

(d) Determine the distance traveled over the time period of the first half cycle (the
time period of applicability of the above differential equation) by finding the time
value at which the velocity goes to zero. To do this, let πF0/2 < µmg, a “weak” force.
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(e) When the magnitude of the applied force is zero, does the reduction in vibratory
amplitude calculated by this approach match that previous calculated as displayed
in Figure 5.3?

5.9 Redo the above problem of the Coulomb-damped oscillator, but this time with
a phase shift in the applied force. That is, let

F(t) = F0 cos ωt.

Note that the solution to the differential equation of motion is the same but for
−t cos ωt replaced by +t sin ωt . That is, (a) obtain the general form of the solution
for an initial deflection of a distance � to the left of the unstretched spring position
where u(0) = 0, and zero initial velocity.

(b) Determine when the velocity becomes zero if the magnitude of the applied force
F0 is selected to be 4µmg.

5.10 A horizontal linear spring of stiffness k is connected at its right end to a block
mass m resting on a dry surface where the Coulomb friction coefficient between the
block and the surface is

µstat = kd0

mg
= 5

4
µdyn.

The left end of the spring is connected to a vehicle that reaches a constant velocity
V0 moving to the left before the vehicle travels the distance d0. At time zero, the
vehicle passes the distance d0, causing the stretch in the spring to produce a spring
force that overcomes the static friction force, and the block begins moving to the
left.

(a) Write and solve the equation of motion for the block for this first movement.

(b) Determine an explicit solution for the time tstop at which the block no longer
moves to the left.

(c) If (ω2
1d0−µdyng)/ω1V0 = 1.0, what happens after the block first comes to a stop?

5.11 If the applied harmonic force acting on an oscillator has a forcing frequency very
close to, but not equal to, the natural frequency (i.e., F(t) = F0 sin(ω1 ± ∆ω)t , where
∆ω � ω1), what then is the oscillator deflection response? Hint: Write sin(ω1 ± ∆ω)t
as sin ω1t cos ∆ωt ± cos ω1t sin ∆ωt .

ENDNOTE (1): A REAL FUNCTION SOLUTION TO A HARMONIC INPUT

The equation of motion for the steady-state response of a one-DOF system in the
case of a harmonic load can be solved either (i) by use of the complex number
representations of the force and displacement as is done in this chapter or (ii) by use
of the real functions sin ω f t and cos ω f t . This endnote offers the latter approach and
demonstrates that such a solution procedure is much more time consuming than the
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use of the complex algebra representation. To this end, return to Eq. (5.8), which is,
again,

q̈ + 2ζω1q̇ + ω2
1q = F0

k
ω2

1 sin ω f t.

In other words, the present task is to use mathematical procedure called the method
of undetermined coefficients to solve for the particular (steady-state) solution of the
above linear, ordinary differential equation with constant coefficients. Recall that
the complementary (transient) solution is already been determined to be

q(t)compl = exp(−ζω1t)[C1 sin ωdt + C2 cos ωdt].

The first question to be asked is whether the method of undetermined coefficients is
suitable to this equation. This approach is viable only if the known forcing function on
the right-hand side of the equation has a finite number of distinct derivatives. This is
indeed true for this equation because the sine function’s only other distinct derivative
is the cosine function. Therefore, when the forcing frequency, ω f , is different from
the natural frequency, ω1, the trial particular solution can be written as

q(t) = Asin ω f t + Bcos ω f t

where q̇(t) = ω f Acos ω f t − ω f B sin ω f t

q̈(t) = −ω2
f Asin ω f t − ω2

f Bcos ω f t ,

where the constants A and B are to be determined. Substituting the above trial
solution and its derivatives into the differential equation leads to

sin ω f t
[−ω2

f A− 2ζω1ω f B + ω2
1 A

] + cos ω f t
[−ω2

f B + 2ζω1ω f A+ ω2
1 B

]
= F0

k
ω2

1 sin ω f t.

Since the sine function and the cosine function are linearly independent, the coeffi-
cients of the sine and cosine functions can be equated to each other. Specifically

(
ω2

1 − ω2
f

)
A− 2ζω1ω f B = F0

k
ω2

1

2ζω1ω f A+ (
ω2

1 − ω2
f

)
B = 0.

For a better comparison with the result obtained using complex algebra, in the above
two simultaneous equations for the unknown constants A and B divide through by
the square of the natural frequency to obtain

(
1 − Ω2

1

)
A− 2ζΩ1 B = F0

k
2ζΩ1 A+ (

1 − Ω2
1

)
B = 0.

The solutions for the unknown constants are easily obtained as

Ak
F0

=
(
1 − Ω2

1

)
(
1 − Ω2

1

)2 + (2ζΩ1)2

kB
F0

= −2ζΩ1(
1 − Ω2

1

)2 + (2ζΩ1)2
.
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Substituting these solutions into the original expression for the particular solution,
and changing the form of the solution to the standard phase angle form; that is,
writing

q(t)part = Asin ω f t + Bcos ω f t = C sin(ω f t + ψ),

where C = √
A2 + B2 and tan ψ j = B

A
.

leads to the same result obtained using complex algebra, namely

C = F0/k√(
1 − Ω2

1

)2 + (2ζΩ1)2
and tan ψ = − 2ζΩ1

1 − Ω2
1

.
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6.1 Introduction

This chapter begins the mathematical process of solving the linear, matrix differential
equation that describes the small deflection, vibratory motion of a structure subjected
to an arbitrary, time-varying loading. In this textbook, the loading is limited to being
one whose magnitude is known for any time value, as opposed to being a loading
whose magnitude can only be described in probabalistic terms. Using the concept of
equivalent viscous damping, that matrix equation is

[M]{q̈(t)} + [C]{q̇(t)} + [K]{q(t)} = {Q(t)}. (6.1)

The overall form of the solution process closely parallels that for a single-DOF
dynamical system. First a complementary solution, which contains the constants of
integration, is obtained for the unloaded and undamped structural system. Then the
response to the applied loading, with or without the effect of damping, is separately
obtained. These two solutions can be combined to provide the complete description
of the system motion. If required, the values of the constants of integration are then,
and only then, determined by the system initial conditions.

This chapter concentrates on the first of the above two steps of the solution pro-
cess, which is the step dealing with the unloaded and undamped structure. This first
step has an important physical basis. To understand that physical basis, consider any
lightly damped, multidegree of freedom structure. If such a structure, unloaded with
respect to time-varying loads, is set in motion by the application of an arbitrary set of
initial conditions, then the resulting vibration will generally appear to be without any
discernable pattern. Indeed, the motion of the force free structural system appear
to be quite confusing.1 Specifically, no parts of the system will appear to be mov-
ing in or out of phase with any other part of the structural system. Furthermore, in
general, no part of the system will display a motion characterized by a constant fre-
quency of motion and near constant amplitude as was the solution and reality for the

1 The word chaotic was avoided only because that word now has a well-established technical meaning that
generally refers to dynamic systems whose trajectories are difficult to predict because of nonlinearities
and a high susceptibility to large changes in response to small changes in system parameters, including
initial conditions.

263
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deflections of the lightly damped single-DOF system. This circumstance is notewor-
thy because engineers always seek to identify patterns because patterns are very
helpful for fostering understanding. Thus it is fortunate that the seeming lack of any
pattern to the free vibration of a multidegree of freedom structural system, whose
motion was started by use of arbitrary initial conditions, is more apparent than real.
As can be demonstrated with actual, small structures, if the initial conditions are
properly chosen, the entire structure can be made to vibrate in an orderly manner
at a single vibratory frequency with near constant amplitudes. That is, there is a
vibratory motion where every mass particle in the structure moves either in or out
of phase with all other mass particles. To be more specific, in this lightly damped
structure, all mass particles will reach there maximum amplitudes at the same time,
and then all mass particles will pass through the static equilibrium configuration at
their maximum velocities at the same time. Using a C-clamp and a stiff support to
reduce foundation damping, cantilevering a long ruler at one end and deflecting and
releasing the other end would provide an illustration of this phenomenon.

The elimination of damping from the mathematical treatment of the structural
system reduces the unloaded structural model to just its inherent mass and elastic
properties. As will soon be seen, such an undamped, multidegree of freedom system
mathematical model reflects the above described physical reality by having a solution
for a vibration at a single frequency. All such frequencies are called the natural
frequencies, and the associated patterns of vibratory amplitudes are called the natural
mode shapes. The natural frequencies and mode shapes are very important when
characterizing the inertial and elastic properties of a structure. In particular, the set
of the lower numbered natural frequencies and the associated set of mode shapes of
a structure prove to be the most important information set available to an engineer
for gaining a physical insight into the behavior of that structure when it is subject to
time-varying loads.

This chapter concentrates on developing (i) the precise meaning of the phrases
natural frequency and mode shape, in those cases where there is more than one; (ii)
the number of, and the mathematical nature of, those natural frequencies and mode
shapes; and (iii) various means for calculating their values. Recall that Chapter 2 first
explained that for any single-DOF vibratory system, such as a pendulum system,
subjected to neither base motions nor externally applied contact loads (i.e., for a
force free vibration), the natural frequency f1 and natural circular frequency ω1 of the
back-and-forth motion are determined by measuring the elapsed time between any
two points in the time record of the deflection DOF where, together, the deflection
and the velocity repeat themselves. That elapsed time between repetition points is
called the period of the vibratory motion, T1. Again, the quantitative relationships
between the circular frequency, the frequency, and the period are, respectively,

ω1 = 2π f1 = 2π

T1
.

Recall that for the single-DOF vibratory system, typified by a single pendulum, or
an oscillator, undergoing small deflections, the (circular) natural frequency squared
of the sinusoidal motion is always the ratio of the coefficient of the deflection term
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to the coefficient of the acceleration term. However, for the matrix equation of
motion associated with a multidegree of freedom structural system, instead of a single
deflection term and its single scalar stiffness coefficient, there is a deflection vector
and its associated stiffness matrix. Instead of a single acceleration term and its mass
coefficient, there is an acceleration vector and its associated mass matrix. There is no
ratio of matrices corresponding to the important k/m ratio of the single-DOF system.
Indeed [m]−1[k] is generally quite different from [k][m]−1, or [m]−1/2[k][m]−1/2, and
it is not clear which of these nondiagonal matrices would be preferred, or if they have
any interpretation. Thus the multidegree of freedom problem poses a new challenge.

6.2 Natural Frequencies by the Determinant Method

As before, the only parts of Eq. (6.1) essential to a vibration are elastic and inertial
forces. Consider the matrix equation [M]{q̈} + [K]{q} = {0}. The solution for this
[M], [K] system equation starts with the conjecture that there is some function of
time, f (t), that is common to all the generalized coordinates of an N-DOF system. In
the single-DOF case, that function of time is sin(ω1t + ψ). Such a possibility would
produce the “orderly” vibration mentioned in the first section of this chapter. To
investigate this possibility, write the deflection vector as {q} = {A} f (t), where {A} is
a N × 1 vector of unknown amplitudes (i.e., unknown constants). Substituting this
trial solution into the undamped, force free vibration equation yields

[M]{A} f̈ (t) + [K ]{A} f (t) = {0}. (6.2a)

Conceptually premultiplying this matrix equation by the row vector {A}t , and re-
arranging the scalar result yields

f̈
f

= − �A�[K]{A}
�A�[M]{A} . (6.2b)

Since the triple matrix product in the denominator is equal to twice the maximum
value of the kinetic energy, this triple matrix product is a positive constant, which
is the same as saying that the mass matrix is positive definite.2 Similarly, the triple
matrix product of the numerator is twice the maximum value of the strain energy.
Thus the numerator is either zero (in the case of an structure unconstrained by
supports) or positive (in the case of supports that constrain rigid body motion). The
stiffness matrix is termed nonnegative definite. Therefore the right-hand side ratio
of Eq. (6.2) is either zero or, because of the negative sign on the right-hand side,
a negative real number. Following the symbol choice used for the corresponding
single-DOF equation of Chapter 2, call that negative real number −ω2. Be sure to
note that this means that ω2 itself is always a positive number.

Now consider in turn these two possibilities for Eq. (6.2b), which is a differential
equation involving the time function f (t). When the right-hand side of Eq. (6.2b) is

2 However, when there are zeros on the main diagonal, the numerator and the mass matrix may be only
“nonnegative definite” rather than positive definite. However, the elimination of the DOF associated
with those zero diagonal mass entries, as discussed in Chapter 3, produces a positive definite numerator
and mass matrix.
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zero, this differential equation for the time function, for all the DOF amplitudes, is
simply

f̈ (t) = 0 so that f (t) = a1t + a2.

This solution for the time function, which corresponds to a uniform rigid body motion,
is clearly just a reflection of Newton’s first law for this unloaded structural system.
Since this uniform motion is wholly unimportant to a study of vibratory motions and
their associated stresses, it receives no further attention. When the right-hand side of
the differential equation for f (t) is equal to the negative of ω2, the resulting ordinary
differential equation is

f̈ (t) + ω2 f (t) = 0.

From the previous chapter, this undamped equation has a solution that can be written
as either

f (t) = C0 sin(ωt + ψ)

or f (t) = A0 sin ωt + B0 cos ωt , (6.3a)

where either form contains two constants of integration. Therefore, just like the
single-DOF m, k system, the only possible orderly, nontrivial, time history for an
undamped, unforced, multidegree of freedom, [M], [K] vibratory system is one that
involves a sine function and a cosine function or their combination. Note, moreover,
that when substituting the above solution for f (t) into the original trial solution
{q(t)} = {A} f (t), the above unknown constants of integration C0, or A0 and B0,
in the above solution for f (t), are simply absorbed into the vector of unknown
amplitude constants. That is, for example, after substituting the second of the above
solutions for f (t) into the trial solution {q} = {A} f (t) yields the following partial
solution for the DOF vector:

{q(t)} = {A} sin ωt + {B} cos ωt , (6.3b)

where {A} and {B} are the two different column vectors of unknown amplitudes
associated with the two different linearly independent solutions, sin ωt and cos ωt.
The above equation has 2N constants of integration. This is the proper number
because the original matrix differential equation represents N individual second-
order differential equations. If the alternate phase angle form of the solution were
chosen here, the equation corresponding to Eq. (6.3b) would require a different
phase angle be associated with each amplitude. The more convenient form of these
equivalent solutions will vary from use to use.

The partial solutions represented by the sine and cosine functions that involve
a yet to be determined frequency or frequencies, ω, can be further explored. The
substitution of that partial solution, Eq. (6.3b), into [M]{q̈} + [K]{q} = {0}, yields
the result

−ω2[M]{A} sin ωt − ω2[M]{B} cos ωt + [K]{A} sin ωt + [K]{B} cos ωt = {0}
or (−ω2[M]{A} + [K]{A}) sin ωt + (−ω2[M]{B} + [K]{B}) cos ωt = {0}.
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Since the sine function and the cosine function are linearly independent, each of the
above expressions in parantheses is individually zero. Further, note that the equation
involving {B} is exactly the same as the equation involving {A}. Therefore, it is only
necessary to consider, say, the former equation that can be rewritten as

[K − ω2 M]{A} = {0}, (6.4)

where the temporary underlines in the above square matrix merely emphasizes the
fact that the M, K symbols are the matrices in that mixture of matrix and scalar terms
within the matrix brackets.

Consider Eq. (6.4) from the point of view of solving N simultaneous equations
for the N unknown amplitudes Ai . The solution of these N homogeneous equations
[K − ω2 M ]{A} = {0} can be approached from more than one viewpoint. For example,
consider multiplying this matrix equation by the inverse of the coefficient matrix so
as to obtain

{A} = [K − ω2 M]−1{0} = {0}.
This result means that all the amplitudes of the motion must always be zero whenever
it is possible to construct the inverse of the above coefficient matrix. Zero values for
the amplitudes are indeed a solution to Eq. (6.2a). As before, the zero value solution
for the amplitudes of motion is called the trivial solution because if the amplitudes
are zero, then there is no dynamic motion, vibratory or otherwise. Hence the trivial
solution is of no interest here. The important thing to note is that the only way
the zero solution can be avoided is to insist that this M, K coefficient matrix of the
amplitude vector not be invertible, that is to insist that this coefficient matrix be
“singular.”

The very same conclusion that this coefficient matrix of the amplitude vector must
be singular can be reached by solving the amplitude equation, Eq. (6.4), by means
of Cramer’s rule. By Cramer’s rule (see, for example, Ref. [6.1]), the solution for
any one of the individual amplitudes Ai can be written as the ratio of two deter-
minants. The denominator is simply the determinant of the coefficient matrix. The
numerator is also the determinant of the coefficient matrix, but here the ith col-
umn (i.e., the column corresponding to the unknown being determined, Ai ) of the
numerator is replaced by the right-hand side vector. In this case the right-hand side
column is a column of zeroes. This column replacement using the zero right-hand
side causes each and every numerator determinant to have a zero value. There-
fore, unless the determinant in the denominator is also zero valued, leading to the
undefined ratio 0/0, then the only possibility for the amplitudes is the trivial solu-
tion. Therefore, again, to avoid the trivial solution, the determinant of the square
coefficient matrix is required to be zero, making the matrix of the determinant
singular.

There is no difficulty requiring that the coefficient matrix [K − ω2 M ] be singu-
lar, which again is the same as requiring its determinant |K − ω2 M | to equal zero.
This is so because the unknown ω2 term appearing in this determinant equation has,
hitherto this point, been required only to be a positive real number. This weak con-
straint, discussed again in Section 6.5, does allow ω2 to take on whatever value or
values are necessary to render the determinant equal to zero. Consider the equation
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|K − ω2 M| = 0. Recall that the expansion of any determinant of size N × N involves,
along with a plus one or minus one factor, a sum of the N! products of N terms com-
posed of one entry of the first column, an entry of the second column in a different
row, an entry of the third column in a still different row, and so on, down to the one
possible term in the Nth column.3 Applying this aspect of the expansion rule to the
most general form of this determinant equation

∣∣∣∣∣∣∣∣
K1,1 − ω2 M1,1 K1,2 − ω2 M1,2 K1,3 − ω2 M1,3 . . .

K2,1 − ω2 M2,1 K2,2 − ω2 M2,2 K2,3 − ω2 M2,3 . . .

K3,1 − ω2 M3,1 K3,2 − ω2 M3,2 K3,3 − ω2 M3,3 . . .

. . . . . . . . . . . .

∣∣∣∣∣∣∣∣
= 0

leads to the conclusion that the expansion of the Nth order determinant leads, in
terms of ω2, to an Nth order polynomial equation, called the characteristic equation.
From the theorems of algebra, the next conclusion is that there are N roots (not nec-
essarily distinct) for that polynomial equation; that is, there are no more or less than
N solutions for ω2. Of course, the solutions for ω itself, from the known nonnegative
values of ω2, produces pairs of positive and negative values that are otherwise equal.
Since the negative solutions for ω contain no information that is not available from
the positive solutions, these negative values are usually ignored.4 There is a standard
convention that must be honored with regard to the positive solutions for ω. These
solutions must be ordered (i.e., subscripted) so that the first frequency is the lowest
valued frequency solution (called the fundamental frequency), and the second fre-
quency is the second lowest value of ω, and so on. Later developments depend on
this ordering.

In summary, the above development using a determinant equation to obtain a
solution for the natural frequencies of an [K], [M] system shows that an N-DOF
system has N natural frequencies. All these natural frequencies are characterized by
real, positive numbers that are to be ordered by increasing size. The following three
examples illustrate such solutions.

EXAMPLE 6.1 When the triple pendulum of Exercise 2.4 and Figure 2.15 is not
subjected to either damping or an external loading, it has the following matrix equa-
tion of motion, where β = g/L = α2k/m

 1
1

1







θ̈1

θ̈2

θ̈3


 + β


 2 −1 0

−1 3 −1
0 −1 2







θ1

θ2

θ3


 =




0
0
0


 .

Use the determinant method to calculate the natural frequencies of this there-DOF
system.

3 The necessity of N! products of N terms makes large determinants costly to evaluate, usually much too
costly relative to other approaches.

4 There is the exception that occurs when two-sided Fourier transforms are used for probabilistic esti-
mates for the dynamics of a structure. The use of mathematical transforms is unnecessary for the
purposes of this textbook.
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SOLUTION The first step toward writing the determinant equation that determines
the natural frequencies of the system is to recall that the time history of the free
vibratory motion is sinusoidal. That is, because

{θ} = {A} sin(ωt + φ) ∴ {θ̈} = −ω2{θ} = −ω2{A} sin(ωt + φ).

After canceling the sin(ωt + φ) terms that are common to the inertia and elastic
forces, the equation of motion becomes

−ω2


 1

1
1







A1

A2

A3


 + β


 2 −1 0

−1 3 −1
0 −1 2







A1

A2

A3


 =




0
0
0


 .

Combining the left-hand side terms by factoring the amplitude vector, and requiring
that the determinant of the square coefficient matrix be zero, leads to

∣∣∣∣∣∣
2β − ω2 −β 0

−β 3β − ω2 −β

0 −β 2β − ω2

∣∣∣∣∣∣ = 0.

The expansion of the above determinant yields the characteristic equation

(2β − ω2)2(3β − ω2) − (2β − ω2)β2 − (2β − ω2)β2 = 0

or (ω2 − 2β)(ω4 − 5βω2 + 4β2) = 0.

Noticing the unusual circumstance that there is a factor in the above expansion
allows a change in the solution process from that of solving for the roots of a cubic
polynomial equation to that of solving a quadratic equation and a linear equation.
These three roots are immediately evident as

ω2
1 = β ω2

2 = 2β ω2
3 = 4β

or ω1 = √
β ω2 = √

2β ω3 = 2
√

β.

Note again that these roots are ordered by increasing size. Thus substituting these
three sets of solutions for frequencies and relative amplitudes into the shorter phase
angle form of Eq. (6.3b), the total (undamped) free vibration solution for this simple
pendulum system can be written as




θ1(t)
θ2(t)
θ3(t)


 =




A1

A2

A3




(1)

sin(
√

β t + ψ1) +



A1

A2

A3




(2)

sin(
√

2β t + ψ2)

+



A1

A2

A3




(3)

sin(2
√

β t + ψ3).

As demonstrated in Example 6.4, the values of six of the nine amplitude factors can
be determined from an extension of this calculation discussed in the next section.
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In later caluclations, it is demonstrated that three remaining amplitude factors and
the three phase angles can be determined by use of the three initial deflections and
the three initial velocities. Hence, soon, it will be seen that specific values can be
assigned to all presently unspecified quantities. ★

EXAMPLE 6.2 Use the determinant method to calculate the natural frequencies
of the three-DOF beam and discrete mass system whose mass and stiffness matrices
are as follows:

[M] = m


 0.50

0.50
1.00


 [K] = k


 9.00 −3.00 −2.00

−3.00 3.00 0
−2.00 0 2.00


 .

SOLUTION Immediately write the determinant equation, |K − ω2 M| = 0, whose
solution yields the values of the natural frequencies squared. In this case the charac-
teristic equation, with λ2 = mω2/k, is

∣∣∣∣∣∣
9 − 0.5λ2 −3 −2

−3 3 − 0.5λ2 0
−2 0 2 − λ2

∣∣∣∣∣∣ = 0.

Expanding the determinant yields the following polynomial equation:

24 − 28λ2 + 6.5λ4 − 0.25λ6 = 0

or x3 − 26x2 + 112x − 96 = 0,

where x = λ2. In this case it is necessary to solve for the roots of a cubic polynomial.
This is a simple matter if appropriate software is available, and it is not at all difficult
when a hand-held calculator is available.

There are many, many methods for calculating the roots of a polynomial equation.
A straightforward method that possesses considerable generality is the Newton–
Raphson method. The Newton–Raphson process is an iterative approach to finding
a root r of an equation of the form F(x) = 0, meaning that a first guess x1 for the
answer x = r is used as the basis for calculating an improved second guess x2 for the
answer r. The answer r is clearly obtained when the succession of guesses converge,
within a specified number of significant figures. The Newton–Raphson method, from
Appendix I of Ref. [6.2], is what is called a “tangent method.” That is, Newton–
Raphson uses F ′(x) to determine the value of the next guess. The resulting formula
for this process is stated below.

The first guess for the Newton–Raphson iterative approach can be based on a
rough sketch of the polynomial or other functional equation. In this case, just by
plotting the values of the above polynomial at x = 0 and x = 1 shows that there is
one root slightly beyond x = 1. Thus choose the value x1 = 1.1 as a first guess for the
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root slightly past one. Then the Newton–Raphson iterative procedure can be written
in terms of the first guess x1 and the better, second, estimated value x2 as

x2 = x1 − F(x1)
F ′(x1)

.

Applying this iterative formula yields the following results:

x2 = 1.1 − (1.1)3 − 26(1.1)2 + 112(1.1) − 96
3(1.1)2 − 52(1.1) + 112

= 1.1 − −2.929
58.43

= 1.150

x3 = 1.150 − (1.150)3 − 26(1.150)2 + 112(1.150) − 96
3(1.150)2 − 51(1.150) + 112

= 1.150 − −0.64125
56.1675

= 1.15114.

Continuing with the above iteration procedure shows that the converged value of
this root, to six significant figures (at least three more than is justified by the accuracy
of the input or the accuracy of strength of materials beam theory), is x = 1.15114.
The remaining two roots (4.0 and 20.8489) can be determined by either making
another guess for another root and preceding as above or, say, using synthetic divi-
sion to eliminate this first found root from the original cubic (the reason for the
need for additional number of significant figures in the first solution) and thereby
obtain a quadratic equation to be solved by use of the quadratic formula for the
remaining two roots. Once all three positive, real roots have been determined, their
square roots are arranged from lowest to highest. Then the natural frequencies can be
presented as

ω1 = 1.07291

√
k
m

= 1.07

√
k
m

ω2 = 2.00

√
k
m

and

ω3 = 4.56606

√
k
m

= 4.57

√
k
m

. ★

EXAMPLE 6.3 Determine the natural frequencies of the cantilevered beam struc-
ture shown in Figure 3.5 and discussed in Example 3.4. For ease of calculation,
adjust the entries in the mass matrix and the entries in the stiffness matrix so that
all the entries in any one matrix have the same units. This can be accomplished
by, for example, (i) dividing each moment row (rows 2, 3, 5, and 6 of the matrix
equations of motion) by the offset distance e; and (ii) in both the acceleration and
deflection vectors, replace θ and φ, respectively, with eθ and eφ, which to maintain
the equality, means dividing columns 2, 3, 5, and 6 of both the mass and stiffness
matrices by the quantity e. Furthermore, to simplify the algebra by having numbers
rather than algebraic symbols (the common situation for engineering applications),
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let Hx/e2 = Hy/e2 = m, L/e = 5, β = 0.2, and EI0/L3 = k. This low value of β

means that the beam is torsionally weak. With these simplifications, the matrix
equation of motion is

m




2 −2
2

−2 4
1 1

1
1 2







ẅ1

eθ̈1

eφ̈1

ẅ2

eθ̈2

eφ̈2




+ k




36 −30 −12 30
−30 300 −30 50

15 −5
−12 −30 12 −30
30 50 −30 100

−5 5







w1

eθ1

eφ1

w2

eθ2

eφ2




=




0
0
0
0
0
0




.

SOLUTION Again the free vibration case is one of harmonic motion. Thus the accel-
eration vector is equal to the negative of the displacement vector multiplied by
the square of the natural frequency. Making this substitution, and again defining
λ2 = mω2/k, the determinant that yields the six natural frequencies is

∣∣∣∣∣∣∣∣∣∣∣∣∣

(36 − 2λ2) −30 2λ2 −12 30 0
−30 (300 − 2λ2) 0 −30 50 0
2λ2 0 (15 − 4λ2) 0 0 −5
−12 −30 0 (12 − λ2) −30 −λ2

30 50 0 −30 (100 − λ2) 0
0 0 −5 −λ2 0 (5 − 2λ2)

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Clearly the expansion of this symmetric, 6 × 6 determinant by hand is a nightmare.
Indeed, with normal mathematical skills, it is virtually impossible to do correctly
by hand without substantial effort. (A more practical hand calculation method
for a problem this size is discussed later.) Again, with λ2 = mω2/k and the use
of the computer program Mathematica [6.3], the expanded determinant equation
is

8λ12 − 2, 580λ10 + 232, 328λ8 − 5, 289, 300λ6 + 35, 253, 800λ4

− 52, 800, 000λ2 + 18, 000, 000 = 0.

Before continuing with this polynomial equation, note that counting the sign changes
from one coefficient to the next yields six sign changes. Thus Descartes’ sign change
test for positive roots offers, as expected, the possibility of six positive, λ2 roots for
this polynomial equation. In other words, Descartes’ rule allows for a quick (but
weak) check on the accuracy of the determinant expansion in that the number of
sign changes must equal the number of DOF for the system. The six λ2 roots of
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the above polynomial equation, from Mathematica, are 0.489248, 1.42584, 8.15701,
19.6474, 110.271, and 182.51. Thus the six natural frequencies (properly ordered)
are

ω1 = 0.699

√
k
m

ω2 = 1.19

√
k
m

ω3 = 2.86

√
k
m

ω4 = 4.43

√
k
m

ω5 = 10.5

√
k
m

ω6 = 13.5

√
k
m

.

★

Other natural frequency calculations using the determinant method are discussed
in the exercises.

6.3 Mode Shapes by Use of the Determinant Method

There is another important information set that can be obtained from the determinant
method. That information is the deflection pattern that is associated with each natural
frequency. The deflection pattern associated with the first natural frequency is called
the first mode shape and that associated with the second natural frequency is called
the second mode shape, and so on. The term nth mode is also used. That term refers to
two pieces of information, the nth natural frequency and the nth mode shape. Under
very general conditions, as is soon seen, these mode shapes are always distinct (i.e., in
mathematical terms the mode shapes are linearly independent vectors), they always
are useful for analysis purposes, and they always are useful for vibration testing
purposes.

In the case of the determinant method, each mode shape is calculated separately.
Return to the general N-DOF free vibration matrix equation, Eq. (6.4).

[K − ω2 M ]{A} = {0}.

Note again that this matrix equation can be viewed as n simultaneous, linear, alge-
braic, homogeneous equations in terms of the n unknown amplitudes {A}. Further
recall that (i) there is no solution to these simultaneous equations other than the
trivial solution Ai = 0 for arbitrary values of ω, and (ii) when the values of ω are
those of one of the discrete natural frequencies, then the coefficient matrix for the
vector {A} is singular. In other words, when substituting any of the natural frequency
values back into the coefficient matrix, the determinant of the coefficient matrix
takes on a zero value. From the rules that apply to all determinants, a zero value of
the determinant implies that one or more rows of that determinant are obtainable as
the sum of other rows where each of those other rows is multiplied by some factor.
In the case of the |K − ω2M| determinant, there is only one such dependent row when
there are no repeated roots to the characteristic equation. In other words, viewed
from the point of view that the matrix equation, Eq. (6.4), is a set of n simultaneous
equations, it may be concluded that one and only one of those simultaneous equa-
tions is dependent on the other n − 1 equations. Since that dependent equation is
extraneous, it may be eliminated.
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As a reminder of exactly what dependent equations are, consider the following
three linear, algebraic equations: (i) 2x + 3y − z = 13, (ii) 4x − 2y + 2z = 6, and
(iii) 2x − 5y + 3z = −7. Note that the third of these equations is equal to the first
subtracted from the second or the first is equal to the third subtracted from the sec-
ond, and so on. Therefore one of these three equations, the choice is arbitrary, can
be selected as the equation that does not contain any information that is not fully
present in the other equations. Thus one, any one, of these three algebraic equations
can be discarded without the slightest loss of information. What remains is two equa-
tions in the three unknowns x, y, and z. Therefore there is no unique solution for
the three unknowns. The most that can be done is to determine the values of two of
the unknowns, say x and z in terms of the third, y.

In the specific case of the N simultaneous free vibration equations [K − ω2M]{A} =
{0}, the one equation (row) to discard when doing hand calculations is usually the
most complicated row; that is, usually the row that has the most nonzero entries. The
next step is to solve for N − 1 unknown amplitudes in terms of an Nth unknown
amplitude. To simplify this solution procedure for both hand and machine calcula-
tions, choose any one of the Ai terms to have, temporarily, a unit value. Then solve
the selected N − 1 equations for the remaining N − 1 unknowns. There will always
be a unique solution for these values when there are no repeated roots5 to the char-
acteristic equation. Some of the Ai solutions generally will have values greater than
1, whereas others will have values less than 1. The traditional way of presenting the
solution data for the amplitudes associated with a particular natural frequency is to
divide all the amplitudes by the largest value (positive or negative) in the solution
set so that the largest resulting amplitude has the value 1.0. The following example
problems illustrate this process.

EXAMPLE 6.4 Calculate the three mode shapes of the triple-pendulum problem
of Example 5.1, where again β = g/L = α2k/m.

SOLUTION From that example solution, the amplitude equation for this three-DOF
system is


 2β − ω2 −β 0

−β (3β − ω2) −β

0 −β (2β − ω2)







A1

A2

A3


 =




0
0
0


 .

As discussed above, one of these three equations is superfluous. For the sake of
convenience, eliminate the middle equation. Now, inserting the previously calculated
fundamental natural frequency solution ω2

1 = β into the first and third equations,
obtain the first mode shape by setting A3 = 1.0 and solving those two remaining
simultaneous equations that now are

(2β − β)A1 − β A2 = 0

−β A2 + (2β − β)(1.0) = 0.

5 The case of repeated roots is discussed in the next section.
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The solutions to these two equations are A1 = A2 = 1.0. Following the same pro-
cedure for the second mode, that is, substituting ω2

2 = 2β and A3 = 1.0, the matrix
equation is 

 0 −β 0
−β β −β

0 −β 0







A1

A2

1


 =




0
0
0


 .

The above equations illustrate the unusual circumstance where two of the remaining
equations are exactly the same. In such cases, it is of course necessary to eliminate
one of the two identical equations to facilitate the solution for all the amplitudes.
Throwing away the third equation leads to the result that A1 = −1.0, A2 = 0, and,
of course, A3 = +1.0.

For the third mode shape, with the square of the third natural frequency being 4β,
after deleting the second equation, the solution for the mode shape is A1 = 1.0, A2 =
−2.0, and A3 = 1.0. Recall that the traditional manner of presentation of mode shape
data is to have the largest amplitude value take on the value +1.0. Therefore, divide
the above third mode shape data by −2. Then the traditional listing of all three mode
shapes is

First mode: 1.0 1.0 1.0
Second mode: −1.0 0.0 1.0
Third mode: −0.5 1.0 −0.5

Thus the complete solution for the original matrix equation of motion [M]{q̈} +
[K]{q} = {0}, in terms of six constants of integration, can be written as




θ1(t)
θ2(t)
θ3(t)


 = a1




+1
+1
+1


 sin

(√
βt + ψ1

) + a2




−1
0

+1


 sin

(√
2βt + ψ2

)

+ a3




−1/2
+1

−1/2


 sin

(
2
√

βt + ψ3
)
. (6.5)

Figure 6.1(a) is a drawing that attempts to show the physical meaning of the above
(relative) amplitude data. In the first mode, all three pendulums swing in unison,
at a frequency equal to the first natural frequency, without stretching or squeezing
the springs. The all positive numerical values of the amplitudes of the first mode are
described in physical terms as being “in phase.” That is, at any instant of time, all the
pendulums have swung to the right (where the deflections are all positive), or all the
pendulums have swung to the left (where all deflections are negative). Since, in this
first mode, the springs are not involved in driving the system motion (and are not
involved in the total potential energy), the frequency of the vibration is just that of
any one of the pendulums vibrating by itself, which is

√
g/L.

In the second mode, the first and third pendulums are out of phase; that is, when
one has a positive amplitude, the other has a negative amplitude, and vice versa. The
middle amplitude, as stated above, has a zero value at all times. In the third mode,
the outer pendulums are in phase, whereas the middle pendulum is out of phase.
Note that, other than the support points, in the first mode there are no points (mass
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In[10]: = Plot[{1/3 * Cos [x] + 1/2 * Cos [Sqrt[2]x] 
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Figure 6.1. (a) Model diagrams for the triple-pendulum problem of Examples 6.1 and 6.4. (b)
Triple pendulum response for left-most pendulum when only it is given an initial deflection
and all pendulums have an initial zero velocity.
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points or massless points) in the system that have a zero amplitude. In the second
mode, all points along the axis of the second pendulum have a zero amplitude. In
terms of left–right motion, the middle pendulum counts as a single point. In the
third mode, at the outer one-third points of the spring lengths are the points that
have zero amplitude. These points of zero motion are called node points. (Be sure
to understand that these node points have no relation to the node points of a finite
element analysis and clearly distinguish between node and mode.) The above unit
increase in the number of node points with the unit increase of the modal identi-
fication number is a general occurrence. (The proof of this assertion depends on a
later discussion of the mode shapes as general orthogonal vectors.) Finally, recall that
these amplitudes are merely the peak values of the harmonic motion of the system
as each part of the system vibrates at the natural frequency corresponding to that
mode.

Reconsider Eq. (6.5). Note that this equation is a complete description of the
motion of the system. It is that because, first of all, it identically satisfies the original
M,K matrix differential equation, and hence is a solution to that matrix equation. Fur-
thermore, it is a complete solution to the three ordinary, second-order, homogeneous
differential equations that comprise the M,K matrix differential equation because
it contains the correct number of constants of integration, six. Those constants of
integration are, of course, a1, a2, a3, ψ1, ψ2, and ψ3. Hence as the complete solution,
it fully describes the undamped triple pendulum vibratory motion within the limits
of the mathematical model. With the completeness of the solution established, the
point can be made that this solution, Eq. (6.5), mathematically validates the earlier
observation that when this force free, undamped, system is set in motion by means
of arbitrarily chosen initial conditions, the motion appears confusing because it lacks
any discernable pattern. Consider, as an example, the following set of initial condi-
tions. Let the left-hand pendulum have a positive initial deflection of magnitude Θ ,
while the other two pendulums are restrained to have zero initial deflections. Let
the initial velocities of all three pendulums be zero. Using the procedure outlined
in the next chapter, or simply solving six simultaneous equations, it can be shown that
the motion of the left-hand pendulum is

θ1(t) = 1
3
Θ cos(

√
βt) + 1

2
Θ cos(

√
2βt) + 1

6
Θ cos(2

√
βt).

This three-term sum is not like a truncated Fourier cosine series because the fre-
quencies are not integer multiples of the fundamental frequency. The presence of
the square root of 2 in the second term guarantees that this sum in not periodic.
In fact, because this solution never repeats itself, there is no pattern to this motion
discernable by an observer. See Figure 6.1(b). However, if the initial conditions are
not chosen arbitrarily but rather are selected to conform with the deflection ampli-
tudes of one of the natural modes, then patterns to the motion are easily observed.
For example, as can be shown by either solving simultaneous equations or using the
procedure explained in the next chapter, if the selected initial conditions are that all
the undamped pendulums are given a positive initial deflection Θ , and a zero initial



P1: JZP
0521865743c06 CUFX001/Donaldson 0 521 86574 3 September 12, 2006 5:36

278 Natural Frequencies and Mode Shapes

velocity, then each pendulum will vibrate in phase at a circular frequency equal to√
β. If the initial conditions are such that the left-hand pendulum is given an initial

deflection +Θ , while the right-hand pendulum is given an initial deflection of −Θ ,
then the middle pendulum will remain stationary, while the two outboard pendulums
vibrate out of phase at a circular frequency of

√
2β. ★

EXAMPLE 6.5 Calculate the first two mode shapes of the three degree of freedom
structure described in Example 6.2.

SOLUTION In this case, eliminate the first of the three dependent, free vibration
equations [K − λ2 M]{q} = {0}. For the first mode shape (i) substitute the solution
for the first nondimensional frequency that is the square of the quantity 1.07291 and
(ii) begin by setting the third amplitude equal to the arbitrary value 1.0. (If the first
or second amplitude happens to have a larger absolute value, then all amplitudes
will be divided by the value of that amplitude so that the largest value in the list of
amplitudes will be 1.0.) Hence, for the first mode, the two equations to be solved for
the first and second amplitudes of the first mode are

−3A1 + 2.42443A2 = 0 and −2A1 + 0.84886 = 0.

The solution to these equations are A1 = 0.42443 and A2 = 0.52519. Thus the first
mode shape, or first modal vector, is listed as

�q(1)� = �0.42443 0.52519 1.0�.

This process is repeated for the second mode where λ2 is the integer value 4. Again
guessing that the largest amplitude is the third amplitude with a value 1.0, the equa-
tions to be solved are

−3A1 + A2 = 0 and −2A1 = 2,

which has the solutions A1 = −1 and A2 = −3. Thus, contrary to the above guess, it
turns out that the second amplitude has the largest magnitude. Therefore, to comply
with custom, divide all amplitudes by −3 so that the second-mode amplitudes are
listed as ⌊

q(2)⌋ = �0.333333 1.0 −0.333333�. ★

EXAMPLE 6.6 Using the determinant method, examine the first three mode
shapes of the six-DOF, cantilevered beam of Figure 4.5 and Examples 4.4 and 6.3.

SOLUTION Again, from the fact that there are six DOF, and hence five simultaneous
equations to be solved, this problem is not well suited to hand calculations. By using
a computer solution, after guessing that the last amplitude (the tip twist DOF) in
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each of the first three modes is the maximum amplitude, the numerical results for
the original order of the DOF are

DOF First mode Second mode Third mode

w1 1.59782 −0.35953 −0.053885
eθ1 0.564145 −0.10148 −0.072759
eφ1 0.263477 0.648112 −0.333507
w2 5.52709 −0.766033 −1.1826
eθ2 0.901116 −0.0722405 −0.329078
eφ2 1.0 1.0 1.0

Clearly the first modal amplitudes need to be divided by 5.52709 to normalize the
maximum amplitude at 1.0. Similarly, the third mode needs division by −1.1826.
The first mode is described as a “first bending mode” simply because the lateral
deflection magnitudes w1, w2 are significantly greater than the bending slope and
twisting amplitudes. Describing the first mode as the first bending mode is not to say
that the beam does not twist as it bends up and down. Indeed, the modal solution
does show that all three types of deflections do occur simultaneously in what is
called a “coupled motion.” That modal name only implies that the lateral deflection
amplitudes are distinctly more prominent than the bending slope amplitudes and
the twisting amplitudes. Similarly, the second mode is identified as a first twisting
mode. The qualifier “first” that is applied in the identification of modes one and
two is justified on the basis that the amplitudes of the dominant type of motion are
in phase (same sign) with each other. That is, there is no nodal point between the
amplitudes of the dominant type of motion. Sketches of these three modes are shown
in Figure 6.2. The third mode may be described as just a coupled bending-twisting
mode. It is also justified, and perhaps more descriptive, to call the third mode the
second twisting mode even though the numerical value of the tip lateral deflection
amplitude is slightly greater than that of the twist at the beam tip. This is a reasonable
description because, for the same size twist at the beam tip, the deflections of the
third mode are not nearly as dominant as they are for the first mode, and there is one
twisting node between the two twisting DOF. In either case, the names given to the
modes are just loosely descriptive and are not that important. ★

6.4 **Repeated Natural Frequencies**

Although possible, it is unusual for the characteristic equation associated with an
actual structure to have repeated roots that, of course, lead to repeated natural
frequencies. In the case of the planar beam frame and planar beam grid type structures
used for illustration in this textbook, repeated roots are only possible if the structural
DOF are minimally coupled, or there is at least a two-way symmetry of the structure
and its possible motions. (What is meant by a two-way symmetry will be illustrated
later in this section.) As an example of a typical beam frame structure where coupling
is not minimal and there is only a single axis of symmetry, consider the free vibration
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SEP

First mode

Second mode

Third mode

Figure 6.2. Model amplitude diagrams for the cantilevered beam of Figure 4.5.

of the three-story, three-DOF, planar structure shown in Figure 5.22. The upper
mass value is αm. Here let the bending stiffness coefficients of the upper columns
be βEI. Then, there are no real values of the parameters α, β for which there are
repeated roots to this structure’s characteristic equation. Again, this is typical of any
planar beam frame structure where the beam generalized coordinates are coupled
in a normal fashion.

However, it is a simple matter to conceive of this same planar frame extended
out of the plane of the paper so as to become a three-dimensional frame structure
that has the same appearance and horizontally directed stiffnesses in and out of the
plane of the paper (call it the y direction) as it does in the plane of the paper (call
it the x direction). Then there will be, in plan view, a square top view and thus a
two-way symmetry. Therefore the corresponding side sway frequencies in the x and
y directions would be equal. A simpler view of this exact same symmetry where
there are equal stiffnesses and masses for two perpendicular motions can be had by
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Figure 6.3. Cantilevered beam for discussion of repeated natural frequencies.

considering just a single, cantilevered beam with, say, a square cross section, as shown
in Figure 6.3. Although drawn horizontally to save space, let the beam be oriented
vertically, and let the beam support a tip mass that is much greater than the mass of
the beam. Therefore it would be possible to have a mathematical model where all the
system mass is lumped at the beam tip. For simplicity, let the tip mass be connected
to the beam by means of a partial ball joint so that the tip mass does not rotate about
either the y or z axes, but can twist about the x axis as the beam tip twists. Then, since
the axial stiffness is so much greater than the lateral stiffnesses, the three significant
system DOF would be the two horizontal, orthogonal beam tip bending deflections
and the one twisting rotation. With the cross-sectional centroid and shear centers
being coincident, both the mass matrix and stiffness matrix for these three-DOF
would be diagonal. The magnitudes of the tip mass, the tip mass (torsional) moment
of inertia about the x axis, and the three stiffness coefficients can be arranged so that
the respective natural frequencies in bending in the x, z plane, bending in the x, y
plane, and twisting about the x axis all have the same value; that is,

ω1,2,3 =
√

3EIyy

mL3
=

√
3EIzz

mL3
=

√
GJ
Hx L

.

Again, the repeated natural frequencies for this cantilevered beam are simple to
arrange because the twisting and the two bending motions are physically uncoupled;
that is, they do not interact.

Of course, the above cantilevered beam with the same bending natural frequencies
in the x, y plane and the x, z plane, and the same natural frequency in twisting about
the x axis, is a case of a perfectly built and supported beam with perfectly uniform
geometry and material properties. Any actual beam will not be perfect. An interesting
phenomena occurs with such a lightly damped, actual beam as a result of its small,
unavoidable, imperfections. If, for the above example, the beam tip mass is deflected
in the y direction (an initial condition) and released, the beam will begin to vibrate
solely in the x, y plane, as would be expected. However, if the vibration persists long
enough, the beam will also begin to undergo torsional vibrations and vibrate in the
x, z plane as well. In other words, some to the energy of the y-direction vibration
will be transferred to a twisting vibration and a z-direction bending vibration and
then vice versa. The reasons for this begin with, for example, the fact that the beam
tip mass center of gravity cannot be perfectly aligned with the cantilevered beam’s
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Figure 6.4. Vibratory modes of a short, right circular cylinder. The top view of the undeflected
shape is indicated by the dashed line circles.

elastic axis. In general, the mass center will have very small y-direction and z-direction
offsets from the elastic axis. In the same fashion as the horizontally offset masses of
the beam of Figure 4.5 produce an inertial torque when that beam vibrates laterally,
the small imperfection offsets here will eventually produce an inertial torque that
stimulates a twisting vibration of the imperfect beam. Then, because of the offsets, the
twisting motion produces z-direction inertia forces that cause a z-direction bending
of the beam. Another way of saying the above is as follows: because the natural
frequency of the initial y-direction bending vibration is nearly the same as the natural
frequencies of z-direction bending and twisting, there is a resonance effect where
the one vibration drives the other and therefore overcomes the smallness of the
imperfections to produce finite amplitudes in horizontal bending and twisting. From
an energy viewpoint, because the lightly damped beam is undergoing a force free
vibration, the energy content of the beam, kinetic and strain, is slowly diminishing
with time. The initial y-direction vibration contained all the system energy. However,
through the coupling induced by the imperfections, this total energy content is soon
shared by all three types of vibration in constantly changing ratios, until all the energy
is dissipated.

Another, far less trivial, case of two-way symmetry is that of a short,6 unsupported,
circular right cylinder as shown in Figure 6.4. The lower vibratory modes of such a

6 “Short” so as to make the cylinder very stiff in bending along its central axis, which in turn means
that the cylinder only bends in its circumferential direction at its lower numbered natural fre-
quencies.
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cylinder are dominated by circumferential bending, with greater bending curvatures
(for equal amplitudes) resulting in higher strain energies and higher modal numbers.
The figure shows top views of the first two mode shapes that are uniform over the
height of the cylinder. It is not difficult to see that this pair of vibrations is quite
similar to the above discussed case of the three-dimensional frame with the square
cross section first used to argue for the existence of equal natural frequencies for
different motions. Hence, for the circular cylinder, the values of the first and second
natural frequencies are exactly the same. The third and fourth modes also have the
same natural frequencies. Their corresponding mode shapes are similar to the first
and second modes. In the first two modes, the top and bottom circles deform exactly
the same way at the same time, in the third and fourth modes, the top and bottom
deflections are out of phase. That is, although, say the north–south axis of the circle
at the top end of the cylinder stretches and the top east–west axis contracts, the
opposite occurs for the circle at the bottom of the cylinder in the third and fourth
modes. The fifth, sixth, seventh, and eighth modes bear the same relationship among
themselves as the first, second, third, and fourth modes, but in this group of modes,
rather than an oval shape to the modal amplitudes, there is a trefoil shape. Routine
numerical calculations for such a cylinder would require, at the minimum, the use
of many plate or shell finite elements, particularly in the circumferential direction.
Since calculations in this textbook are limited to the use of beam finite elements,
such plate and shell calculations are omitted.

A similar circumstance that is more easily grasped is that of square and circular
plates possessing two-way symmetry. For an illustrated discussion of simply sup-
ported, uniform, square plate vibration solutions, the reader is referred to Ref. [6.4],
Section 4.1. The mode shape diagrams of that reference’s Figure 4.3 are particularly
interesting in that they well illustrate the variety of mode shapes for repeated natural
frequencies that can be obtained for square plates. Those plate modal patterns are
similar to those of the square 24-beam grid discussed later in this section as the second
of two beam grid problems. This second beam grid problem is selected to roughly
mimic the mode shapes of a square plate while remaining within the computational
constraints adopted in this textbook. The following two example problems illustrate
the computation of repeated roots for beam structures.

EXAMPLE 6.7 Consider the z-direction vibrations of the planar, two-story struc-
ture shown in Figure 6.5. Let the beam-columns be attached to the rigid masses by
frictionless ball joints so that the rigid masses only rotate about the x axis, but not the
y axis, or, of course, the z axis. Thus the rigid connections do not transmit a torque
between the beams. Therefore one of the cantilevered beams of the beam grid can
vibrate through small amplitudes in the x, z plane without exciting a vibration in the
other cantilevered beam.

Let each of the four beams be of length L and stiffness coefficient EI. For the
inboard rigid mass, with only the DOF w1, w2, let the mass and the mass moment of
inertia about the x axis be m and 1/4 mL2, respectively. Let the mass and mass moment
of inertia for the outboard (tip) rigid mass be the same quantities multiplied by the
factor α. Let the distance between the points of connection to the beams for the rigid
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Figure 6.5. Two uncoupled, cantilevered beams constituting one vibratory system with
repeated natural frequencies.

masses, that is, the lateral spacing between beams, also be L. Then the kinetic energy
of the system is simply

T = 1
2

m
(

ẇ1 + ẇ2

2

)2

+ 1
2

mL2

4

(
ẇ1 − ẇ2

L

)2

+ 1
2
αm

(
ẇ3 + ẇ4

2

)2

+ 1
2

αmL2

4

(
ẇ3 − ẇ4

L

)2

.

Therefore the negative of the inertia forces acting on the system masses are

[M]{q̈} = m
2




1
0

1
0

α

0
α

0







ẅ1

θ̈1

ẅ2

θ̈2

ẅ3

θ̈3

ẅ4

θ̈4




.

After assembly of the global stiffness matrix, the negative of the elastic forces acting
on the system masses are

[K]{q} = EI
L3




24 −12 6L
8L2 −6L 2L2

24 −12 6L
8L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







w1

θ1

w2

θ2

w3

θ3

w4

θ4




.

The task of solving the equation of motion for the out-of-plane vibrations of this
two story planar structure, that is, solving [M]{q̈} + [K]{q} = {0}, can be better
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understood by first reducing the number of DOF; that is, by eliminating all the
DOF for which there are no mass entries, which in this case are the bending slope
degrees of freedom. Eliminating all the θs can be accomplished by rearranging the
rows and columns of the mass and stiffness matrices and the rows of the acceleration
and deflection vectors so that this system equation of motion has the form shown in
Eq. (3.3), and below. That is, as discussed previously, rearrange the rows and columns
of [M]{q̈} + [K]{q} = {0} so that this matrix equation can be written in the submatrix
form as [

M 0
0 0

] {
ẅ

θ̈

}
+

[
Kww Kwθ

KT
wθ Kθθ

] {
w

θ

}
=

{
0
0

}
.

Here these various submatrices are

[M] = m
2




1
1

α

α


 [Kww] = EI

L3




24 −12
24 −12

−12 12
−12 12




[Kwθ ] = EI
L2




0 −6
0 −6

6 −6
6 −6


 [Kθθ ] = EI

L




8 2
8 2

2 4
2 4


.

After elimination of the θ degrees of freedom, the reduced stiffness matrix, the
stiffness matrix for just the lateral deflection DOF is, from Eq. (3.4),

[Kr ] =
[

Kww − Kwθ K−1
θθ Kt

wθ

]
.

This process is called static condensation. The inversion of the theta-theta stiffness
submatrix is easily accomplished in this case because there is no mathematical cou-
pling between the odd and even numbered rows and columns. That is, the hand
calculation of the inverse is merely a matter of inverting the same 2 × 2 submatrix
twice. Carrying out the Eq. (3.4) calculations leads to the reduced equation of motion
in terms of only the lateral deflection DOF, which is

m
2




1
1

α

α







ẅ1

ẅ2

ẅ3

ẅ4


 + EI

7L3




96 −30
96 −30

−30 12
−30 12







w1

w2

w3

w4


 =




0
0
0
0


 .

An easy check for the validity of the above stiffness matrix is obtained by using,
say, either the unit load method or Castigliano’s second theorem to calculate the
deflections at the beam center and tip because of z direction, concentrated forces
of arbitrary magnitude applied in turn to the beam tip and beam center. These four
deflections can be arranged as a 2 × 2 flexibility matrix for either cantilevered beam
of length 2L. The inverse of this 2 × 2 flexibility matrix provides the nonzero entries
of either the even or odd rows of the above, reduced, stiffness matrix. This flexibility
matrix to stiffness matrix check is easy to perform in this case because both of the
two cantilevered beams are statically determinate.
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Now return to the task of calculating the natural frequencies and mode shapes
for this now four-DOF system. Before proceeding to use the determinant method,
it is convenient (but not necessary) to assign a numerical value to the parameter α

that appears in the mass matrix. Let α = 0.5. (Other values of α are considered in
the exercises.) Hence let λ be equal to 7mL3ω2/2EI. Then it is a matter of carefully
expanding the 4 × 4 determinant equation |K − λM| = 0. Careful expansion means
looking for simplifications that will ease the algebraic burden. One possibility for sim-
plification that suggests itself is letting p = (96 − λ)(12 − 0.5λ). Then the determinant
expansion can be written as p2 − 1800p + 810,000 = 0. The roots of this equation
are p = 900,900. Substituting this repeated solution for p into its definition above
yields the duplicate equations λ2 − 120λ + 504 = 0. Therefore, the solutions for λ are
4.3583, 4.3583, 115.64, and 115.64, and the solutions for the natural frequencies are

ω1 = ω2 = 1.116

√
EI

mL3
ω3 = ω4 = 5.748

√
EI

mL3
,

where the last two digits in each solution are not to be taken too seriously.
The calculation of the mode shapes is particularly interesting in this repeated root

case. Again, because of the lack of mathematical coupling between the even and odd
rows of the matrix equation [K − λM]{w} = {0} to be solved for the mode shapes, it is
only necessary to consider the even or odd rows. Choosing, for example, the first and
third row, and discarding the third row as redundant, the mode shape equation for the
left beam can be written as (96 − λ)w1 − 30w3 = 0. (The mode shape equation for
the even number rows, the right-hand beam, is (96 − λ)w2 − 30w4 = 0.) Substituting
the first pair of repeated natural frequencies, and then the second pair of repeated
natural frequencies, provides the mode shape results⌊

q(1)
⌋ = �0.3274 0.000 1.000 0.000�⌊

q(2)
⌋ = �0.000 0.3274 0.000 1.000�⌊

q(3)
⌋ = �1.000 0.000 −0.6547 0.000�⌊

q(4)
⌋ = �0.000 1.000 0.000 −0.6547�,

It is an easy matter to interpret these four mode shapes. In the first and third mode
shapes, the left-hand beam is vibrating while the right-hand beam is stationary, and
in the second and fourth modes, the reverse is true. These four mode shapes under-
line the lack of mechanical coupling between the left- and right-hand beams of this
structure. Also note that the labeling of the first and second mode shapes could just
as well have been reversed, and the same is true for the third and fourth mode shapes.
Moreover, the above-listed mode shapes are just one such choice for numerical val-
ues. For example, the following choice, which clearly are just combinations of the
above mode shapes, also satisfies all the requirements that will soon be discovered
to be desirable for all mode shapes⌊

q(1)
⌋ = � 0.3274 0.3274 1.000 1.000�⌊

q(2)
⌋ = �−0.3274 0.3274 −1.000 1.000�⌊

q(3)
⌋ = � 1.000 1.000 −0.6547 −0.6547�⌊

q(4)
⌋ = � 1.000 −1.000 −0.6547 0.6547�.
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y

x

L

L

Figure 6.6. Beam grid having repeated natural frequencies.

Here the lack of coupled behavior between the two supporting beams is somewhat
disguised as symmetric and antisymmetric mode shapes. What the mathematics of
the above mode shapes says is that the two beams are either vibrating together in
exactly the same way in the same directions, or they are vibrating in exactly the same
way but in opposite directions. ★

In general, the presence of repeated roots cause the determinant of the coefficient
matrix in the equation [K − ω2 M]{A} = {0} to have as many dependent rows (to be
deleted) as there are repeated roots. For nonrepeated roots, the singularity is only to
the first degree (i.e., for an N × N coefficient matrix, the rank of the matrix is N − 1),
and an arbitrary value can be assigned to only one of the amplitudes. In the above
case of the two cantilevered beams (where there are two repeated roots), two rows
can be deleted when solving for the mode shapes corresponding to those first two
natural frequencies. Thus arbitrary values can be assigned to two of the amplitudes
for each of the mode shapes associated with that repeated natural frequency. If the
pairs of arbitrary values, viewed as a pair of 2 × 1 vectors, constitute independent
vectors, then the mode shapes will also be independent vectors. The proof that the
degree of the singularity is equal to the number of natural frequencies with the same
value requires the use of congruence matrix transformations [6.5], which have yet to
be discussed.

Although repeated roots are possible for planar beam grid structures having just
one axis of symmetry when motions are decoupled, repeated roots are to be expected
for any beam grid structure with the two perpendicular axes of symmetry. Consider
the 24-beam element grid shown in Figure 6.6. The discrete masses are located at the
nine beam junctures. The calculation of the natural frequencies of a beam grid of this
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size is best done by a commercial finite element analysis program. Using NASTRAN,
with the following illustrative input data

E = 29 × 106 psi G = 11.25 × 106 psi L = 60 in. I = 22.5 in.4 J = 58 in.4

m = 200
386.4

lbs. = sec2/in. Hx = Hy = mL2

20
= 36,000

386.4
lbs.- in.- sec2.

leads to the following first three natural frequencies in units of hertz (i.e., cycles per
second):

f1 = 25.551 Hz f2 = f3 = 48.712 Hz.

The seventh, eighth, tenth, and eleventh natural frequencies are also repeated roots.7

The first mode shape is often referred to as the “breathing mode.” In this mode, all
the beam juncture points are moving in phase. In other words, in the first mode, all the
amplitudes of the beam juncture points are positive, with the maximum amplitude
at the grid center, and with an obvious double symmetry for the other amplitudes.
For the second and third modes, both at 48.7 Hz, the mode shapes are particularly
interesting because of their lack of uniqueness, as is illustrated in the case of the
previously discussed two beam grid. Again, for these two identical natural frequency
values, there are an infinite number of possible pairs of mutually orthogonal mode
shapes. However, there are only two possible pairs of symmetric, mutually orthogonal
mode shapes at this frequency. The first pair of possibilities are ones where the nodal
lines are the diagonals of the grid. That is, the line x = y is a line of zero amplitudes for
the first of these mode shapes, whereas the opposite diagonal is the nodal line for the
second of these mode shapes. Of course, on one side of the nodal line the amplitudes
are positive, whereas on the other side the amplitudes are negative. The other possible
symmetric pair of mode shapes corresponding to this double root are ones where one
midline, say x = 1/2L, or the other, y = 1/2L, is a nodal line. That is, physically, at this
repeated modal frequency, the grid can vibrate in any of the following four modes: (i)
its upper right half (relative to the diagonal) moving oppositely to its lower left half;
(ii) its upper left half (relative to the diagonal) moving oppositely to its lower right
half; (iii) its left half moving oppositely to its right half; and (iv) its top half moving
oppositely to its bottom half. Numerically, the second pair of modal amplitudes can
be calculated by simply combining the first pair of modal amplitudes and vice versa. It
can be said that the second and third natural frequencies are the same because there
is nothing inherent to the structure that distinguishes one of these two diagonals, or
one of these two midlines, from the other.

Just as a matter of information, the fourth mode at 69.1 Hz has nodal lines that
are both of the two midlines. The fifth mode at 77.5 Hz has nodal lines that are
both of the two diagonals. The sixth mode does not have straight lines as nodal
lines. In the sixth mode, at 77.9 Hz, the center joint has a positive, peak amplitude,
and there are negative amplitudes of lesser magnitude at all other interior joints (a
second breathing mode). Since these modes do not correspond to repeated roots,
their mode shapes are unique. The mode shapes for the seventh and eighth modes,
both at 90.1 Hz, have nodal lines that are midlines and other lines that divide the

7 Calculated results by Dr. Suresh Chander.
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total grid into six parts so that each of the noncentral joints has an amplitude that
has a sign that differs from its noncentral neighbor.

6.5 Orthogonality and the Expansion Theorem

The determinant method was useful for introducing the process of calculating nat-
ural frequencies and their corresponding mode shapes. However, the determinant
method is clearly not practical for hand calculations whenever the number of DOF
exceeds three or four, which are very small numbers of DOF relative to common
engineering structural models. Moreover, the determinant method is not at all effi-
cient relative to other methods when a computer is used. Simply multiplying out a
single N × N determinant takes N ∗ (N!) calculations. There are numerous other
more efficient methods for calculating natural frequencies and mode shapes. Almost
all of them are practical only when computer based. However, there is one method
that can be used for both: (i) hand calculations when there are only several DOF and
(ii) reasonably efficient computer-based calculations for structures with a moderate
number of DOF (up to a few hundred). That method is called the matrix iteration
method or the matrix power method. The matrix iteration method, like the determi-
nant method, is a method that requires a separate calculation8 for each natural fre-
quency and its corresponding mode shape. This is in contrast to other, more modern,
methods to be discussed later that calculate all the natural frequencies and mode
shapes simultaneously. To understand how the matrix iteration process begins by
simultaneously converging to the first modal frequency and the first mode shape, it is
necessary to cover some preliminaries. First, some general nomenclature concerning
matrix eigenvalue problems is introduced. Then the orthogonality of the mode shape
vectors is examined. Finally, it is necessary to explain the use of the mode shapes as
a “basis” for all amplitude vectors.

Reconsider the basic matrix problem to be solved for the natural frequencies and
their corresponding mode shapes in the form

ω2[M]{q} = [K]{q} or

[K]−1[M]{q} = 1
ω2

{q} or [D]{q} = λ{q}. (6.6)

In this last writing of the matrix equation, the inverse of the natural frequency squared
(plus any common factors that might arise from the mass and stiffness matrices) is
designated by λ. The last form of the matrix equation is the standard form for a
matrix eigenvalue problem. The quantity λ is called the eigenvalue, and the unknown
vector {q} is called the eigenvector. The matrix [D], which is the inverse of the stiffness
matrix postmultiplied by the mass matrix, in this context is called the dynamic matrix.
Since the standard form for the matrix eigenvalue problem is the starting point for
the matrix iteration procedure, the price to be paid for the use of the matrix iteration
method is the inversion of the stiffness matrix, or, as discussed later, a less costly
preparation that is commonly used.

8 The general meaning of the verb to iterate is to repeat. In engineering, it implies a trial-and-error
correction process.



P1: JZP
0521865743c06 CUFX001/Donaldson 0 521 86574 3 September 12, 2006 5:36

290 Natural Frequencies and Mode Shapes

The first important feature of the eigenvalue problem is easily established from
the standard matrix form above. Note that if {q} = {A} is a nontrivial solution to the
eigenvalue problem, then {cA} is also a solution, where c is an arbitrary constant.
This means that the eigenvectors are only unique up to a multiplicative constant.
Again, the constant traditionally selected for most numerical work is the one that
makes the largest entry in the eigenvector have the value +1.0, just as was done with
the determinant method. Further recall that from the discussion following Eq. (6.2),
where that equation can be rewritten as

ω2 = �q�[K]{q}
�q�[M]{q} , (6.7)

that the natural frequency squared is always either a positive (real) number, or zero;
and it can have a zero value only when the structure, like a ship or an aircraft structure,
can undergo a rigid body motion.

The mode shape eigenvectors possess, or can be made to possess, the remarkable
characteristic of being, in a sense to be explained, perpendicular to each other. To
understand this characteristic, letωi be the ith natural frequency solution andωj be the
jth natural frequency solution to the first of Eqs. (6.6). In addition, let {q(i)} and {q( j)}
be the corresponding mode shape solutions. Their designation as solutions means that
the following two equalities are valid

ω2
i [M]

{
q(i)} = [K]

{
q(i)}

ω2
j [M]

{
q( j)} = [K]

{
q( j)}.

Premultiply the first of these two equations by the row vector �q( j)� and the second
of these two equations by �q(i)� to obtain

ω2
i

⌊
q( j)⌋[M]

{
q(i)} = ⌊

q( j)⌋[K]
{
q(i)}

ω2
j

⌊
q(i)⌋[M]

{
q( j)} = ⌊

q(i)⌋[K]
{
q( j)}.

Recall the following theorem from matrix algebra. If [A] = [B][C], then [A]t =
[C]t[B]t. In other words, when taking a transpose of matrix products, it is neces-
sary to reverse the order of the product. Further recall that the mass and stiffness
matrices derived from the Lagrange equations must always be symmetric, real matri-
ces. This symmetry means that the transpose of the mass matrix is equal to the mass
matrix and the transpose of the stiffness matrix is equal to the stiffness matrix. With
the above two sets of facts in mind, the transpose of the second of the above two
equations leads to

ω2
i

⌊
q( j)⌋[M]

{
q(i)} = ⌊

q( j)⌋[K]
{
q(i)}

ω2
j

⌊
q( j)⌋[M]

{
q(i)} = ⌊

q( j)⌋[K]
{
q(i)}.

Subtracting the second of the above equations from the first yields(
ω2

i − ω2
j

) ⌊
q( j)⌋[M]

{
q(i)} = 0.

From the above equality it may be concluded that either the frequency difference
must be zero or the scalar that is the triple matrix product involving the mode shapes



P1: JZP
0521865743c06 CUFX001/Donaldson 0 521 86574 3 September 12, 2006 5:36

6.5 Orthogonality and the Expansion Theorem 291

and the mass matrix must be zero. First consider the case where the ith and jth
frequency are different, which includes the case where one of the two frequencies is
zero. With the two frequencies being different, the first of the above factors cannot be
zero. Hence the triple matrix product involving the mass matrix must be zero for the
two different9 mode shapes. From the above equations, the triple product involving
the stiffness matrix must also be zero. That is,

⌊
q(i)⌋[M]

{
q( j)} = 0 = ⌊

q(i)⌋[K]
{
q( j)}. (6.8)

The above two mathematical results are described by saying that the mode shapes
for different natural frequencies are mutually orthogonal when “weighted” by
either the mass or stiffness matrix. The use of the term “orthogonal” comes from
the familiar definition for N-dimensional vectors that A and B are orthogonal
if and only if A · B = 0 (Recall A · B = A1 B1 + A2 B2 + · · · + An Bn = �A�{B}.)
“Weighted orthogonality” only means that there is square matrix factor present in
the product as set forth in Eq. (6.8). Although it is lax to do so, commonly, and thus
in this textbook, the important “weighted” qualification is often omitted, and the
mode shapes are simply called orthogonal.

However, when ωi = ω j , again, an uncommon case for actual structures, the corre-
sponding eigenvectors are not necessarily orthogonal. More generally, when r natural
frequencies are the same, none of the r mode shapes corresponding to that repeated
frequency are necessarily orthogonal to any other mode shape corresponding to that
repeated frequency. Each one is, of course, orthogonal to all mode shapes correspond-
ing to other frequencies. Since, as previously discussed, these r mode shapes can be
made to be mutually independent, they also can be made to be mutually orthogo-
nal by the straightforward means of the Gram–Schmidt method. See Ref. [6.2] or
Endnote (5). As a matter of course, it will be assumed that all mode shapes corre-
sponding to repeated roots are rendered mutually orthogonal so that the complete
set of mode shapes is an orthogonal set. For example, this was done with both sets of
mode shapes deduced in Example 6.7, the illustrative example involving the twin can-
tilevered beams. That is, in each of those two sets, all four mode shapes are mutually
orthogonal.

The final piece of preliminary information that needs to be established is that the
set of N mode shape eigenvectors, each of size N × 1, can be used as a basis for
any and all N × 1 deflection amplitude vectors. In this context, a basis for vectors
is defined as a set of linearly independent10 vectors of a particular size (say, N × 1)
that, in some linear combination, can be equated to any vector of the same size.
For example, the familiar Cartesian unit vectors i, j, and k are one of the many
possible bases for all vectors in three dimensions because it is always possible for the
general three-space vector V to be written as V = Vxi + Vy j + Vzk. These three unit
vectors are said to “span” three-space. In matrix style, these same three Cartesian unit

9 The proof that the ith and jth mode shapes are different is from Eq. (6.7). If the ith and jth mode shapes
are the same (differing only by a multiplicative constant, then the two natural frequencies would also
have to be the same. Since the natural frequencies are actually different, this contradiction proves that
the mode shapes connot be the same.

10 See Endnote (1) for further discussion of linear independence.
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vectors are, respectively, �1 0 0�, �0 1 0�, and �0 0 1�. In the usual vector
form, quantities such as Vx (the Fourier coefficients of the above three term vector
series) are determined by simply taking the dot product of V with i. The equivalent
matrix product of the �Vx Vy Vz� and �1 0 0�t accomplishes the same result.
The same exact forms hold in n-space. That is, in analogy to the above three-space
sum V = Vxi + Vy j + Vzk, simply using the rules of matrix addition, the general N-
dimensional vector {q} can be written as



q1

q2

q3

.

.

.

qn




= q1




1
0
0
.

.

.

0




+ q2




0
1
0
.

.

.

0




+ q3




0
0
1
.

.

.

0




+ · · · + qn




0
0
0
.

.

.

1




.

This unique representation of the general vector {q} as a linear combination of these
N different N-space Cartesian unit vectors (with obvious coefficients) is possible
because these N-space unit vectors are a complete set of N linearly independent
vectors. By definition, a complete N-space vector set, such as the Cartesian set above,
allows a unique, linear sum, representation of any N-space vector. If the jth one of
these unit Cartesian vectors were absent from this set, then the set would be an
incomplete basis because there would be no way to duplicate the jth entry of the
general N-space vector. The above Cartesian N-space vector set is more than a set of
linearly independent vectors. As may be readily demonstrated, it is also a mutually
(in the unweighted sense) orthogonal set, just as i, j, and k are a mutually orthogonal
set in three-space. It is easy to prove (see Exercise 6.9) that any orthogonal set of
vectors is also a set of linearly independent vectors. It is also possible to view these
N × 1 vectors as orthogonal in the weighted sense with the identity matrix as the
square weighting matrix.

Consider the possibility of the following alternate decomposition (i.e., component
formulation) of the general N-space, free vibration, amplitude vector {q}

{q} = c1
{

A(1)} + c2
{

A(2)} + c3
{

A(3)} + · · · + cn
{

A(n)}, (6.9)

where the ci are real constants to be uniquely determined and the {A(i)} are mode
shape amplitudes; that is, the orthogonal eigenvectors of the free vibration problem
under consideration. Let the mode shapes be normalized in the usual fashion where
the maximum value is +1. It will now be shown that because the vectors {A(i)} form a
set of N (weighted) orthogonal vectors, all the ci are unique and are not all zero unless,
of course, {q} is null. Thus it then can be concluded that the {A(i)} form a complete
set of orthogonal vectors that span N-space. The first fact can be demonstrated by
simply premultiplying both sides of Eq. (6.9) by the matrix product �A( j)�[M]. The
unique result is immediately c j = �A( j)�[M]{q}/Mj , where the generalized mass
Mj is equal to the product �A( j)�[M]{A( j)}. Equation (6.9) is sometimes called the
(eigenvector) expansion theorem, and it is central to understanding the eigenvalue
calculation procedure that follows.
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6.6 The Matrix Iteration Method

Having in place the above preliminaries concerning the (weighted) orthogonality
of, and the complete basis of, the set of N mode shapes, now return to the standard
N-space matrix eigenvalue problem of Eq. (6.7): [D]{q} = λ{q}. The matrix iteration
method begins with an arbitrary chosen vector {q} = {q#1}. As will be seen, the
matrix iteration method is more efficient if the first selected numerical values of
{q#1}are the analyst’s best guess for the first eigenvector {A(1)}. Continued experience
with structures and mode shapes soon provides the analyst with the ability to make
reasonable guesses. For example, the reader already knows that the first mode shape
will not have any interior nodal points and thus have no sign changes. If by some
extremely rare stroke of luck, this first guess, {q#1}, were actually the first mode shape,
then as with Eq. (6.7), substitution into [D]{q} = λ{q} would immediately yield the
eigenvalue of the first natural frequency and replicate the first mode shape. Since this
choice is quite unlikely, let the first guess be other than the first mode shape. As an
N-space vector, {q#1} can be written in terms of the yet unknown mode shapes, just
as in Eq. (6.9), where, with any luck, c1 is not zero.11 Substitute this arbitrary vector
into the left-hand side of the standard matrix eigenvalue form to obtain

[D]{q#1} = [K−1 M]
(
c1

{
A(1)} + c2

{
A(2)} + c3

{
A(3)} + · · · + cn

{
A(n)}).

Since

[M]
{

A(i)} = 1
ω2

i

[K]
{

A(i)},

then

[D]{q#1} = c1

ω2
1

{
A(1)} + c2

ω2
2

{
A(2)} + c3

ω2
3

{
A(3)} + · · · + cn

ω2
n

{
A(n)}.

The right-hand side of the above equation is simply a different N × 1 vector from
the first guess. Call this new vector {q#2}, and substitute it into the matrix eigenvalue
problem [D]{q} = λ{q}. The result, as above, is

[D]{q#2} = c1

ω4
1

{
A(1)} + c2

ω4
2

{
A(2)} + c3

ω4
3

{
A(3)} + · · · + cn

ω4
n

{
A(n)} = {q#3}.

The trend is clear. After m iterations, that is after m substitutions into the matrix
eigenvalue problem, the result is

[D]{q#m} = c1

ω2m
1

{
A(1)} + c2

ω2m
2

{
A(2)} + c3

ω2m
3

{
A(3)} + · · · + cn

ω2m
n

{
A(n)}. (6.10)

Since the natural frequencies are ordered from the lowest numerical value to the high-
est, when m is a large enough integer, the sharply decreasing size of above right-hand
side coefficients ci/ω

2m
i for i > 1 causes the right-hand side sum to be overwhelm-

ingly composed of the first amplitude vector, regardless of the initial values of the ci ,
again assuming that c1 is not zero.

11 If c1 were initially zero, rough round-offs in the calculation, plus the effects of accelerating the conver-
gence, will eventually, however slowly, produce the desired first mode shape.
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In an actual numerical calculation, the conclusion of the iteration process can be
viewed as one additional substitution of the last trial solution {q#m} into [D]{q} =
λ{q}, and then the factoring out of the eigenvalue λ from the right-hand side so that
there is an exact match of the right-hand side eigenvector {q} to the left-hand side
{q} to the extent of the number of significant figures required. Of course, the factor
λ contains the solution for the natural frequency. The following examples illustrate
this process.

EXAMPLE 6.8 Apply the matrix iteration technique to obtain the first natural
frequency and mode shape for the system of Example 6.2. Compare the result to that
obtained by the determinant method.

SOLUTION The mass and stiffness matrices for that example are

[M] = m


 0.50

0.50
1.00


 [K] = k


 9.00 −3.00 −2.00

−3.00 3.00 0
−2.00 0 2.00


 .

The hand calculation of the inverse of the stiffness matrix is not difficult. The deter-
minant of the stiffness matrix is 54 − 12 − 18 = 24. Then, from the adjoint method,
Ref. [6.2], the inverse of [K] is

[K]−1 = 1
24k


 6.00 6.00 6.00

6.00 14.00 6.00
6.00 6.00 18.00


 .

Postmultiplying this inverse of the stiffness matrix by the mass matrix provides the
dynamic matrix, [D]. Making a neutral first guess of �1.00 1.00 1.00� for the eigen-
vector, the eigenvalue problem [D]{q} = λ{q} starts off being

 3.00 3.00 6.00
3.00 7.00 6.00
3.00 3.00 18.00







1.0
1.0
1.0


 = 24.00k

mω2









 .

As a comment on the first guess for the eigenvector, note that because the first mode
shape is being sought, this choice of all positive ones abides by the usual rule that
there should not be any sign changes that indicate interior nodes. Note that there
are exceptions to this guideline of all positive values because of the qualification
concerning interior nodes. A first eigenvector should have one or more sign changes
if an inconsistent DOF sign convention were used, or, the structure was, for example,
a straight simply supported beam with a overhang beyond one support such that as
the main span of the beam vibrates upward, the overhang must travel downward so
as to maintain slope continuity at that support. Another exception to the rule is when
a structure is not fully constrained against rigid body motion. For example, consider
a free-free beam undergoing bending vibrations in the plane of the paper. Beyond
the first rigid body mode with zero nodes, and the second rigid body mode with one
node, each with associated zero valued natural frequencies, the first elastic bending
mode will have two nodes.
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Furthermore, this guess of all +1 values for the eigenvector {q#1} says that there
is no suspicion that any one of the three actual amplitudes is larger or smaller than
the others. This lack of insight need not be true in this case. Examination of, say, the
diagonal entries of the above flexibility matrix (the inverse of the stiffness matrix),
clearly indicates that the structure is more flexible at the third DOF than at the
second DOF, and more so at the second than the first. Hence a better first guess
would something like �0.3 0.7 1.0�. Of course, the stiffness matrix diagonal terms
tell the same story in other terms; that is, the amplitudes will be smaller where the
stiffness is greater. Nevertheless, the above neutral guess of all ones will be used to
clearly demonstrate the quick convergence of the matrix iteration technique even
when the first guess is so poorly made.

Start the matrix iteration procedure by multiplying the dynamic matrix [D] and
the first guess, {q#1}, and then factor the resulting 3 × 1 vector so that the largest of
the three terms is 1.00 so as to match the largest term of the preceding guess. That is,
obtain 

 3.00 3.00 6.00
3.00 7.00 6.00
3.00 3.00 18.00







1.0
1.0
1.0


 = 24




0.5
0.66
1.0


 .

After one iteration, the estimate for the eigenvalue 24k/mω2 is 24, and the right-hand
side vector is the estimate for the first mode. However, comparison of this estimate,
�0.50 0.66 1.0�, to the original guess of all positive ones shows that these would-be
eigenvectors are not the same. Therefore, with different eigenvectors on each side
of the equality sign, the eigenvalue problem equality [D]{q} = λ{q} has not yet been
achieved. Thus, use the right-hand side vector as an improved guess, and repeat the
process. Get 

 3.00 3.00 6.00
3.00 7.00 6.00
3.00 3.00 18.00







0.50
0.66
1.0


 = 21.5




0.44
0.56
1.0


 .

Again, the right-hand side vector does not match the left-hand side vector, and
another iteration is required. This time get

 3.00 3.00 6.00
3.00 7.00 6.00
3.00 3.00 18.00







0.44
0.56
1.0


 = 21.0




0.42
0.53
1.0


 .

Notice that all rounding off is done in the direction that the values of the amplitudes
are moving. (This idea can easily be carried further by “accelerating” the conver-
gence by taking these changes in value further than the calculations show.) Also note
that the process is not far from converging. Therefore it is time to start increasing
the number of significant figures beyond the number of significant figures in either
the mass matrix or stiffness matrix. The reasons for the need for many more sig-
nificant figures are, briefly, (i) obtaining accuracy in the calculation of the higher
mode shapes and (ii) obtaining accuracy when using the mode shapes to accomplish
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a modal transformation to be discussed in the next chapter. Another iteration
produces 

 3.00 3.00 6.00
3.00 7.00 6.00
3.00 3.00 18.00







0.42
0.53
1.0


 = 20.85




0.4244
0.5261
1.000


 .

Notice that a hand calculation arithmetic error only delays the convergence. Again,
repeating the process,

 3.00 3.00 6.00
3.00 7.00 6.00
3.00 3.00 18.00







0.4244
0.5261
1.000


 = 20.8515




0.42450
0.52543
1.0000


 .

After three more iterations, convergence is secure at six significant figures. The final
result is 

 3.00 3.00 6.00
3.00 7.00 6.00
3.00 3.00 18.00







0.424429
0.525190
1.00000


 = 20.84886




0.424429
0.525190
1.00000


 .

This mode shape result and the natural frequency calculation below agree quite
well with those obtained via the determinant method. The first natural frequency is
obtained from the first eigenvalue, 20.84886. Recall that from the original problem
setup that this eigenvalue is 24k/mω2. Equating these two representations of the first
eigenvalue yields ω1 = 1.07291

√
k/m. ★

In the above and subsequent matrix iteration examples, note that convergence to
the eigenvalue precedes convergence to the eigenvector. This observation is reflected
in Rayleigh’s principle [see the related material of Endnote (2) in Chapter 3], which,
in brief, states that a good approximation to the eigenvalue can be obtained by use
of just a fair approximation to the eigenvector. In precomputer times, Rayleigh’s
principle, Ref. [6.6], was a quick way to obtain an upper bound for, primarily, a first
natural frequency using, say, the structure’s deflection pattern because of its own
weight loading as an approximation to the first mode shape.

EXAMPLE 6.9 Use the matrix iteration method to calculate the first natural fre-
quency and first mode shape for the cantilevered beam with laterally offset masses
discussed in Examples 6.3 and 6.6.

SOLUTION The first task is the calculation of the dynamic matrix. The task of calcu-
lating the inverse of the stiffness matrix can be accomplished almost reasonably by
hand calculator because there is no mathematical coupling between, on one hand, the
third and sixth rows, and, on the other hand, the other four rows. To this end, first note
that the value of the determinant of the stiffness matrix can be written as the product
of the corresponding 2 × 2 determinant and the corresponding 4 × 4 determinant
(Laplace’s expansion rule). Then it is a matter of applying the adjugate method to
the 4 × 4 submatrix and the 2 × 2 submatrix. Since the determinants to be evalu-
ated during the process of using the adjugate method are 3 × 3, and because 3 × 3
and 2 × 2 matrices allow the use of simple diagonal evaluation schemes, it is, again,
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reasonable to do the above by hand calculator. Having said this, the result for the
inverse of the stiffness matrix, from Mathematica, is

[K]−1 = 1
300k




50 15 0 125 15 0
15 6 0 45 6 0
0 0 30 0 0 30

125 45 0 450 75 0
15 6 0 75 18 0
0 0 30 0 0 90




k = EI0

L3
.

Therefore the eigenvalue problem is




100 30 −100 125 15 125
30 12 −30 45 6 45

−60 0 120 30 0 60
250 90 −250 450 75 450
30 12 −30 75 18 75

−60 0 120 90 0 180
















= 300k
mω2













.

Since the DOF are for this structure are lateral deflections, bending slopes, and
twists, the task of guessing the first mode shape from examination of the stiffness
matrix is a bit more difficult. However, it should be possible to guess that the tip
bending slope and tip vertical deflection are going to be, say, three or four times
the corresponding midspan deflections, and the twisting DOF are going to be small
values. Therefore start with the initial guess for the first eigenvector as

{q#1}t = �0.3 0.1 0.3 1.0 0.3 1.0�.
Postmultiplying the dynamic matrix by this initial guess and then factoring out the
largest of the six entries produces the left-hand side

λ{q#2}t = 932�0.27 0.1 0.1 1.0 0.17 0.3�.
Continuing to iterate by hand calculation leads to the following results:

λ{q#3}t = 649�0.29 0.102 0.067 1.0 0.16 0.21�
λ{q#4}t = 621�0.288 0.102 0.053 1.0 0.163 0.190�

. . . . . . .

After several more iterations, the six-significant-figure converged result, which agrees
with the determinant method result, is

λ{q#12}t = 613.186�0.289089 0.102069 0.0476704 1.00000 0.163036 0.180927�,

which shows that the initial guess was not a particularly good guess. From this eigen-
value result the first natural frequency is again calculated as

613.186 = 300k

mω2
1

or ω1 = 0.70

√
EI0

mL3
.

★
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The direct calculation of the inverse of the stiffness matrix, to form the dynamic
matrix, is clearly not an efficient approach to matrix iteration when the number of
DOF is large. Furthermore, the software available to the analyst may only provide
the eigenvalues and eigenvectors for a single symmetric matrix (in combination with
the identity matrix). In that case, the above iteration approach needs modification
because, as has been seen, the product of the two symmetric matrices [K−1][M]
is not generally symmetric. If the available software provides, for example, for a
Cholesky decomposition (or Cholesky factorization), which is a straightforward alge-
braic process discussed in greater detail in Endnote (2) of this chapter, then the fol-
lowing relatively efficient procedure will produce a symmetric dynamic matrix whose
eigenvalues and eigenvectors are the same as those calculated by the determinant
method.

The Cholesky decomposition technique is applicable only to symmetric,12 positive
definite matrices. Assume that the stiffness matrix is, or has been rendered, positive
definite. (See Endnote (3) on how to make a stiffness matrix positive definite when
the vibratory system can undergo rigid body motions). The first step is to write the
stiffness matrix as the product of the matrix [R]t, postmultiplied by the matrix [R],
which is a right (or upper) triangular matrix where all the entries below the main
diagonal are zero. Note that the transpose of a right triangular matrix is a left or
lower triangular matrix, a matrix where all entries above the main diagonal are zero;
that is, [R]t ≡ [L]. With the writing of [K] = [R]t[R], then the eigenvalue problem
can be rewritten as [

M − 1
ω2

Rt R
]

{q} = {0}.

Substituting the linear transformation {q} = [R−1]{p} above, and premultiplying the
above equality by the inverse of the transpose of the right triangular matrix [R]
(which is much easier inverse to calculate than that of the stiffness matrix), yields
the same eigenvalue problem in terms of more advantageous symmetric matrices[

R−tMR−1 − 1
ω2

I
]

{p} = {0}.

To prove that the above eigenvalue problem is the same as the original eigenvalue
problem, recall again the following mathematics theorem concerning the determi-
nants of matrices involved in a product:

if [A][B] = [C] then |A||B| = |C|.
Applying this theorem to the above procedure with [K] = [R t][R], conclude that∣∣∣∣R−t

∣∣∣∣
∣∣∣∣M − 1

ω2
K

∣∣∣∣
∣∣∣∣ R−1

∣∣∣∣ = 0.

Recognizing that to have an inverse, the right triangular matrices must have a nonzero
determinant. Then conclude that the above central determinant must be zero. This is,
of course, the determinant that produced the original eigenvalues, and this concludes

12 The LU decomposition is available for nonsymmetric matrices.
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the proof. In addition, it may be concluded that the square matrix [R−t][M][R−1] is
also positive definite because the mass matrix is positive definite and the determinants
of the inverse right triangular matrices are the same. The following MATLAB, Ref.
[6.7], calculations illustrate the above process.

EXAMPLE 6.10 Determine the Cholesky right (or upper) triangular matrix for
the stiffness matrix of Example 6.3. Then write the symmetric matrix for iteration.

SOLUTION The result of using MATLAB to obtain the right triangular matrix [R]
for the 6 × 6 matrix [K] = [R]t[R] is

[R] =




6.0000 −5.0000 0 −2.0000 5.0000 0
16.5831 0 −2.4121 4.5227 0

3.8730 0 0 −1.2910
1.4771 −6.1546 0

4.0825 0
1.8257




.

The inverse of this matrix, a much simpler and thus less costly calculation than that
for the inverse of the stiffness matrix, is

[R]−1 =




0.1667 0.0503 0 0.3077 0.2041 0
0.0603 0 0.0985 0.0816 0

0.2582 0 0 0.1820
0.6770 1.0206 0

2.449 0
0.5477




.

Then the symmetric dynamic matrix equal to [R]−t[M][R]−1 equals


0.0556 0.0168 −0.0861 0.1026 0.0680 −0.609
0.0168 0.0123 −0.0259 0.0428 0.0304 −0.0183

−0.0861 −0.0259 0.2667 −0.1589 −0.1054 0.1886
0.1026 0.0428 −0.1589 0.6671 0.8327 0.2584
0.0680 0.0304 −0.1054 0.8327 1.1983 0.4845

−0.0609 −0.0183 0.1886 0.2584 0.4845 0.7333




.

Exercise 6.6 deals with the matrix iteration of this dynamic matrix for the first natural
frequency. ★

As illustrated in Ref. [6.8], p. 394, it is also possible to directly iterate using the
equation form λ[m]{qi } = [k]{qi+1}; that is, without taking the inverse of the stiffness
matrix. However, one price to be paid for this approach is the solution of N simul-
taneous equations during each iteration where only the product of the mass matrix
and the previous modal vector would change from iteration to iteration. Possibly
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the most efficient way of carrying out those successive simultaneous solutions would
involve a Cholesky decomposition of the stiffness matrix. Therefore, in comparison
to the above, there is no advantage to this alternate iteration approach.

6.7 **Higher Modes by Matrix Iteration**

After completing the iteration procedure to obtain the first mode shape and first
natural frequency, choosing another trial vector that now has a sign change among
the amplitudes in hopes of converging to the second mode is (unless the second
mode shape is guessed exactly) a path to disappointment. Such a trial vector, or any
other, will generally contain, to some extent, the first mode shape as set forth in
Eq. (6.9). That is, generally, c1 will not be zero. For this reason, this trial vector will
unavoidably converge to the first mode shape as in Eq. (6.10). The convergence will
only take longer because of the sign change. From the discussion on convergence
leading to Eq. (6.10), it should be clear that what is needed for the calculation of the
second mode shape and second natural frequency is a series of trial vectors whose
expansions in terms of all the mode shapes is such that the weighting coefficient
for the first mode shape, c1, is always zero to the extent of the accuracy of the
calculation. Only in this way will the coefficient of the second mode dominate after
many iterations, thus allowing convergence to the second mode. When the coefficient
c1 in the series expansion for the trial vector is zero, it is said that the trial vector does
not contain the first mode shape as a component analogous to the vector V = a j + bk
not having an x-direction component.

Exercise 6.10 discusses the proof that a necessary and sufficient condition for a
trial vector to not have the first mode shape as a component (for c1 of Eq (6.9) to
be zero) is for the trial vector to be orthogonal to the first mode shape. (Again, this
result is analogous to the fact that the vector Axi + Ay j has no k component and thus
is orthogonal to k.) To force (i.e., constrain) a trial vector {cq} to be orthogonal to
the first mode, which is now known, simply write the equation

�cq�[M]
{

A(1)} = 0.

Actually carrying out the above triple product produces the result

q1

(
Σ M1 j A(1)

j

)
+ q2

(
Σ M2 j A(1)

j

)
+ · · · + qn

(
Σ Mnj A(1)

j

)
= 0

or q1 = −q2

(
Σ M2 j A(1)

j

)
(
Σ M1 j A(1)

j

) − · · · − qn

(
Σ Mnj A(1)

j

)
(
Σ M1 j A(1)

j

)
or q1 = −s21 q2 − s31 q3 − · · · − sn1 qn,

where the definition of the s j1 ratio terms is obvious. This equation can be viewed
as a single equation of constraint on the selected amplitudes of {cq}, the trial vector
constrained to be orthogonal to the first mode shape. Specifically, this equations says
that although q2 through qn can be chosen arbitrarily, q1 (for example) has to be
calculated by the relationship above once those n − 1 choices are made. To facilitate
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the use of this relationship in the matrix iteration scheme, that is, for each iteration,
rewrite this relationship as part of the matrix equation



q1

q2

q3

.

.

.

qn




C

=




0 −s21 −s31 . . . −sn1

1
1

. . .

. . .

. . .

1







q1

q2

q3

.

.

.

qn




NC

.

Here the right-hand vector {q}, superscripted NC(for no constraint), is without
constraint; that is, it can be selected to be anything the analyst chooses it to be.
However, by the above matrix equation, the left-hand vector {q}, superscripted C,
is constrained to be orthogonal to the first mode shape. It is this left-hand side vec-
tor that will converge to the second mode shape. Therefore, with the above square
matrix, named the first sweeping matrix [S1] for “sweeping” away the influence of
the first mode shape, the matrix iteration problem for developing the second mode
is simply

[D][S1]{q} = λ{q} or [D2]{q} = λ{q}.
At this point, as Eq. (6.10) shows, the matrix iteration proceeds to converge to the
second mode. Of course, the convergence is still speeded along by making a good
guess as to the shape of the second mode. There is an obvious factor that influences
the rate of convergence. Equation (6.10) shows that when the next mode sought has
a natural frequency close to that of the previous natural frequency in the ordered
sequence of natural frequencies, it will take many more iterations for the lower mode
coefficient in Eq. (6.10) to dominate the coefficient of the next mode. When this sit-
uation is discovered, there is one remedy in what is called a frequency shift that is
discussed later in this chapter, or the simpler remedy of scaling the mass matrix. To
understand this latter technique, note [K]{q} = ω2[M]{q} = (10ω)2[ 1

100 M]{q}. There-
fore, to multiply the natural frequencies by a factor of 10, divide the mass matrix by
100 or, alternatively, multiply the stiffness matrix by 100. Be warned that excessive
scaling may lead to matrix ill-conditioning.

The process for obtaining the third and higher numbered modes follows the same
idea that the trial vector for the higher numbered mode must be orthogonal to all
lower numbered modes. For example, for the third mode, it is necessary to write the
two equations that make the trial vector orthogonal to both the now known first and
second mode shapes.

�cq�[M]
{

A(1)} = 0 and �cq�[M]
{

A(2)}.
These are two equations of constraint on the entries of the trial vector that will
converge to the third mode. These two equations must be satisfied simultaneously.
Thus it is necessary to solve these equations simultaneously for, say, q1 and q2 in
terms of all the other n − 2 entries of the amplitude vector. Such a solution is best
done numerically. When there is a numerical solution for the first two entries of the
amplitude vector, and that solution is cast in the matrix form as {cq} = [S3]{q}, then
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with lowercase s being a generic symbol for the above discussed numerical solutions,
the result looks like 



q1

q2

q3

.

.

.

qn




C

=




0 0 s . . . s
0 0 s . . . s

1
. . .

. . .

. . .

1







q1

q2

q3

.

.

.

qn




NC

.

The use of this vector constrained to be orthogonal to the first and second modes, as
before, leads to the matrix iteration equations

[D][S2]{q} = λ{q} or [D3]{q} = λ{q}.

EXAMPLE 6.11 Using matrix iteration, calculate the second and third mode
shapes of the cantilevered beam of Examples 3.4 and 6.3.

SOLUTION To the extent of six significant figures, the first mode shape has been
determined to be{

A(1)}t = �0.289089 0.102069 0.0476704 1.000000 0.163036 0.180927�.

This mode shape is now used in the single constraining equation �cq�[M]{A(1)} = 0.
Carrying out this triple product leads to

0.482838q1 + 0.204138q2 − 0.387497q3 + 1.18093q4 + 0.163036q5 + 1.36185q6 = 0.

Solving the above for the first entry of the unknown vector �cq� in terms of the
remaining five entries, and casting the result in matrix form, leads to the following
relation between the amplitude vector constrained (c) to be orthogonal to the first
mode and the unconstrained (nc) amplitude vector; i.e., forming {cq} = [S1]{ncq}


q1

q2

q3

q4

q5

q6




C

=




0 −.422788 .802541 −2.44581 −.337662 −2.82052
1

1
1

1
1







q1

q2

q3

q4

q5

q6




NC

.

The dynamic matrix for the second mode shape, [D][S1] = [D2], is


0 −12.2788 −19.7459 −119.581 −18.7662 −157.052
0 −0.683644 −5.92376 −28.3742 −4.12987 −39.6157
0 25.3673 71.8475 176.748 20.2597 229.231
0 −15.6970 −49.3646 −161.451 −9.41555 −255.130
0 −0.683644 −5.92376 1.62583 7.87013 −9.61566
0 25.6730 71.8475 236.748 20.2597 349.231




.
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Begin the iteration for the second mode with the not-so-clever trial vector
�−1 −1 −1 +1 +1 +1�, which has an internal node for all three types of deflection.
The iteration results are

λ�q#2� = 509�−.5 −.1 +.6 −.7 .01 1.0�
λ�q#3� = 224�−.37 −.10 +.66 −.76 −.064 1.0�
λ�q#4� = 212�−.361 −.102 +.650 −.765 −.0713 1.0�
λ�q#5� = 210.8�−.3597 −.1015 +.6485 −.7659 −.07211 1.0�.

and so forth until

λ�q#10� = 210.402�−.359529 −.101481 +.648112 −.766031 −.0722403 1.0�.

This mode shape and eigenvalue are in agreement with those calculated by the deter-
minant method in Example 6.6, where, again,

ω2 =
√

300
210.402

√
k
m

= 1.19

√
k
m

.

The calculation for the third mode proceeds in the same manner. In addition to
the first and previously used orthogonality condition �cq�[M]{A(1)} = 0, for the third
mode there is the additional constraint �cq�[M]{A(2)} = 0. Carrying out the triple
multiplication of the second constraint leads to

2.01528q1 + 0.202961q2 − 3.31151q3 − 0.233970q4 + 0.0722403q5 − 1.23397q6 = 0.

The simultaneous solution of this second constraint equation and the original con-
straint equation, for the first two amplitude entries in terms of the remaining four
amplitudes, produces the sweeping matrix [S2]



q1

q2

q3

q4

q5

q6




C

=




0 0 1.90606 0.917186 0.0585293 1.68573
0 0 −2.61011 −7.95432 −0.937092 −10.6584

1
1

1
1







q1

q2

q3

q4

q5

q6




NC

.

The dynamic matrix for the third mode shape, [D][S2] = [D3], is


0 0 12.3027 −21.9110 −7.25983 −26.1790
0 0 −4.13952 −22.9363 −3.48923 −32.3289
0 0 5.6364 −25.0312 −3.51176 −41.1438
0 0 −8.3949 −36.5923 5.29404 −87.8235
0 0 −4.13952 7.06374 8.51077 −2.32890
0 0 5.63640 34.9688 −3.51176 78.8562




.

Starting the iteration with a guess that the third mode would display a twisting
node between the two masses, that is, having as a first guess for the third mode
�0.3 0.3 0.3 1.0 1.0 −1.0�, the iteration converged in fourteen steps to

λ�q#14� = 36.7795 �.0455980 .0615492 .282065 1.00000 .278241 −.845635�.
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Since the eigenvalue is 300k/mω2, the third natural frequency is again

ω3 = 2.85605

√
k
m

= 2.86

√
k
m

.
★

There is an important variation on the matrix iteration technique now to be dis-
cussed. The motivation for this variation could be either an interest in calculating
just the modal frequencies and mode shapes in the vicinity of a specific frequency
or the desire to improve on the numerical accuracy of one or more previously cal-
culated modal frequencies and mode shapes in the vicinity of a specific frequency.
In the first instance, an interest in a particular frequency could be prompted by a
known or an anticipated excitation of significance at or near that frequency. In the
second instance, for a structure with a large number of DOF, even if the analyst’s
interest is confined to only the first couple of dozen modes, by the time the last suc-
cessive sweeping matrix and dynamic matrix are constructed, and a matrix iteration
calculation is made, there is a possibility of a significant buildup of round-off error
contamination. This procedure essentially restarts the round-off clock at the selected
frequency. Call that analyst selected frequency of interest the shift frequency, ωs . This
procedure is also useful, as discussed above, when two adjacent frequencies are close
in value.

The technique that accomplishes the above goals, at the price of an additional
Cholesky decomposition or (hardly ever) matrix inversion, is called the matrix
iteration (or power) method with shifts. To explain this technique, let the natu-
ral frequency closest to the frequency of interest be labeled as ωm. Understand
that this modal frequency, ωm, and its corresponding eigenvector are not previ-
ously calculated quantities. Nevertheless, it is known that these two quantities are
solutions to the eigenvalue problem ω2

m [M]{A(m)} = [K]{A(m)}. To both sides of
this equality, add the unknown quantity −ω2

s [M]{A(m)}. The resulting equation is
(ω2

m−ω2
s )[M]{A(m)} = [K − ω2

s M]{A(m)}. If the shift frequency ωs is not too close to
the modal frequency, then the right-hand side square matrix is not close to being
singular. Therefore this equation can be put into iteration form by, say for discussion
purposes, inverting the known right-hand side square matrix so as to obtain

[
K − ω2

s M
]−1

[M]{A}(m) = 1
ω2

m − ω2
s
{A}(m). (6.11a)

Since the amplitude vector and the natural frequency for the mth mode are as yet
unknown, the above equation is better written for iteration purposes as

[
K − ω2

s M
]−1

[M]{A} = [Ds]{A} = 1
ω2 − ω2

s
{A}, (6.11b)

where [Ds] is the shifted dynamic matrix. Iterating upon Eq. (6.11a) will yield the mth
natural frequency and mode shape because any trial vector used for that iteration
will have the expansion

{A#1} = c1{A}(1) + c2{A}(2) + c3{A}(3) + · · · + cn{A}(n),
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where, again, the specific values of the coefficients c j depend on the analyst’s guess
and are generally not zero. Substitution of this trial vector into the above iteration
equation yields

[Ds]{A#1} = c1[Ds]{A}(1) + c2[Ds]{A}(2) + c3[Ds]{A}(3) + · · · + cn[Ds]{A}(n).

Using Eq. (6.10a,b), the above equation can be rewritten immediately as

[Ds]{A#1} = c1(
ω2

1 − ω2
s

) {A}(1) + c2(
ω2

2 − ω2
s

) {A}(2)

+ c3(
ω2

3 − ω2
s

) {A}(3) + · · · + cn

(ω2
n − ω2

s )
{A}(n).

The right-hand side vector is now designated as the second guess, {A#2}. Following
the same pattern, when this second guess is inserted into Eq. (6.11a), the result is

[Ds]{A#2} = c1(
ω2

1 − ω2
s

)2 {A}(1) + c2(
ω2

2 − ω2
s

)2 {A}(2)

+ c3(
ω2

3 − ω2
s

)2 {A}(3) + · · · + cn

(ω2
n − ω2

s )2 {A}(n).

After k iterations, the result is

[Ds]{A#k} = c1(
ω2

1 − ω2
s

)k {A}(1) + c2(
ω2

2 − ω2
s

)k {A}(2)

+ c3(
ω2

3 − ω2
s

)k {A}(3) + · · · + cn

(ω2
n − ω2

s )k {A}(n).

Clearly, whatever frequency is closest to the shift frequency will form, by far,
the smallest denominator. Again, call that frequency the mth frequency. Hence
{A#(k + 1)} eventually will be dominated by the mth eigenvector. Thus the con-
vergence to the mth eigenvector and natural frequency.

EXAMPLE 6.12 Using a frequency shift, recalculate the third modal frequency
and mode shape of the cantilevered beam of Examples 3.4 and 6.3. Compare
this result for the third mode to that of the previous example problem solution,
Example 6.11.

SOLUTION Estimate the third modal frequency to be in the vicinity of 3
√

k/m. (It
was previously calculated to be 2.86

√
k/m.) With this estimate as the selected value

of the shifting frequency, the matrix [K − ω2
s M] = [K − 9.0M], is



18 −30 18 −12 30 0
−30 282 0 −30 50 0
18 0 −21 0 0 −5

−12 −30 0 3 −30 −9
30 50 0 −30 91 0
0 0 −5 −9 0 −13.




.
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The next step in to form the shifted dynamic matrix [K − ω2
s M]−1[M]. This

matrix is

10[Ds] =




.396054 .0947883 .265893 −.412458 −.505966 .101856

.292775 .0117694 −.490762 −.205622 −.279961 .380769
2.17532 −.197987 −3.68869 −.632769 −1.04451 1.73682
4.15117 −1.58403 −10.1559 −2.45359 −3.12538 6.81994
1.07709 −.559922 −3.16610 −.559922 −.599829 2.00554

−3.71055 1.17278 8.44973 1.17278 2.56546 −6.92796




.

The iteration of [Ds]{q} = λ{q} proceeds as before to the largest of the eigenvalues λ

and its associated eigenvector. Hopefully, in this case, that mode shape and frequency
will be those of the third mode. (Therein lies the difficulty with the use of this shifting
procedure by itself to calculate the successive modal values. It is never certain that a
mode has not been skipped unless sweeping matrices are also used with the shifted
dynamic matrices so that several modes are calculated at each frequency shift to form
overlapping sets of modal data.) Since convergence should be relatively quick, it is
not worth the effort to try and guess the third mode shape. Let the starting guess
be the unimaginative set of values �1 1 1 1 1 1�. After eight iterations using
Mathematica, the eigenvalue and converged mode shape are

−1.18626�0.0455649 0.0615244 0.282012 0.999999 0.278266 −0.845593�.
Comparing this mode shape with the third mode shape result of the previous

example problem, which was obtained after using two sweeping matrices, shows
that, on a percentage basis, the results are very close. However, the results do differ
in the fourth significant digit. Since this latter result was obtained after far fewer
numerical steps, it is much more likely to be the more accurate result. One check on
this supposition can be made by substituting both these third mode shape results into
the original eigenvalue problem and then determining which of these two vectors
comes closer to replicating itself. To this end, note that the original form of the
eigenvalue problem is Eq. (6.10), in Example 6.9. The sweeping matrix result for the
third mode is, again,⌊

q(3)⌋ = �.0455980 .0615592 .282065 1.00000 .278241 −.845635�.
Substitution into the eigenvalue problem yields the result

[D]
{
q(3)} = 36.7550�.0454092 .0615005 .282242 1.00000 .278337 −.846208�t.

The shifting matrix result for the third mode is, again⌊
q(3)⌋ = �.0455649 .0615244 .282012 0.999999 .278266 −.845593�.

Substitution into the eigenvalue problem yields the result

[D]
{
q(3)} = 36.7781�.0455641 .0615243 .282014 .999999 .278267 −.845592�t.

Comparison of the two pairs of results, where six significant figures is the common
basis for all these calculations, clearly shows that this shifting matrix result is far less
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contaminated with other mode shapes than the sweeping matrix result, and therefore
this shifting matrix result is considerably more accurate, as expected.

The frequency calculation is straightforward. The equation to be solved for the
third modal frequency is simply

1
ω2

3 − 9.0
= −1.18626 or ω3 = 2.86

√
k
m

,

just as before. The convergence to the eigenvalue is always superior to the conver-
gence to the eigenvector. Exercise 6.8 provides further work on sweeping matrices
and frequency shifts. ★

6.8 Other Eigenvalue Problem Procedures

As stated earlier, the primary use of the determinant method for solving eigenvalue
problems is simply to introduce some of the ideas associated with such problems.
Except for two or three or possibly four-DOF systems, the determinant method is
a rather inefficient procedure for obtaining numerical results either by hand or by
machine. The matrix iteration (with shifts) method is still widely used as a reasonably
efficient procedure for obtaining the first couple of dozen modes for small or medium-
sized problems. However, matrix iteration is not as widely used as a group of related
methods that have been developed by mathematicians over the past several decades.
There are many of these methods. They all require a knowledge of matrix theory,
and quite lengthy explanations and proofs, to be fully understood. Since these more
modern techniques are little suited for hand calculations, and because they usually are
encountered only by engineers as a computer program menu selection, this section
provides only a brief overview of the more prominent of these techniques. That is,
some details, especially proofs, will be left to the references provided.

Historically, the first of these clever methods is Jacobi’s method, see Refs. [6.9, 6.10].
Jacobi’s method iterates to all the eigenvalues and eigenvectors simultaneously. This
can be a substantial drawback in the use of this method because, generally, for a
structure with many DOF, only a fraction, sometimes only a small fraction, of all
the modes are needed for the modal transformation to be discussed in Chapter 7.
Furthermore, there is also a need for a special preparation for the use of Jacobi’s
method. Jacobi’s method requires that the dynamic matrix be a symmetric matrix.
The first form of the dynamic matrix used in the previous discussion of the matrix iter-
ation method, [D] = [K−1 M], unless the mass matrix is proportional to the identity
matrix, is never a symmetric matrix. However, there is more than one way to obtain
a symmetric dynamic matrix from the matrices [M] and [K]. Cholesky’s decompo-
sition13 is the preferred approach to obtaining a symmetric matrix for use with the
Jacobi method and the various iteration methods that spring from Jacobi’s method.
Since the application of Cholesky’s decomposition is limited to a symmetric, pos-
itive definite matrix, in this discussion Cholesky’s decomposition is applied to the

13 See Endnote (1).
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symmetric matrix [M] with the assumption that [M] also meets the positive definite
criteria.14

The symmetric dynamic matrix is accomplished as follows. Return to the matrix
eigenvalue problem statement in the form [K − λM]{q} = {0}, where λ is the eigen-
value. Write the mass matrix as the product of a left or lower triangular matrix and
its transpose (which again is referred to as an upper or right triangular matrix).
That is, write [M] = [L][L]t. Then introduce the transformation of coordinates
{q} = [L]−t{p}. As discussed at the end of Endnote (2), the inverse of [L], another
left triangular matrix, is quite cheaply obtained. Then after premultiplying by [L]−1,
the matrix eigenvalue problem becomes

[L]−1
(

[K] − λ[L][L]t
)

[L]−t{p} = {0}
or [L−1 KL−t − λI ]{p} = {0},

where the matrix [L]−1[K][L]−t = [D] is clearly symmetric, as is, of course, the iden-
tity matrix [I ]. Again, to show that this new eigenvalue problem [D − λI ]{p} = {0}
has the same eigenvalues as the original eigenvalue problem, recall again that
if [a][b] = [c], then the determinants of these matrices are such that |a| |b| =
|c|. Then from ([D] − λ[I ]){p} = {0}, and the fact that |L| 
= 0

|L−1 KL−t − λI | = |L−1(K − λM)L−t| = |L−1||K − λM||L−t| = 0

so |K − λM| = 0.

Thus the determinant method shows that both formulations have the same eigenvalue
roots. The solutions for the {q} eigenvectors are obtained by returning to the orig-
inal transformation equation, {q} = [L]−t{p}, once the eigenvectors {p} have been
calculated.

Returning to the Jacobi method, the object is to further transform the eigenvalue
problem ([D] − λ[I ]){p} = {0} by postmultiplying by what is called a rotation matrix
[r ] and premultiplying by the transpose of the same rotation matrix. In general terms,
these very simple rotation matrices are chosen to render as zero just one of the pairs
of off-diagonal terms of the symmetric dynamic matrix. Then this step is repeated.
Unfortunately, the previously zeroed, off-diagonal terms do not stay zero. The post-
and premultiplying must be repeated over and over again until all the off-diagonal
terms become so small that they are less than some prechosen error limit. Then the
result is, in place of the dynamic matrix, there is now a (very nearly) diagonal matrix
whose diagonal terms are (very nearly) the eigenvalues, and the product of all of the
rotation matrices is the matrix of eigenvectors.

In lieu of the proof of this process, which can be found in Ref. [6.9], p. 106, the
following is simply a short explanation of why this process is possible. Return to the
original eigenvalue solution statement for the ith eigenvalue and eigenvector and
extend that statement to include all such solutions. That is

[D]
{
q(i)} = λi

{
q(i)}

so [D]
[
q(1)

∣∣q(2)
∣∣ . . . ∣∣q(n)] = [

q(1)
∣∣q(2)

∣∣ . . . ∣∣q(n)][\λ\],

14 To be positive definite, it may be necessary first to use the previously discussed static condensation
technique so as to eliminate the DOF for which there are no assigned mass terms.
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where [\λ\] is the diagonal matrix of the N eigenvalues. Symbolize the square matrix
of the eigenvectors as [Φ]. Then, mimicking the result of the Jacobi process, the above
equation can be written as

[D][Φ] = [Φ][\λ\]

or [Φ]−1[D][Φ] = [\λ\].

Since the original form of the eigenvalue problem statement is ([D] – λ[I ]){p} = {0},
the two weighting matrices for the mode shape orthogonality statements are the sym-
metric [D] and [I ] matrices. Therefore the weighted orthogonal mode shapes which
form the columns of [Φ] matrix can be normalized by dividing each mode shape by the
square root of the generalized mass for that mode so that [Φ]t[I ][Φ] = [Φ]t[Φ] = [I ].
This last equation shows that, for this normalization, the transpose of the modal
matrix is equal to its inverse. Substituting the transpose for the inverse in the above
equation completes the demonstration that there exists a matrix transpose and matrix
whose pre- and postmultiplication extracts the eigenvalues from the dynamic matrix,
and, furthermore, the matrix that accomplishes that feat is the modal matrix. Fur-
ther details can be found in Endnote (4), which illustrates this process with a short
numerical calculation.

The Givens and Householder methods, Refs. [6.9,6.10,6.11], are important
improvements to the Jacobi method. These two methods reduce the dynamic matrix
to an exact tridiagonal matrix rather than an approximate diagonal matrix. A tridiag-
onal matrix is one that is zero everywhere but for the main diagonal and the entries
immediately above and below the main diagonal. The advantage of going to a tridi-
agonal matrix is that such a matrix form can be accomplished in a finite number
of steps as opposed to the open-ended, iterative procedure that is Jacobi’s method.
Then a follow-up procedure is required to determine the eigenvalues. Reference
[6.10] offers several possible ways of calculating the eigenvalues of a tridiagonal
matrix, among which are Sturm sequences (which mimic Sturm series for polynomi-
als) and the bisection method. A procedure generally considered more effective is
the QR method. This method is discussed, for example, in Refs. [6.10, 6.11].

The QR method, instead of using two triangular matrices, uses one triangular matrix
[R] and an orthogonal matrix [Q]. An orthogonal matrix15 is a matrix whose transpose
is equal to its own inverse. A very simple example of an orthogonal matrix is the
matrix that relates the xy coordinates of one two-dimensional Cartesian coordinate
system to those of another two-dimensional Cartesian coordinate system that is
rotated through an angle θ with respect to the first. This matrix is[

cos θ sin θ

− sin θ cos θ

]
.

Indeed, this simple matrix is the foundation of the rotational matrices used in the
Jacobi method as discussed above.

As above, the decomposition of the dynamic matrix into the product [Q][R]
begins by first converting the dynamic matrix to a tridiagonal matrix, say, by use

15 In some textbooks, such square matrices are also called unitary, particularly when the matrix entries
are complex.
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of the Householder method. The next step is to premultiply the dynamic matrix
by a series of n − 1 rotation matrices, which are orthogonal and which sequentially
zero the n − 1 entries below the main diagonal. Then the former dynamic matrix is
turned into a right triangular matrix. In symbolic form, the result of the premulti-
plications is

[rn−1][rn−2] . . . [r1][D] = [R]

then [D] = [Q][R]

where [Q] = ([rn−1][rn−2] . . . [r1])−1 = [r1]t[r2]t . . . [rn−1]t.

An example, via Mathematica, of a QR decomposition of a symmetric matrix, after
passing through the tridiagonal stage, is


4 3 2 1
3 5 −2 0
2 −2 6 1
1 0 1 7


 =




−0.730297 0.0147723 0.148337 0.666667
−0.547723 −0.598279 −0.240037 −0.533333
−0.365148 0.782933 −0.377586 −0.333333
−0.182574 0.169882 0.881934 −0.400000




∗




−5.47723 −4.19921 −2.73861 −2.37346
0.0 −4.51294 6.09358 1.98688
0.0 0.0 −0.606835 5.94429
0.0 0.0 0.0 −2.46667


 .

Once the original decomposition is complete, call it [D0] = [Q0][R0]. Then the
QR procedure begins by writing [D1] = [R0][Q0]. After [D1] is decomposed into
[Q1][R1], then the reversal procedure of writing [D2] = [R1][Q1] is repeated, and so
on. If all the eigenvalues are distinct, the final [D] is a diagonal matrix where the
diagonal entries are the eigenvalues of the original dynamic matrix.

It can be seen that the eigenvalues of the each successive dynamic matrix are the
same as the preceding dynamic matrix. First of all, from Eq. (6.9), the eigenvalues
of the symmetric dynamic matrix are those of the system. Now with, say, [D1] =
[Q1][R1] and [D2] = [R1][Q1], then [D2] = [Q1]−1[D1][Q1]. Recall the theorem that
says that because [D2] = [Q1]−1[D1][Q1], there is the determinant relationship |D2| =
|Q1|−1 |D1||Q1|. Since the determinant value of the inverse of [Q1] is the inverse of
the determinant of [Q1], the determinant and hence the eigenvalues of [D2] are the
same as those of [D1].

There are several variations on this method, such as the QL method and the
double QR method. A presently popular method of calculating eigenvalues and
eigenvectors is the Lanczos’ algorithm, Ref. [6.12, 6.13], which is another variation
on the QR method. The Lanczos method is particularly suited for sparse, symmet-
ric matrices and for the calculation of the smallest (or largest) eigenvalues and
their corresponding eigenvectors. Reference [6.13] suggests a general preference
for applying the Cholesky decomposition to the stiffness matrix with the inverse
of the frequency term forming the eigenvalue. The effectiveness of the Lanczos
method depends to some extent on the selection of frequency shifts. Frequency shifts,
sometimes called spectral shifts, were discussed at the end of the section on matrix
iteration.
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6.9 Summary

The solution of the general structural dynamics matrix equation [M]{q̈} + [C]{q̇} +
[K]{q} = {Q} is most often obtained by first solving the included problem, the set
of homogeneous differential equations [M]{q̈} + [K]{q} = {0}. The undamped, free
vibration solution is one where all the DOF solutions are proportional to a single time
function that, as it turns out, must be a sinusoid. Physically, this means that for this
type of motion, called harmonic motion, all the DOF are either in phase (+) or out of
phase (−). Since the solution can be written as {q(t)} = {A}sin(ωt + ψ), the acceler-
ation vector is negatively proportional to the deflection vector, that is, {q̈} = −ω2{q}.
The resulting homogeneous, algebraic, matrix equation (−ω2[M] + [K]){A} = {0} is
a matrix eigenvalue problem whose two part solution is the vibratory system’s natural
frequencies that are an ordered set of discrete positive values, ω j , and a correspond-
ing set of mode shapes, {A( j)}. Each of the N × 1 mode shape vectors is unique only
to the extent of the relative values of its N entries; that is, {A( j)} is not a different solu-
tion from c{A( j)}, where c is an arbitrary factor. The natural frequencies and mode
shapes respectively are the eigenvalues and eigenvectors of the matrix equation. The
quantities ω j and {A( j)} are often called an eigenpair.

There are many ways of calculating the eigenvalues and eigenvectors of a dynam-
ical system. The determinant method was used to introduce the fact that an N DOF
system has N natural frequencies and N associated mode shapes. Once it was demon-
strated that any vector of the same size as the eigenvectors could be written as a
weighted sum of the eigenvectors, the matrix iteration method was established as a
procedure suitable to calculate the eigenvalues and eigenvectors of small and mid-
sized eigenvalue problems, particularly when frequency shifts are used with the larger
problems. Eigenvalue problems of large size (i.e., with over a few hundred DOF) are
generally solved using the QR method or one of its many variations. Figures 6.7(a)
and (b) illustrate typical results of computer-based analyses.

The QR method requires positive definite as well as symmetric matrices for its
procedures. Although the kinetic energy is a positive definite function of time, the
mass matrix may only be positive semidefinite because of zero mass terms associated
with some DOF such as the rotational DOF. As explained previously, these DOF
can be removed from the problem statement by use of static condensation. The
stiffness matrix can also be singular or positive semidefinite because the structural
system is able to undergo one or more rigid body motions. Again, the effects of
the rigid body motion can be removed by writing the coordinate transformations
explained in Endnote (3). If these effects are not removed, then for a structural
system with m possible rigid body motions (m ≤ 6), the first m natural frequencies
are zero, and the corresponding mode shapes are the deflection patterns of the rigid
body motions. The presence of zero natural frequencies is illustrated in the following
example problem where the simple structure is one where rigid body motion is
possible.

EXAMPLE 6.13 Calculate all the natural frequencies and the first mode shape of
the two-mass, one-beam element structural system shown in Figure 6.8. Note that
there are unseen static lift forces counterbalancing the unseen gravitational forces
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Full span

Mode number 7

Frequency = 4.090 cps

Generalized mass = 1.2906    lb−sec2−in

(a)

Demonstration cases
Model analysis – mode shapes

Mode no. 2
Frequency: 6.26 Hz

Mode no. 1
Frequency: 5.31 Hz

(b)

Figure 6.7. (a) Visual display of a F-16 finite element modal calculation. Courtesy of Mr.
Jack A. Ellis, Lockheed-Martin Tatical Air Systems. (b) Another visual representation of
mode shapes of a complicated structure. The first mode involves side bending and twisting.
The second mode is mostly bending in the vertical plane. Taken from NASA CR 181975,
NASTRAN result for Blackhawk helicopter.

312
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w1(t) =0 w2(t)

θ1(t) θ2(t)

EI, L

2m, mL2

10
m, mL2

20

Figure 6.8. Structural system capable of one rigid body motion.

so that the SEP of the beam element is horizontal. Note the four DOF symbols
shown.

SOLUTION Write the mass and FEM stiffness matrices for this three-DOF system as
per usual. To achieve solely numerical values for the mass and stiffness matrix entries,
divide the first and third rows by the beam element length and factor the remaining
beam element lengths so that the deflection vector, mass matrix, and stiffness matrix
are

{q} =



Lθ1

w2

Lθ2


 , [M] = m


 0.1

1.0
0.05


 , [K] = EI

L3


 4 −6 2

−6 12 −6
2 −6 4


 .

Consider the determinant of the stiffness matrix. Note that the sum of the three
rows of that determinant is a row of zeros. Thus the stiffness matrix is singular as
expected and cannot be inverted to form a dynamic matrix.16 Therefore the analysis
will be carried out using the determinant method that is oblivious to the singularity
of the square matrices. Form the eigenvalue λ so that λ = ω2mL3/EI and write the
determinant equation |[K] − λ[M]| = 0. After multiplying the first and third rows
of the determinant by 10 and 20, respectively, to clear fractions without altering the
value of the determinant, the determinant equation is∣∣∣∣∣∣

(40 − λ) −60 20
−6 (12 − λ) −6
40 −120 (80 − λ)

∣∣∣∣∣∣ = (λ − 0)(λ2 − 132λ + 2760) = 0.

Therefore, the solutions for the natural frequencies are

ω1 = 0.0 ω2 = 5.1

√
EI

mL3 ω3 = 10.3

√
EI

mL3 ,

Substituting the zero value of the first eigenvalue back into the determinant equation,
discarding the third row, and solving the first eigenvector is, as expected, a rigid body
rotation. That is

�Lθ1 w2 Lθ2� = �1 1 1� or �θ1 w2 θ2� =
⌊

1
L

1
1
L

⌋
,

where the two rotation DOF are equal to each other and equal to the small tip
deflection divided by the beam length. ★

16 See Endnote (2) for an alternative procedure.
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EXAMPLE 6.14 Recalculate the natural frequencies of the three-pendulum prob-
lem of Example 6.2 when the masses of the pendulum bobs are changed to 1/2m for
the outboard pendulums and 2m for the central pendulum. Note that the total mass
remains the same at 3m.

SOLUTION Since there are only three DOF, and because the two higher modes are
to be calculated, the simplest approach in this case is to use the determinant method.
The altered 3 × 3 determinant is∣∣∣∣∣∣

2β − 1/2ω
2 −β 0

−β 3β − 2ω2 −β

0 −β 2β − 1/2ω
2

∣∣∣∣∣∣ = 0.

Define the eigenvalue λ = ω2/β . Then the characteristic equation obtained from the
above determinant is

27λ3 − 198λ2 + 432λ − 256 = 0.

After using, say, Newton–Raphson, the three ordered roots of this equation, to six
significant figures, are 0.958965, 2.66667, and 3.70771. The consequent natural fre-
quencies and mode shapes are now

ω1 = 0.979
√

β ω2 = 1.633
√

β ω3 = 1.926
√

β

{A}(1) =



0.780776
1.00000

0.780776


 {A}(2) =




−1.0
0.0
1.0


 {A}(3) =




1.0
−0.780776

1.0.


 .

Compare the above solution for the altered mass distribution to the original pendu-
lum system solution

ω1 = 1.0
√

β ω2 = 1.414
√

β ω3 = 2.0
√

β

{A}(1) =



1.0
1.0
1.0


 {A}(2) =




−1.0
0.0
1.0


 {A}(3) =




0.5
−1.0

0.5


 ,

where the last eigenvector was normalized on −1 to better facilitate comparisons.
It is clear that the mode shapes have generally changed more than the natural fre-
quencies, and yet their patterns are not all that different. Because of the symmetry
of the three-pendulum system, the second mode shape has not changed at all, but
its corresponding natural frequency has undergone a 15% change. This is so because
the masses in motion for this mode have been reduced in magnitude by 50%. ★

It is well to repeat that natural frequencies and mode shapes are not only the first
step toward quantifying a structural response, but as will be explained in the next
chapter, the natural frequencies are useful for qualitatively judging the dynamic
response of a structure. There are other direct uses for the natural frequencies. For
example, the first natural frequency is useful for structural material fatigue estimates.
When a structure is subjected to a series of intermittent pulses, such as possibly wind
gusts, the structure will mostly vibrate at its first natural frequency. Thus f1 can be
use for estimating the number of significant fatigue loading cycles experienced by the
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structure when subject to such winds. Another immediate, and presently important,
use for the natural frequencies is discussed in the next section.

6.10 **Model Tuning**

As is generally true in industrial and governmental practice, all elastic structures
discussed in this textbook are modeled for finite element analyses. Although finite
element analysis is a mature field, there are aspects of finite element modeling, as
in any other type of structural modeling, that can be significantly in error. A good
example of imprecision in mathematical modeling of physical structures is the mod-
eling of connections and boundary conditions. For example, consider the two famil-
iar mathematical descriptions of a physical structural joint. The hinged connection
and the clamped connection represent the two extremes of relative rotational con-
straint, which are none and infinite, respectively. Either of these models can be a
poor approximation for a riveted or bolted joint or a control system activated hinge
with it finite rotational constraint. All such physical connections could be somewhat
better approximated as being hinged with the addition of a linear torsional spring
that would provide a finite amount of torsional restraint. However, it is seldom appar-
ent what even the approximate magnitude of such a linear torsional spring stiffness
should be. Indeed, the actual torsional resistance is likely to be a nonlinear function
of relative rotation angle, and as the joint flexes over time, and the frictional resis-
tance to rotation lessens, the torsional spring stiffness will asymptotically decrease
to some nonzero value.

Of course there other types of inaccuracies that are inherent in finite element
modeling. These modeling inaccuracies arise from (i) the choice of the (small) number
of elements used in the model; (ii) the simplifications built into even such accurate
elements as beam elements17; (iii) the approximation of the structural geometry using
straight-line elements; and, of course, (iv) a lack of precise information on material
parameters such as Young’s modulus and the Poisson ratio. The difficulty in obtaining
accurate values for the various Young’s moduli and Poisson ratios can be a serious
source of error in fiber composite materials.

Of course, the purpose of any mathematical model of a structure is to accurately
predict the physical structure’s response to all types of loads. The only way engi-
neers have for determining a physical structures’ actual, as opposed to predicted,
responses is through testing. There are essentially two types of tests: static load tests
and dynamic load tests. The latter, when the intent is to experimentally determine the
structure’s natural frequencies and mode shapes, are called “vibration tests.” Vibra-
tion tests offer, via the experimentally determined values of the natural frequencies,
and perhaps the mode shapes, too, an opportunity for the analyst to improve the
accuracy of the finite element model of the structure. The complication is, of course,
that experimental measurements also contain errors independent of the errors of the

17 Beam elements are based on the strength of materials approximations that planar beam cross sections
remain planar, undistorted, and perpendicular to the beam axis, after bending. Because of shearing
and the Poisson effect, none of these quite reasonable approximations is precisely true. Even when
shearing effects are approximated in the beam finite element, the approximation is crude.
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analytical model. Since the 1970s, a group of remarkable analytical procedures has
been developed that offer the structural analyst the opportunity to use the flawed
experimental results to improve the flawed analytical model. There are several names
given to these procedures. Modal tuning, structural validation, structural updating,
and structural identification are chief among them.

There are two classes of competing procedures for modal tuning. These are the
“deterministic optimization” and the “sensitivity based parameter identification”
approaches. The latter approach, which currently seems to be the more fruitful, is
further divided into submatrix updating and physical parameter updating. See Ref.
[6.14]. The physical parameter updating procedure seems to be attracting the most
attention because its results, which are the revised (i.e., corrected) system parameters
are open to clear physical interpretation, whereas the submatrix updating procedure,
although potentially equally useful for most structural analysis purposes, is not open
to clear physical interpretation.

The physical parameter updating procedure generally begins with the construction
of a quadratic objective function involving both the system test responses, such as the
measured values of the natural frequencies, and the parameters of the mathematical
model, such as beam element area moments of inertia. This approach is sometimes
called Bayesian parameter estimation. The objective function is mostly called either
the error function or the cost function in structural engineering circles, whereas
mathematicians and electrical engineers may call it the estimator. The commonly
used form of the error function to be minimized is written as

E = �∆R�[Cr ]{∆R} + �∆P�[Cp]{∆P},
where the ∆R vector is the vector difference between the continuously corrected
analytical response quantities and the fixed experimental values for the response
quantities, where examples of response quantities are natural frequencies and mode
shapes. Similarly, the ∆P vector is the vector difference between the continuously cor-
rected values of the analytical model parameters and the fixed initial values of those
parameters. Examples of these parameters are material constants and geometric fac-
tors, like thicknesses or area moments of inertia, which may not be accurately known.
Parameters can either refer to an individual finite element, and thus be “local,” or
refer to a set of finite elements, and thus be “global.” The values of diagonal weighting
matrix [Cr ] are selected to reflect the confidence placed in the test results. Similarly,
the values of diagonal weighting matrix [Cp] are selected to reflect the confidence
placed in the parameters of the analytical model. A convenient way of viewing these
confidence values is to view them as the inverse of the ratio of the expected error in
a given quantity to the value of the quantity itself. For example, an expected error of
only 0.25% would mean a high confidence value of 400. The selection of the relative
confidence values depends on the test engineer being familiar with his or her test
procedures and their limitations and the analyst being familiar with the shortcomings
of his or her finite element model. If the [Cr ] values are selected to be greater than
the [Cp] values, then the process of minimizing the error function places a greater
emphasis on minimizing the difference between the response vectors than on mini-
mizing the difference between the parameter vectors. This in turn means that there
is more leeway in adjusting the parameters to achieve a greater coincidence for, say,
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the test natural frequencies and the updated analytical frequencies. Experience has
shown that [Cr ] values that are two orders of magnitude greater than the [Cp] val-
ues are necessary to appreciably change the model parameters so that, for example,
the analytical values of the natural frequencies are now close to the corresponding
experimental values. See, for example, Ref. [6.15].

Some details of the rather extensive calculations necessary to minimize the error
function are as follows [6.16]. The first step is establishing the relationship between
the difference in the responses vector, and the differences between the parameters
vector, which can be written as

{∆R} = [S]{∆P}, (6.12)

where [S] is called the sensitivity matrix. For the purposes of discussion, it is help-
ful to be specific about the response quantities, but it is unnecessary to be specific
about the parameters. Let the response quantities be the experimentally determined
natural frequencies. It is possible to also include the measured mode shapes, but the
combination of the natural frequencies and the mode shapes can lead to numerical
ill-conditioning.

The sensitivity matrix is obtained from a one-term Taylor’s series expansion of
∆R in terms of ∆P. This means that [S] is a matrix composed of the first partial
derivatives of the various response quantities, the natural frequencies, with respect
to each of the parameters. These derivatives are expanded by use of the chain rule
into (i) derivatives of the natural frequencies with respect to the entries of the mass
and stiffness matrices and (ii) derivatives of the mass and stiffness matrix entries with
respect to the selected model parameters. The latter set of derivatives are straight-
forward, and many times quite easy to fashion, such as, for example, the derivative
of a particular stiffness matrix entry with respect to the area moment of inertial of a
particular beam element or the Young’s modulus of a particular plate element. The
derivatives that need comment are the former set of derivatives whose development
was a key step in the creation of the modal tuning process.

To consider the derivative of, say, the ith eigenvalue, λi with respect to a mass
matrix term of the r th row and sth column, mrs , start with the ith modal solution

λi [m]{A}(i) = [k]{A}(i)

or λi

n∑
k=1

mjk Aik =
n∑

l=1

kjl Ail . (6.13)

Note that here the eigenvalue is directly proportional to the natural frequency
squared. Make the approximation that the above typical stiffness term is indepen-
dent of the above typical mass term. Then, a straightforward partial differentiation
of the second of the above equations with respect to mrs is as follows:

∂λi

∂mrs

n∑
k=1

mjk Aik + λi

n∑
k=1

∂mjk

∂mrs
Aik + λi

n∑
k=1

mjk
∂ Aik

∂mrs
=

n∑
l=1

kjl
∂ Ail

∂mrs
. (6.14)

Now multiply the Eq. (6.14) by Aij and sum all terms over j , and note that
n∑

j=1

n∑
k=1

mjk Ai j Aik = ⌊
A(i)⌋[m]

{
A(i)} = Mi ,
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where, as before, Mi is the ith modal mass. Hence the Eq. (6.14) becomes

∂λi

∂mrs
Mi + λi

n∑
j=1

n∑
k=1

∂mjk

∂mrs
Ai j Aik + λi

n∑
j=1

n∑
k=1

mjk
∂ Aik

∂mrs
Ai j =

n∑
j=1

n∑
k=1

kjk
∂ Aik

∂mrs
Ai j .

(6.15)

With respect to the second of the above terms, the generalized coordinates are taken
to be discrete deflections so that the independence of the magnitude of any one
lumped mass with respect to the magnitude of any other lumped mass allows the
partial derivative of the one-mass entry term with respect to the other mass entry
term to be viewed as being 1.0 when j = r and k = s and zero otherwise. Therefore
the first of the above sums can be replaced by the single term λi A ir A is.

Now consider the third of the above four terms in Eq. (6.15). Making use of the
symmetry of both the mass and stiffness matrix entries, and Eq. (6.14)

λi

n∑
j=1

n∑
k=1

mjk
∂ Aik

∂mrs
Ai j =

n∑
k=1

[
n∑

j=1

λi mkj Ai j

]
∂ Aik

∂mrs
=

n∑
k=1

[
n∑

j=1

kkj Ai j

]
∂ Aik

∂mrs

=
n∑

j=1

n∑
k=1

kjk
∂ Aik

∂mrs
Ai j .

Thus the third and fourth terms of Eq. (6.15) cancel. Therefore the conclusion that

∂λi

∂mrs
= − λi

Mi
Air Ais .

Similarly, it can be established that

∂λi

∂krs
= + 1

Mi
Air Ais .

Of course, for example, some of the mrs terms will generally have a zero value. This
fact is not upsetting because each of the above partial derivatives is to be multi-
plied by a partial derivative of mrs with respect to some particular element param-
eter such as an element area moment of inertia, and this latter derivative will be
zero.

Since the purpose of the system tuning process is to determine the change in the
parameters given the difference between the experimental response (eigenvalue)
vector and the analytical response vector, a relationship is sought in the form

{∆P} = [G ]{∆R},
where [G ] is called the gain matrix. The above relationship can be realized by means
of a matrix inverse of Eq. (6.12) only if the sensitivity matrix is a square matrix. The
sensitivity matrix is rarely if ever square because, on the one hand, there is only a
limited number of experimentally determined natural frequencies (typically a dozen
or two), whereas, on the other hand, in a real problem, the parameters selected
for updating are usually associated with quite a few finite elements of a finite ele-
ment model. When the sensitivity matrix is rectangular, pseudo inverses could pos-
sibly be used. The use of such inverses is part of the first mentioned “deterministic
optimization” process mentioned at the beginning of this section. However, that is
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not the preferred solution procedure. One of the preferred options is minimizing the
error function is setting the various partial derivatives of the error function equal
to zero. The acquisition of the gain matrix does not complete the determination of
the change in the parameters because the process is nonlinear. The source of the
nonlinearity lies in the derivatives of the eigenvalues with respect to the usual types
of selected parameters. The solution for the updated parameters must be obtained
by repeated iterations, and convergence must be evaluated. The iterative procedure
requires considerable computation for real problems in that in each iterative cycle
the new eigenvalues and their derivatives need to be computed. Commercial soft-
ware is available for these calculations. Reference [6.17] is a recent textbook on this
subject.
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CHAPTER 6 EXERCISES

6.1 (a) From the determinant method, the polynomial equation for the natural fre-
quencies of a three-DOF system is as follows:∣∣∣∣∣∣

(5 − 3λ) −2 0
−2 (3 − 2λ) −1
0 −1 (1 − λ)

∣∣∣∣∣∣ = 6λ3 − 25λ2 + 27λ − 6 = 0,

where λ = mω2L3

10EI
.

Calculate the value of the lowest natural frequency (hint: 0 < λ < .5) and its corre-
sponding mode shape. Normalize so that the largest value of the mode shape is +1.0.
Be accurate to two or more significant figures in your final answers.

(b)(c)(d) Use the determinant method to determine all three natural frequencies of
the systems whose mass and stiffness matrices are listed below. Be sure to list the
frequency solutions in their proper order.

(b) [M] = m


 4

3
1


 [K] = k


 8 −3 −1

−3 5 −2
−1 −2 3




(c) [M] = m


 3

2
2


 [K] = k


 5 −1 −1

−1 2 −1
−1 −1 2




(d) [M] = m


 5

3
1


 [K] = k


 12 −4 −2

−4 6 −2
−2 −2 4


 .

(e) What is the mode shape for a single-DOF system? Hint: Such a mode shape
would have only a single numerical entry.

6.2 (a) Calculate the first mode shape for part (b) above.

(b) Calculate the first mode shape for part (c) above.

(c) Calculate the first mode shape for part (d) above.
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6.3 Use matrix iteration to calculate the first natural frequency and first mode shape
for the structural systems whose mass and stiffness matrices are as follows

(a) [M] = m


 4 2 1

2 2 1
1 1 1


 [K] = k


 8

6 2
2 6




(b) [M] = m


 6 5 3

5 5 3
3 3 3


 [K] = k


 5

10
10




(c) [M] = m


 14 7 2

7 7 2
2 2 2


 [K] = k


 12

6
4


 .

6.4 (a) Use matrix iteration to determine the first eigenvalue and eigenvector when
the three-DOF dynamic matrix is, by rows [1 1 1; 2 6 6; 2 6 14].

(b) Use matrix iteration to calculate the second eigenvalue and eigenvector when
the diagonal mass matrix entries are [\1/2 1 1\]. Hint: It is suggested that your first
guess for the second mode shape be �1 1 −1�.

(c) From Exercise 5.7(b) the mass and stiffness matrices of the three-story building,
in terms of DOF relative to the support, are

[M] = m


 1 0 0

0 1 0
0 0 2


 [K] = 36EI

L3


 2 −1 0

−1 2 −1
0 −1 1


 .

Use matrix iteration to calculate the first natural frequency and mode shape. Then
use a frequency shift to search for a natural frequency near 7.0(EI/mL3)

1/2 . Then use
the inverse of the dynamic matrix to determine the third natural frequency.

(d) From Exercise 5.7(d) the mass and stiffness matrices of the three-story building,
in terms of DOF relative to the support or the DOF located at the story immediately
below, are

[M] = m


 4 3 2

3 3 2
2 2 2


 [K] = 36EI

L3


 1 0 0

0 1 0
0 0 1


 .

Follow the approach outlined in part (c) to determine the natural frequencies and
mode shapes. Should the frequency solutions be the same? Should the mode shape
solutions be the same?

6.5 Use matrix iteration to calculate the first natural frequency and mode shape for
the structural system whose mass and stiffness matrices are those of

(a) part (b) of Exercise 6.1.

(b) part (c) of Exercise 6.1.

(c) part (d) of Exercise 6.1.
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6.6 Use matrix iteration and the symmetric dynamic matrix of Example 6.10 to
recalculate the first natural frequency of the cantilevered beam of Example 6.3. Note
that the mode shape will not be the same as previously calculated because of the
transformation {q} = [R−1]{p}.
6.7 (a) Calculate the Cholesky factors [L][L]t for the stiffness matrix of Exercise
6.1(a).

(b) As above, for the stiffness matrix of 6.1(b).

(c) As above, for the stiffness matrix of 6.1(c).

(d) Calculate the Cholesky factors [R]t[R] for the matrix

[K] = k
[

3 −1
−1 2

]
.

(e) Use the determinant method to prove that the eigenvalues of an upper or a right
triangular matrix, U or R, are the diagonal entries of the triangular matrix.

(f) By hand calculate the inverse of the following matrix


3
2 4
1 5 9
0 0 6 3




and thus show that the inverse of a lower or left triangular matrix is another lower
triangular matrix whose diagonal entries are the inverses of the diagonal entries of
the original matrix.

For the eager

6.8 (a) Hand calculate the second mode shape by means of matrix iteration for the
structural system whose 3 × 3 factored diagonal mass matrix has the entries 1, 2, 4,
and whose factored nonsymmetric dynamic matrix and first mode shape are

[D] =

 1.00 2.00 4.00

1.00 4.00 8.00
1.00 4.00 12.0


 and

⌊
A(1)⌋ = �0.3821 0.7392 1.0�.

The eigenvalue is k/(mω2). Hint: A first step to consider is to improve the numerical
accuracy of the given first mode shape by further iteration.

(b) Using computer software of your choice (since its too lengthy for a hand calcu-
lation), perform an matrix iteration method frequency shift to obtain a higher mode,
hopefully the second mode, for the following four-DOF vibratory system:

[M] = m




6.00 0 0 0
0 4.00 0 0
0 0 2.00 0
0 0 0 1.00


 [K] = k




9.00 −3.00 0 0
−3.00 5.00 −2.00 0

0 −2.00 3.00 −1.00
0 0 −1.00 1.00


 .
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Let k/m = 1.0. The eigenvalue is (mω2/k), and the dynamic matrix, [K]−1[M], is

[D] =




1 2/3 1/3 1/6
1 2 1 1/2
1 2 2 1
1 2 2 2


 .

The solution for the first eigenvalue is 4.84353, which produces a first natural fre-
quency of 0.454380

√
k/m. (The first mode shape entries are 0.203501, 0.526474,

0.793539, 1.00000.) Guess the second modal frequency is about twice the value of
the first modal frequency, rounded off so that ωs = 0.9. Expect a single sign change
in the mode shape if you find the second mode shape.

6.9 If e1, e2, . . . , en are a set of orthogonal unit vectors in N-space, then prove that
they are linearly independent. It might be useful to consult Endnote (1).

6.10 The stiffness matrix of Example 3.4 was easily obtained using the deflection
FEM. The matrix iteration technique requires the use of the inverse of the stiffness
matrix, which is the flexibility matrix. The hand calculation of that 6 × 6 inversion
would be tedious, particularly if the beneficial division of the 6 × 6 matrix into 4 × 4
and 2 × 2 submatrices, half of which are null, went unnoticed. An alternate approach
would be to directly calculate the flexibility matrix using a force method such as
Castigliano’s second theorem, the unit load method, and so on.

(a) Use such a force method to calculate any one diagonal term and any one off-
diagonal term of the 6 × 6 flexibility matrix, and make your own estimate of the
relative merit of formulating and then inverting the 6 × 6 stiffness matrix versus
directly calculating the 6 × 6 flexibility matrix.

(b) What checks are available on the accuracy of the calculated flexibility matrix?

6.11 Redo Example 6.7, using the determinant method to calculate the four natural
frequencies, where now the parameter α has the values

(a) 0.3 (b) 0.7 (c) 0.4 (d) 0.6 (e) 1.0.

6.12 Prove that a necessary and sufficient condition for a trial vector not having the
first mode shape as a component is a trial vector that is orthogonal to the first mode
shape.

ENDNOTE (1): LINEARLY INDEPENDENT QUANTITIES

Again, the n quantities (functions, vectors, etc.) Vi are linearly independent if and
only if the equality

c1V1 + c2V2 + · · · + cnVn = 0

implies that all the n coefficients ci are zero. To illustrate this concept, again consider
the two functions sin x and cos x. Of course, these two functions are not functionally
independent because a knowledge of the value of one of them quickly leads to a
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knowledge of the value of the other through the mechanism of the Pythagorean
theorem

sin2x + cos2x = 1.

Although not functionally independent, these two functions are linearly independent
because there are no constants c1 and c2 for which, for all x

c1 sin x + c2 cos x = 0.

The qualification “for all x” makes the test for linear independence a test for the
existence of an identity rather than the quest for a solution for what is merely an
equation.

Other examples of sets of linearly independent functions are the following infinite
sets of functions

(1) sin x, sin 2x, sin 3x, . . . , sin nx, . . .

(2) cos x, cos 2x, cos 3x, . . . , cos nx, . . .

(3) 1, x, x2, x3, x4, . . . , xn, . . . .

An example of a set of three dependent functions are, from the above

1, sin2x, cos2x.

The same principles hold for vector quantities. The unit vectors i, j, k are linearly
independent, as are the following four vectors written in matrix form

�0 2 3 4�, �1 2 3 4�,

�2 3 4 5�, �0 0 0 5�
However, the vectors

�0 2 3 4�, �1 2 3 4�,

�2 2 3 5�, �0 0 0 5�
are dependent because 10 times the difference between the second and first, plus the
fourth, equals five times the difference between the third and first. The simple test
for independency is to examine the determinant of the vector set. If the determinant
is nonzero, then the vectors are independent. Otherwise they are dependent.

ENDNOTE (2): THE CHOLESKY DECOMPOSITION

Accomplishing the Cholesky decomposition of a positive definite, symmetric matrix
is only a matter of progressively solving a succession of single algebraic equations
with a single unknown. For example, consider the following matrix [R]t[R] or [L][L]t

decomposition that is chosen so that all the triangular matrix entries are integers


25 −15 5 10
−15 25 −19 10

5 −19 53 −26
10 10 −26 25


 =




a
b c
d e f
g h j k







a b d g
c e h

f j
k


 .
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Now simply multiply the two triangular matrices, and equate the results to the cor-
responding entries in the original matrix. Then

a = 5 b = −3 d = 1 g = 2,

then c = 4 e = −4 h = 4 f = 6 j = −2 k = 1.

Substituting these results leads to




25 −15 5 10
−15 25 −19 10

5 −19 53 −26
10 10 −26 25


 =




5
−3 4

1 −4 6
2 4 −2 1







5 −3 1 2
4 −4 4

6 −2
1


 .

This procedure can be adapted to rapid computation on a digital computer. From
Ref. [6.10], formulas for the elements of [L] are

Lj j =
√√√√Mj j −

j−1∑
k=1

L2
jk for j = 1, 2, . . . , n

and Li j = 1
Lj j

(
Mi j −

j−1∑
k=1

LikLjk

)
j = 1, 2, . . . , (n − 1); i = ( j + 1), . . . , n.

There are a couple of advantages to triangular matrices. The first is that the inverse
of an [L] matrix is another left matrix, and the inverse of an [R] matrix is another
right matrix. For example, the hand-calculated inverse of the above [L], using the
usual adjoint technique (see below for a more efficient technique), is




5
−3 4

1 −4 6
2 4 −2 1




−1

= 1
120




24
18 30

8 20 20
−104 −80 40 120


 .

Another, much more important, advantage is that a coordinate transformation of the
form [L]{q} = {p}, which has the solution that {p} = [L]−1{q}, does not require the
formal calculation of the inverse. All that is necessary to do to obtain the inverse of
[L]{q} = {p} is to solve these simultaneous equations successively; that is, one row at
a time starting with the first row. In the first row there is only one unknown, q1, that is
immediately determined as p1/L11. After the substitution of the solution for q1 in the
second row, again there is only one unknown q2, which is immediately determined
in terms of the first two ps. This procedure is quite efficient for a digital computer.
Therefore, it is clear that this is also a very effective way of calculating the inverse of
either a left or right triangular matrix.

If the matrix to be decomposed is not symmetric, the matrix can still be written
as the product of two triangular matrices, an [L] and an [R]. However these two
triangular matrices are not transposes of each other. See Ref. [6.18], Chapter 9.
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ENDNOTE (3): CONSTANT MOMENTUM TRANSFORMATIONS

As has been seen, when a structure can undergo rigid body motions, the otherwise
positive definite stiffness matrix is singular and only positive semidefinite. The degree
of singularity is equal to the number of possible rigid body motions. These singular-
ities can be removed by following reasoning. Again consider the matrix equation
[M]{q̈} + [C]{q̇} + [K]{q} = {Q}. If the externally applied loads are zero, then by
Newton’s second law, the system has both constant translational momentum and
constant angular momentum. That is, it is possible to write an equation of the form
�Mtrans�{q̇trans} = const. for both the translational momentum and the rotational rigid
body motion, where �Mtrans� is a 1 × N matrix that contains the mass terms of only
those DOF involved in that specific rigid body translation. To illustrate this point
simply, consider a mass system consisting of just two masses of magnitudes 2m and
m. Let there initial translational momentum be zero. Then if the mass of magnitude
2m were to move to the left at a velocity V, then to maintain a zero net momentum
vector for the mass system, the mass mwould have to move to the right with a velocity
2V. That is, the momentum equation would be 2m(−V) + m(V) = 0. As a second,
more complicated example, IF the unloaded flexible beam of Figure 4.5 were not
cantilevered at its left end, but free to translate vertically at that end as well, then,
following the same reasoning, the translational momentum equation would have
the form

const. = 2m(ẇ1 − eφ̇1) + m(ẇ2 + eφ̇2) = �2m 0 −2me m 0 me�




ẇ1

θ̇1

φ̇1

ẇ2

θ̇2

φ̇2




.

If the center of mass of this altered beam, or any other mass system, is not translating,
then the total translational momentum of the structure, and the above constant, is
zero. Therefore, it is possible to integrate 0 = (d/dt)�Mtrans�{qtrans} to get konst. =
�Mtrans�{qtrans}. Whereas the first const. was related to the velocity of the center of
mass, this konst. is a measure of the displacement of the center of mass. It too can
be set equal to zero so as to keep a fixed SEP. (Of course this discussion could have
begun with the lack of translation of the CG, but the constant momentum concept
has enough other uses to be the preferred starting point.) Therefore, the equation
0 = �Mtrans�{qtrans} represents an equation of constraint on the DOF vector allowing
the elimination of one DOF. So it goes for each rigid body translation and rotation.
The following example problem illustrates this DOF elimination procedure for the
case of a rigid body rotation.

EXAMPLE 6.14 Prepare the free vibration system equations of the structure of
Example 6.13, Figure 6.8 for matrix iteration by eliminating the singularity in that
stiffness matrix.
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SOLUTION To understand the angular momentum (moment of translational momen-
tum) equation, review the relevant dynamics where again L is the angular momentum
vector, r is the position vectror to the system CG, ei is the position vector from the
CG to the mass particle, mi :

L =
N∑

i=1

mi (r + ei ) × (ṙ + ėi )

L =
N∑

i=1

mi (r × ṙ + r × ėi + ei × ṙ + ei × ėi )

L = r × (mṙ) +
N∑

i=1

mi e1×ėi .

The introduction of rotating unit vectors for each of the ei vectors from the CG
quickly produces the final result

L = r × mṙ + θ̇
(∑

mi e2
i

)
k.

Thus it is clear that, in addition to the mass moment of inertia terms, the moment of
the translational momentums must also be included. Therefore, setting L = 0 in this
context means writing, where � is the beam length

0 = 1
10

m�2θ̇1 + 1
20

m�2θ̇2 + �(mẇ2) = m��0.1 1.0 0.05�



�θ̇1

ẇ2

�θ̇2


 .

Incorporating the above equation of constraint into a transformation matrix between
the constrained and unconstrained coordinates leads to




�θ1

w2

�θ2




C

=

 1 0

−0.1 −0.05
0 1


 {

�θ1

�θ2

}NC

.

Making this coordinate substitution and, as per usual, premultiplying the free vibra-
tion equation of motion by the transpose of the coordinate transformation matrix
yields

− mω2

10000

[
1100 50

50 525

] {
�θ1

�θ2

}
+ EI

L3

[
5.32 2.96
2.96 4.63

] {
�θ1

�θ2

}
=

{
0
0

}
.

Directly calculating the inverse of the 2 × 2 stiffness matrix, and forming the non-
symmetric dynamic matrix produces the matrix eigenvalue problem prepared for
matrix iteration

[
49.45 −13.225

−29.945 26.45

] {
θ1

θ2

}
= 1587EI

ω2m�3

{
θ1

θ2

}
.
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(e)

(d)

(c)

(b)

(a)           Mode One: ω1 = 0.0               First rigid body mode

SEP

          Mode Two: ω2 = 0.0           Second rigid body mode

SEP

           Mode Three: ω3 > 0.0                First bending mode
                           and first symmetric bending mode

SEP

         Mode Four: ω4 > ω3                  Second bending mode
                           and first antisymmetric bending mode

SEP

Mode Five: ω5 > ω4                           Third bending mode
                           and second symmetric bending mode

Figure 6.9. Typical mode shapes for an unsupported (free-free) beam.

Iteration produces the solution that the eigenvalue equals 60.939, and the constrained
eigenvector is �1.0 −0.8684�. These results lead to the conclusions that

ω2 = 5.1

√
EI

M�3

⌊
A(2)⌋ = �1.0 −0.0566 −0.8684�

for the unconstrained amplitude vector. This second natural frequency result is the
same as that which was determined using the determinant method. (Of course, the
first natural frequency, which corresponds to the rigid body motion, is zero.) Not
enough significant figures were kept to correctly calculate the third (second elastic)
mode.

To further illustrate the relationship between rigid body modes and elastic modes,
consider the free-free beam sketched in Figure 6.9. Let this beam, which can stand in
for a simplified form of an airplane as viewed head-on, be restricted to moving only
vertically. In that case, the beam has only two rigid body modes. Those modes are a
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vertical translation and a rotation in the plane of the paper. Of course, both of these
rigid body modes have zero associated strain energy, and thus both motions have
an associated zero natural frequency. The zero natural frequency can be interpreted
to mean the “vibration” occurs infinitely slowly, so there are zero associated inertia
forces. The rigid body mode shapes can have many forms, but the two that appear
in the sketch have the advantage that these mode shapes are obviously mutually
orthogonal. The first elastic mode, which is the same as the third overall mode, like
all the other elastic modes in this very simplified situation, only involves bending in
the plane of the paper. It is the bending mode that has the least strain energy (bending
strain equals curvature) relative to the other elastic modes. Note that if the initial
vertical momentum is taken to be zero (the usual viewpoint), then the CG of the
beam remains stationary as the beam bends while vibrating in this first elastic mode.
One way to visualize the form of this mode shape and other such mode shapes for
unconstrained structures is to first recall that the vertical accelerations of the mass
elements along the length of the beam are proportional to their vertical deflections.
Then from the viewpoint that the inertial loads acting on the beam have to be in
vertical equilibrium, the mass–deflection products all along the beam have to sum
to zero. Hence, as shown for this first elastic mode, some of the beam has to travel
upward while other parts have to simultaneously travel downward. Realize that even
if the beam were uniform, this would not mean that half the beam would be going
upward while the other half would be going downward. Each differential length
of the beam is weighted by the magnitude of its deflection value (its acceleration).
Hence as drawn, the unconstrained beam tips have greater deflections and greater
associated inertial loads that offset more than an equal length at the center of the
beam where the deflections are not as large. The higher numbered elastic beam mode
shapes have greater amounts of strain energy; that is, more curvature. If the beam
were symmetric about its centerline, then the first elastic mode would also be called
the second symmetric mode, or first elastic symmetric mode, while the second elastic
mode would be the first antisymmetric elastic mode, and so on. At this point it might
be worthwhile for the reader to look again at Figures 6.7, which show free-free mode
shapes for much more complicated structures.

ENDNOTE (4): ILLUSTRATION OF JACOBI’S METHOD

The following matrix, with dominant diagonal elements (for quicker results), was
otherwise selected at random. All six of the 2 × 2 determinants along its principal
diagonal, all four of the 3 × 3 determinants along the main diagonal, and the one
4 × 4 determinant have positive values. Therefore, it is verified that this matrix is
positive definite and thus suitable for the Jacobi method:

[D0] =




4 3 2 1
3 5 −2 0
2 −2 6 1
1 0 1 7


 .

The Jacobi procedure begins by selecting one pair of off-diagonal terms to be zeroed.
The best choice is the largest of the off-diagonal terms. With a large matrix, computer
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searching for the largest such entry would be too expensive. The usual choice is to
simply start with the first off-diagonal term that exceeds a selected value. However,
in this small problem, finding the largest off-diagonal value can be immediately
accomplished. Thus the first objective is to zero the (1,2) and (2,1) entries using the
first rotation matrix

[r1] =




cos θ1 − sin θ1

sin θ1 cos θ1

1
1


 .

Note that [r1]−1 = [r1]t. The next step is determining the rotation angle for the sine
and cosine terms by use of the easily derived formula

tan 2θ1 = 2d12

d11 − d22
= −6 → θ1 = −0.702823824 rad.

Thus construct the following rotation matrix keyed to the first and second rows and
columns

[r1] =




0.763019982 0.646374896
−0.646374896 0.763019982

1
1


 .

The result of the first rotation, [D1] = [r1]t[D][r1], is

[r1]t[D0][r1] =




1.45862 0 2.81879 0.76302
0 7.54138 −0.23329 0.646375

2.81879 −0.23329 6 1
0.76302 0.646375 1 7


 ,

which demonstrates that the objective of the first rotation has been achieved. The
zero in the (1,2) and (2,1) positions is actually −1.E(−9), and such subsequent zeros
are E(−7) terms. There is, of course, always a round-off error at each step.

Now the largest off-diagonal term is the (1,3) or (3,1) value of 2.81879. Thus
tan 2θ2 = (2)(2.81879)/(1.45862 − 6) or θ2 equals −0.44633871, and the rotation
matrix is

[r2] =




cos θ2 − sin θ2

1
sin θ2 cos θ2

1


 =




0.902033594 0.431665836
1

−0.431665836 0.902033594
1


.

The result of employing this rotation matrix is [D2] =

[r2]t[D1][r2] =




0.109695 0.100703 0 0.256604
0.100703 7.54138 −0.210436 0.646375

0 −0.210436 7.34892 1.2314
0.256604 0.646375 1.2314 7


 .
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Now the purpose is to eliminate the (3,4) and (4,3) entries. So

[r3] =




1
1

0.755074606 −0.665638878
0.655638878 0.755074606


 .

The result of this rotation is

[D3] =




0.109695 0.100703 0.168239 0.193755
0.100703 7.54138 0.264894 0.626031
0.168239 0.264894 8.41816 0
0.193755 0.626031 0 5.93076


 .

The result of the seventh rotation is

[D7] =




0.100306 0.0955276 0.00210977 0
0.0955276 7.67195 0.00240573 0.0299617

0.00210977 0.00240573 8.50754 −0.0776521
0 0.0299617 −0.0776521 5.7202


 .

Clearly the result is converging, albeit somewhat slowly, to a diagonal matrix. From
Mathematica, the eigenvalues of this matrix, in the same order as the above diagonal
terms, are

λ4 = 0.0991003 λ2 = 7.67362 λ1 = 8.50971 λ3 = 5.71758.

After just seven rotations, the eigenvalues are within 1% of the correct values. The
approximation to the mode shapes,

[Φ] ≈ [r1][r2][r3][r4][r5][r6][r7]

=




0.688856 0.434032 0.425151 −0.395399
−0.581853 0.807532 0.0343404 −0.0903353
−0.430773 −0.398692 0.573636 −0.571333
−0.0368657 0.0235155 0.699292 0.713497


 .

The corresponding Mathematica calculated mode shapes, which have been normal-
ized so that the maximum values of each mode shape are identical, are as follows. Of
course, the errors here are much larger than those for the eigenvalues but not unrea-
sonable for just seven rotations. Also note that because the original square matrix
was mostly chosen at random, the nodes of these eigenvectors do not correspond to
those of physically meaningful mode shapes.

[Φ] =




0.688856 0.440796 0.449912 −0.380207
−0.596910 0.807532 0.0393502 −0.098978
−0.429416 −0.418324 0.605814 −0.534798
−0.037595 0.0333621 0.699292 0.713497


 .
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ENDNOTE (5): THE GRAM–SCHMIDT PROCESS FOR
CREATING ORTHOGONAL VECTORS

The Gram–Schmidt process for changing a set of independent vectors into a set of
orthogonal vectors is accomplished one vector at a time. As an illustration of this
process, consider the randomly selected set of four vectors

�A1� = �1 2 4 2� �A2� = �3 − 2 4 1�
�A3� = �3 2 6 − 2� �A4� = �3 − 2 4 6�.

That these four vectors are linearly independent can be verified by calculating the
4 × 4 determinant of the matrix created by stacking these four vectors. If the four
vectors were linearly dependent, then there would be a set of three scalar multipliers
that when applied to three of these four vectors and that result summed, would
yield the negative of the fourth vector. Thus the value of the determinant would be
zero. Since the actual value of the determinant is +80, the four vectors are linearly
independent. In passing, note that because the 4 × 4 matrix was chosen at random,
while nonsingular, it is not positive definite as can be seen by examining the first
2 × 2 determinant on the main diagonal.

The Gram–Schmidt process begins by selecting any one of the vectors to be the
first orthogonal vector. Let that first orthogonal vector {O1} be {A1}. To obtain the
second orthogonal vector, it is necessary only to choose another independent vector
to combine with the first and then demand that this combination be orthogonal to the
first orthogonal vector. That is, skipping weighting matrices, let the second orthogonal
vector have the form {O2} = {A1} + x{A2} and write the orthogonality condition for
the first two orthogonal vectors as

�A1�({A1} + x{A2}) = 0 ∴ x = −25/17

�O2� = �−3.41176 4.94118 −1.88235 0.529412�
and �O1�{O2} = 2.10−16.

If it is desired to go beyond mere orthogonality to “orthonormal vectors,” it is nec-
essary only to divide, for example, {01} by the square root scalar value of the result
of multiplying {O1} by itself, which is

√
25.

The third of the orthogonal vectors is similarly obtained. Let {O3} = {A1} +
y{A2} + z{A3} and require the products of {O1} and {O3}, and {O2} and {O3}, be
zero. This step leads to determining the values of y and z. Those calculations are as
follows:

�A1�({A1} + y{A2} + z{A3}) = 0 or 25 + 17y + 27z = 0

�O2�({A1} + y{A2} + z{A3}) = 0 or −27.1176y − 12.7059z = 0

∴ y = 0.615387 and z = −1.31339

�O3� = �−1.09401 −1.85755 −1.41879 5.24217�
and �O1�{O3} = 0.00005 �O2�{O3} = −0.00007.

Clearly round-off error has accumulated rapidly, and the values for {O3} are good
only for five significant figures rather than the six stated.
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The fourth orthogonal vector is similarly obtained starting with, say, {O4} =
{A1} + α{A2} + β{A3} + γ {A4} and requiring that this vector be orthogonal to the
three previously obtained orthogonal vectors. As above, those three orthogonality
conditions lead to three equations to be solved simultaneously for the values of
α, β, and γ .
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7 The Modal Transformation

7.1 Introduction

The usual first step toward a solution of the linear, small deflection matrix equation of
structural motion, [M]{q̈} + [C]{q̇} + [K]{q} = {Q} (called the m, c, k, Q equation),
is to obtain the system natural frequencies and mode shapes. As discussed in the
previous chapter, the natural frequencies and mode shapes are eigenpair solutions to
the undamped, homogeneous (m, k) form of this same matrix differential equation.
The focus of this chapter is on the usual final steps in the solution process. The
usual step after acquiring the modal frequencies and mode shapes is to use that
data to isolate the effect of each mode on the system response. The final step is to
solve each of the selected modal differential equations and sum those results. For
the sake of instruction and intuition building, this chapter and the next focus only
on obtaining analytical solutions to those modal differential equations. To further
clear the underbrush, the example problems will omit damping. Chapter 9 discusses
the far more prevalent approach of numerical integration of the modal differential
equations. The available commercial software packages, of course, provide numerical
solutions rather than analytical solutions. Numerical solutions are almost always the
only option when the original matrix differential equation is complicated by material
or geometric nonlinearities.

Before introducing the specifics of the two final steps to a complete solution to the
m, c, k, Q linear matrix equation of motion, it is helpful to first present the technique
for incorporating the initial conditions into the free vibration, multidegree of freedom
solution. This topic reinforces an understanding of the free vibration solution.

7.2 Initial Conditions

The previous chapter provided all the solution elements for [M]{q̈} + [K]{q} = {0},
the N-DOF linear matrix equation that describes an undamped system vibrating
free of impressed time-varying loads. From a mathematical point of view [M]{q̈} +
[K]{q} = {0} is a set of n ordinary, second-order, homogeneous, differential equations
with time as the independent variable. Recall that the previous chapter established

334



P1: JZP
0521865743c07 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 0:20

7.2 Initial Conditions 335

that for such a linear N-DOF structural system: (i) every solution function is a sinusoid
with time as part of its argument and (ii) there is such a sinusoid associated with
each of the N discrete frequencies and orthogonal mode shapes. From the theory of
differential equations, the complete solution to these N, second-order differential
equations must also contain 2N constants of integration. Hence, with the complete
solution for the undamped, free vibration displacement DOF vector is simply the
following sum of all of the modal solutions

{q(t)} = a1
{

A(1)} sin(ω1t + ψ1) + a2
{

A(2)} sin(ω2t + ψ2)

+ · · · + an
{

A(n)} sin(ωnt + ψn), (7.1)

where ai and ψi are the required constants of integration. The constants of inte-
gration ai can be viewed also as the multiplicative constants (or weighting factors)
associated with each mode shape once the mode shape vectors have been normal-
ized in the customary fashion. Equation (7.1) says that, in general, the time-varying
force free deflections of a multidegree of freedom system generally include all modal
frequencies and mode shapes.

It is important to realize that when there are applied time-varying generalized
forces, the constants of integration of the matrix differential equation complementary
solution can be determined by use of the system initial conditions only after the
analytical form of the particular (i.e., nonhomogeneous) solution for the motion has
been obtained. In the case of an undamped, force free motion, that particular solution
is simply zero. Then Eq. (7.1) alone is the required complete solution. If equivalent
viscous damping is included in the structural model then, as is seen in Chapter 5 and
more extensively in the latter parts of this chapter, this solution must be modified
by inserting as factors decaying exponential functions. Again, if applied forces are
present, the particular solutions must be added to Eq. (7.1) before applying the initial
conditions.

In the case of vibrating structural systems, the initial conditions are always the
system deflections and velocities at time zero. The initial deflections and velocities
are, of course, expressed in terms of the system DOF, qi (t). Let these quantities be
respectively symbolized as the N-dimensional vectors {q(0)} and {q̇(0)}. Substitution
of these initial deflections and velocities into, for example, Eq. (7.1) leads to

{q(0)} = a1
{

A(1)} sin ψ1 + a2
{

A(2)} sin ψ2 + · · · + an
{

A(n)} sin ψn (7.2a)

{q̇(0)} = ω1a1
{

A(1)} cos ψ1 + ω1a2
{

A(2)} cos ψ2 + · · · + ωnan
{

A(n)} cos ψn. (7.2b)

The task now is to fully define the motion described by Eq. (7.1) by determining
the values of the 2N constants of integration ai and ψi by use of the above two sets
of N equations, Eqs. (7.2). This task is accomplished by using the orthogonality of
the modal vectors. Premultiply both of Eqs. (7.2) by the row modal vector and mass
weighting matrix �A( j)�[M]. The two left-hand side results are scalars. Call these
scalars Dj and Vj , respectively. Then, because of the weighted orthogonality of the
terms on the right-hand side of Eqs. (7.2), the only nonzero products are the jth
terms of the two series. Define again �A( j)�[M]{A( j)} ≡ Mj , which is called the jth
generalized mass or the jth modal mass. Of course, the modal mass is not the same
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as mj j , which is just the jth diagonal entry of the mass matrix [M]. Thus the result of
the above premultiplication of the jth modal row vector and the mass matrix is

Dj = a j Mj sin ψ j and Vj = ω j a j Mj cos ψ j .

Again, the quantities Dj and Vj are determined by whatever the initial conditions
there are for the system DOF. The above pair of equations can be solved simultane-
ously with the result

a j =
√

ω2
j D2

j + V2
j

ω j Mj
and ψ j = arctan

ω j Dj

Vj
.

Back substitution of these constants of integration into Eq. (7.1) completes the
calculation of the free vibration response over time. Thus it is clear that the ini-
tial conditions completely define the force free, vibratory motion of the structural
system.

As a special case of interest, let the initial displacement vector be proportional to
the ith mode shape. That is, let {q(0)} = c{A(i)}, where c is a known constant. If, in
addition, the initial velocity vector is null, then all Vj terms and all the Dj terms are
zero except for Di = cMi . Then all a j and all ψ j are zero but for ai = c, and ψi = π/2.
Therefore, the total structural system response in this case is simply

{q(t)} = c
{

A(i)} cos ω j t.

This solution says that an undamped structural system with initial deflections in the
form of one of the mode shapes will vibrate indefinitely in that mode shape and that
mode shape alone. Of course, this conclusion has to be altered to the extent damping
is present in the system. In the case of even a lightly damped system, it can be
expected that not only will the magnitude of the jth modal deflections decrease over
time, but the vibration where the jth mode predominates only lasts for a short time
period before lower numbered modes, particularly the fundamental mode, assert
their dominance. As shown, this departure from the jth mode shape is because of
two causes. One is that the higher modes generally damp out more quickly, and the
second is that there will always be imperfections in setting up the initial deflections
in the form of the jth mode shape. The reader can experimentally illustrate the
above statements by “playing”1 with a taught string, such as a long, coiled telephone
wire. Accept for the moment that the nth mode shape of a taught string of length
� is sin(nπx/�). To begin your experiment, try to start the string vibrating by giving
it initial deflections of, say, sin(3πx/�) and then releasing the string without an initial
velocity. You would soon see that the taught string is vibrating in a shape that can be
described as sin(πx/�), the fundamental mode shape where n = 1.

As a final comment, note that the finite series solution for the DOF vector {q(t)}
given in the form of Eq. (7.1) looks similar to a finite Fourier sine series. A Fourier
series, finite or not, always produces a periodic function.2 In a Fourier time series,

1 The probable verb chosen by friends or spouses.
2 A periodic function of time, P(t), with period T, is such that P(t + T) = P(t) for all t .
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the frequencies are all integer multiples of the first frequency. This is rarely the case
in Eq. (7.1), and as a result, the sum of the N deflection response sine functions is
not generally a periodic function.

7.3 The Modal Transformation

The matrix differential equation of motion [M]{q̈} + [C]{q̇} + [K]{q} = {Q} with its
three N × N symmetric, square matrices, can be viewed as merely N second-order,
linear, ordinary differential equations stacked one on top of another. That is, the kth
row of this matrix equation is just the ordinary differential equation

Mk1q̈1 + Mk2q̈2 + · · · + Mknq̈n + Ck1q̇1 + Ck2q̇2 + · · · + Cknq̇n

+ Kk1q1 + Kk2q2 + · · · + Kknqk = Qk(t).

Since this single equation contains n unknown functions qi (t), it is not possible to
treat this equation separately from the other N − 1 equations that are included in
the matrix equation. In this circumstance, it is said that the unknown variables are
“coupled.” The situation would be quite different if the mass, damping, and stiffness
matrices were diagonal matrices. Then the matrix product of these diagonal matri-
ces with their corresponding DOF vector, velocity vector, or acceleration vector, as
appropriate, would produce a differential equation for the kth row of the form

mkkq̈k + ckkq̇k + kkkqk = Qk(t).

Since the above equation only contains a single unknown function, qk(t), this equation
is called “uncoupled,” and it can be treated separately from all the other equations
listed in the other matrix rows. For many mathematical models, it is possible to
diagonalize the mass matrix by using DOF that originate at the SEP of the discrete
masses, but then the corresponding stiffness matrix generally will not be a diagonal
matrix. Correspondingly, if the structural model is so simple as to be just composed of
spring elements with one fixed end, it is possible to diagonalize the stiffness matrix by
using generalized coordinates that originate at the SEP of the movable spring ends.
However, generally, the corresponding mass matrix will not be diagonal. It is rarely,
if ever, possible to simply inspect the mathematical model of even a simple structure
and thereby determine the generalized coordinates that will diagonalize both the
mass and stiffness matrices. Nevertheless, there always exists a set of coordinates
for which the mass matrix and the stiffness matrix are both diagonal matrices. This
section focuses on using those convenient coordinates, and other devices, for the
purpose of uncoupling and then solving the m, c, k, Q matrix equation.

Consider the m, c, k, Q matrix equation of motion that, of course, is in terms of
the physically meaningful DOF {q}. The first step in the decoupling process is writing
a coordinate transformation, called the modal transformation, which relates these
physically meaningful DOF {q(t)} to a new set of generalized coordinates {p(t)}
called the modal coordinates. This coordinate transformation is written as follows

{q(t)} = [
A(1)

∣∣A(2)
∣∣ · · · ∣∣A(m)]{p(t)} = [Φ]{p(t)}, (7.3a)



P1: JZP
0521865743c07 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 0:20

338 The Modal Transformation

where the jth column of the N × M rectangular modal matrix [Φ], is the eigenvector
{A( j)} from the [m], [k] homogeneous equation, and where M≤N, where N is the total
number of eigenvectors. The individual terms of {p} are called modal coordinates
because the rules of matrix multiplication associate the ith coordinate pi with the ith
modal vector {A(i)}, for each index i . That is, the above coordinate transformation
equation can be rewritten in summation form as

{q(t)} = {
A(1)}p1(t) + {

A(2)}p2(t) + · · · + {
A(m)}pm(t), (7.3b)

where the coordinates pj are simply weighting factors for the mode shapes. Therefore
the time function pj determines the magnitude of the contribution of the jth mode to
the total deflection vector {q(t)}. Furthermore, the above equation makes clear that
any normalization factor applied to the eigenvectors is immaterial because the modal
coordinate can be adjusted to provide the same contribution to the physical coor-
dinates that would occur without the normalization factor; that is, c j {A( j)}(pj/c j ) =
{A( j)}pj .

Since the modal matrix is merely a collection of constants, {q̇} = [Φ]{ ṗ} and
{q̈} = [Φ]{ p̈}. Substituting these coordinate transformations into the m, c, k, Qmatrix
equation of motion and then premultiplying by the transpose of the modal transfor-
mation matrix leads to

[Φ]t[M][Φ]{ p̈} + [Φ]t[C][Φ]{ ṗ} + [Φ]t[K][Φ]{p} = [Φ]t{Q(t)} ≡ {P(t)}
or [M ]{ p̈} + [C ]{ ṗ} + [K ]{p} = {P}, (7.4)

where the above overbars are used temporarily pending discussion in turn of each of
the above triple matrix products. Consider the first of the three triple matrix products,
the M × M matrix

[Φ]t[M][Φ].

Using the rules of matrix multiplication, and noting that the rows of the transposed
transformation matrix are also the modal vectors, the result of the triple matrix
multiplication [Φ]t[M][Φ] for the (i, j) entry of this M × M matrix product is⌊

A(i)⌋[M]
{

A( j)} ≡ Mi j .

Due to the weighted orthogonality of the modal vectors, Mi j = 0 whenever i 
= j .
Thus the result for [Φ]t[M][Φ] is a diagonal matrix. When i = j , which is the jth
element on the diagonal, the result is the previously defined modal mass Mj . Again,
the single subscript is used to help avoid any confusion over this being merely an
entry in a general mass matrix. In summary, the matrix product [Φ]t[M][Φ] is the
diagonal matrix [\M\] whose jth diagonal element is the jth modal mass Mj .

Now consider the third of the above three triple matrix products. From premul-
tiplying the jth eigenvalue equation solution ω2

j [M]{A( j)} = [K]{A( j)} by the trans-
pose of the modal vector {A(i)}, it is again clear that the modal vectors are also
mutually orthogonal when weighted by the system stiffness matrix. Hence, it can be
seen by premultiplying by the transpose of the modal transformation matrix that all
off-diagonal terms �A(i)�[K]{A( j)} of the product [Φ]t[K][Φ] are zero, whereas the
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jth diagonal entry, the jth generalized stiffness, �A( j)�[K]{A( j)} ≡ Kj ≡ ω2
j Mj . Since

the stiffness matrix usually has many more entries than the mass matrix, for numer-
ical efficiency, the generalized stiffnesses are usually calculated only by multiplying
the generalized masses by their corresponding frequency squared terms. Thus the
triple matrix product [Φ]t[K][Φ] can be written as the diagonal matrix [\ω2 M\], or
the commutative product of the diagonal generalized mass matrix with the diagonal
matrix of natural frequencies.

An actual digital computer numerical calculation of the generalized mass matrix
generally will not produce off-diagonal entries that are exactly zero. The smallness of
these calculated off-diagonal numbers relative to the corresponding diagonal terms
is a good indication of the numerical accuracy of the mode shape calculations. There-
fore, to provide the analyst with such an indication of numerical accuracy, a software
package that calculates the generalized mass matrix can be expected to also print out
at the very least the largest of all the off-diagonal terms, its location (so as to indicate
which modes are least orthogonal), and the generalized mass terms corresponding
to the row and column numbers of that off-diagonal entry in order to meaning-
fully scale the erroneous off-diagonal term. Many software programs go further and
present something like a color-coded, two-dimensional bar graph of the off-diagonal
terms relative to the diagonal terms for an easy survey of all the numerical errors up
to this point in the calculation.

Now consider the modal transformation matrix triple product involving the damp-
ing matrix. A diagonal matrix result cannot be expected here. This is so because,
unlike the mass and stiffness matrices, the damping matrix is not a part of the real
eigenvalue problem that generates the undamped modal vectors. Recall that the
damping matrix, when it actually is estimated, is often one which involves a fair
amount of uncertainty. The usual course of action when a damping matrix has been
constructed in terms of the physically meaningful coordinates and then transformed
to the modal coordinates is to examine the result of its triple matrix product to see
just how large the off-diagonal terms are relative to the diagonal terms. If, in any
row, the off-diagonal terms are all somewhat “small” relative to the diagonal term,
then the off-diagonal terms are simply discarded. To see why the off diagonal terms
are sometimes small and thus can be discarded, recall from Chapter 4 the concept
of proportional damping, sometimes called Rayleigh damping. Again, proportional
or Rayleigh damping is the case where [C ] = α[M ] + β[K ], where α and β are just
scalar factors with appropriate units. Although it is rather difficult to decide on the
numerical values of α and β without test data from the actual structure, the concept
that the damping occurs where the mass is located (as in the case of fluid drag) and
where the elastic material is located (as in the case of internal friction) is not wholly
unreasonable. These associations are what the proportional damping equation states
mathematically. Thus it is to be generally expected that, although the estimated
damping matrix will not be modally transformed into a diagonal matrix, the triple
matrix product some times will not be far from being diagonal because perfect pro-
portional damping does indeed lead to the sum of two diagonal matrices, which, of
course, can be combined into one diagonal damping matrix. If, for some reason, such
as the presence of a nonstructural damping mechanism, some off-diagonal entries in
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the damping matrix are the same size or larger than the diagonal terms, then another
solution technique is necessary for that unusual case where [C] can be clearly stated.
Other approaches are discussed in the next few paragraphs and in Chapter 9.

The remaining discussion in this chapter will proceed on the basis that the gener-
alized damping matrix also has been converted into a diagonal matrix, or, as is often
done, the damping matrix is entirely omitted from the original structural model and
system equations. This possible alternate tactic of introducing damping later in the
solution calculation will be examined later in this chapter. However, at this point,
it is useful to remember that, as was done in earlier chapters, omitting damping is
also a possible engineering approach where the more simply calculated undamped
response is used as a close estimate and upper bound to the actual, lightly damped
response.

As stated earlier, the modal transformation converts the previously coupled N
differential equations in terms of the N original DOF, qi (t), into a set of M uncoupled
differential equations, each of which can be solved without any reference to the other
M − 1 equations. Write the typical jth modal equation as

Mj p̈j + Cj ṗ j + ω2
j Mj pj = Pj (t)

or p̈ j + 2ζ jω j ṗ j + ω2
j pj = Pj (t)

Mj
≡ 1

Mj

n∑
i=1

A( j)
i Qi (t), (7.5)

where the quantity Pj (t) is called the modal generalized force. The remainder of
this chapter is devoted to obtaining the solution to this ordinary, linear, differential
equation with constant coefficients for special forms of the modal force, two of which
are then used to formulate a solution for any generalized modal force, either in
analytical or numerical form.

Before proceeding to discuss solutions of Eq. (7.5), note that this equation offers
the above mentioned alternate way of introducing damping into the analysis. Damp-
ing can be introduced here, for the first time in the analysis procedure, in the form of
an estimate of the jth modal damping factor, ζ j . That is, it is possible to omit damping
altogether from the analysis up to the point of Eq. (7.5), and then insert the velocity
term with such an estimate of the modal damping factor.

7.4 Harmonic Loading Revisited

As Eq. (7.5) makes clear, the jth generalized modal force, Pj (t), is a sum of the
externally applied generalized loads each of which is weighted by an amplitude of
the jth mode shape. As the first of three special cases, consider the case where
the nonzero entries of {Q(t)}, the generalized forces associated with the physically
meaningful DOF, are one or more harmonic loads all with a single frequency, ω f .
Let there be phase differences between these harmonic loads. The phase differences
can be easily modeled by writing the amplitudes of these harmonic loads in complex
algebra form. Then the jth modal load is also a harmonic load at that same frequency,
and its magnitude is the sum of the complex magnitudes of all its constituent parts,
where each part is weighted by the jth mode shape. For the sake of convenience in
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the writing of subsequent equations, write this normalized jth modal force in the
following form

Pj (t)
Mj

≡ ω2
j N̂ j exp(iω f t),

where the newly defined quantity N̂ j has the same units, say length, as pj (t), and
where ω f is the common frequency of the physically meaningful applied loads. Again,
if all the applied loads of {Q(t)} are in or out of phase, then N̂ j is a real quantity.
If there are phase differences between those harmonic loads, then N̂ j can be con-
veniently written as a complex constant. If there is more than one harmonic forcing
frequency, then the analysis procedure that follows can be repeated for the different
frequencies and then superimposed as long as the deflection response remains in the
linear range.

Proceeding to a solution for the modal coordinate equation, Eq. (7.5), for this
special case, let the modal deflection response, pj (t), be a complex number. As a
trial solution, represent the modal deflection response as a harmonic function with
frequency ω f and a constant amplitude; that is, let

pj (t) = p̂ j exp(iω f t).

The constant amplitude of the response, p̂ j , is also a complex number because, as is
discussed below, a complex number provides the necessary phase difference between
the harmonic force input and this harmonic deflection output. Substituting these
complex algebra forms for the input and output into the modal equation of motion,
Eq. (7.5), where the application of each time derivative to the modal deflection pj (t)
is equivalent to a multiplication by iω f , yields

(
−ω2

f + 2iζ jω jω f + ω2
j

)
p̂ j eiω f t = ω2

j N̂ j eiω f t

or p̂ j = ω2
j N̂ j[(

ω2
j − ω2

f

)
+ i(2ζ jω jω f )

]
or pj (t) = Pj (t)/Mj[(

ω2
j − ω2

f

)
+ i(2ζ jω jω f )

]

where again

Pj (t) =
n∑

i=1

A( j)
i Qi (t)

is a harmonic load.
The above solution for pj (t) confirms the complex nature of the response mag-

nitude even if N̂ j happens to be a real constant. In this solution for the complex
magnitude of the modal response, divide both the right-hand side numerator and
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denominator by the square of the jth natural frequency, and as before call the ratio
of the forcing frequency to the jth natural frequency, ω f /ω j , the jth frequency ratio,
Ω j . Then more concise forms of the solutions for the complex magnitude of the jth
modal coordinate, p̂j , and the modal coordinate itself, pj (t), are

p̂ j = N̂ j(
1 − Ω2

j

)
+ i(2ζ jΩ j )

or pj (t) = N̂ j eiω f t(
1 − Ω2

j

)
+ i(2ζ jΩ j )

or pj (t) = N̂ j Hj (iΩ j )eiω f t . (7.6)

The nondimensional function Hj (iΩ j ) multiplied by the normalized harmonic force
input N̂ j exp(iω f t) produces the harmonic deflection output. Such a complex function
is called, as in Chapter 5, a frequency response function. Again, frequency response
functions are forcing frequency-dependent flexibility influence coefficient for a har-
monic load input. Of course, the above example of the species is called the jth modal
frequency response function. The inclusion of the square root of −1 in the argu-
ment of this function is again just a reminder that this function is complex. Although
the above equation only relates output to input for the case of a harmonic input,
Appendix II plus the remainder of this chapter demonstrate the applicability of
frequency response functions to all types of input forces.

The modal frequency response functions, of course, incorporate both the magnifi-
cation of the output and the lag angle of the output. Specifically

|Hj (iω f )| = | p̂ j |
|N̂ j |

= Mj |pj (t)|ω2
j

|Pj (t)| = 1√(
1 − Ω2

j

)2
+ (2ζ jΩ j )2

. (7.7)

Thus it is apparent that there is a resonance phenomena for each and every modal
frequency, and the frequency response functions describe the magnification of the
response. Since the damping in the higher modes is typically much greater than that
for the lower modes, then as Figure 5.8 indicates, only the resonances for the lower
modes are significant.

7.5 Impulsive and Sudden Loadings

In addition to the case of harmonic loading, there are two other particular loading
cases of special interest. Although these two special loadings have importance in their
own right, the reason for focusing on them at this time is that they can be used to
fashion an analytical solution for the general loading case, represented by Eq. (7.5),
which is again

p̈ j (t) + 2ζ jω j ṗ j (t) + ω2
j pj (t) = Pj (t)

Mj
, (7.5)

where the nodal forcing function, Pj (t), is an arbitrary function with units of force
when the modal response, pj (t), has units of length. To begin, consider the special
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δ(t − τ)

τ−|    | τ+
0

t

Figure 7.1. One possible representation of the
Dirac delta function.

case where the time-varying modal forcing function has a very large magnitude over
a very short period of time and is otherwise zero. A force of this nature is called
an impulsive force. Examples of impulsive forces include a bat hitting a ball and a
hammer striking a structure once. The time duration of the force that redirects the
ball (the contact time between ball and bat or hammer and structure) is quite short
relative to the duration of the subsequent flight of the ball or the first period of
vibration of the structure. The mathematical tool used to describe the time variation
of such a force is the Dirac delta function, which is symbolized by δ(t − τ ). The time
t is called the variable, whereas the time τ is called the parameter.3 The Dirac delta
function is defined by the following three statements:

(i) The Dirac delta function is everywhere continuous, and an even function about
τ . Thus it may be said that δ(t − τ ) = δ(−(t − τ )) = δ(τ − t).

(ii) The Dirac delta function has the value zero everywhere except in the very small
interval (τ − 1/2ε, τ + 1/2ε). For the sake of brevity, this interval of very short duration
ε is denoted as (τ−, τ+) and spoken of as tau minus to tau plus.

(iii) The Dirac delta function is such that for any arbitrary, bounded, continuous
function f (t),

+∞∫
−∞

f (τ )δ(t − τ )dτ = f (t) or

+∞∫
−∞

f (t)δ(t − τ )dt = f (τ ).

The choice of the third part of the chosen definition can be explained by referring
to Figure 7.1 where the Dirac delta function is represented, as one possibility, by a
triangular spike with a very small base, τ+ − τ−. Let the area within the triangular
spike, the area under the Dirac delta function plot, be 1.0, without units. Since the
integrand in part (iii) involves the product of the Dirac delta function and the arbi-
trary function f (t), the integrand is zero everywhere but in the very small interval
(τ−, τ+). Within that very small interval, which can be made as small as necessary to
ensure the accuracy of the following statements, the value of the arbitrary function
is little different from its apparent average value, f (τ ). Recalling that the meaning
of an integral is tied to measuring the area under a curve, then the value of the

3 A parameter is merely a constant without a specific, fixed value.
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integral in part (iii) is the (almost) constant value f (τ ) multiplied by the area under
the Dirac delta function curve, which again is 1.0. Hence the stated result. Note that
this discussion is not a “proof” of the third part of the above definition. A definition
does not require a proof. This discussion only elaborates on the ideas that led to the
definition being what it is. See Exercise 7.5 to practice evaluating integrals involving
the Dirac delta function.

In the above discussion, the Dirac delta function was represented as a triangular
spike. Let it be emphasized that the above definition of the Dirac delta function does
not require a triangular shape or any other particular shape. The only requirements
that have been placed on the shape of the Dirac delta curve are that it be continuous
and symmetrical about τ and have a unit area (which can be proved from the def-
inition by simply setting f = 1.0). Hence the shape of the Dirac delta curve could
just as well be parabolic or, more importantly for its use below, rectangular. Finally,
the Dirac delta function, in a strict mathematical sense, is not really a function. It
is not a function because its precise values are not defined in the interval (τ−, τ+),
only its area in this interval is defined. The Dirac delta function, despite its name,
is what mathematicians call a “distribution.” Finally, from part (iii), note that the
units associated with the Dirac delta function function are the inverse of time. More
generally, the units of the Dirac delta are the inverse of whatever quantity appears
as the argument of this function.

Consider a force, or an equivalent force, described as F(t) = Fδ(t), where the
constant F , with units of force-time, is called the magnitude of the impulse. Here the
parameter τ , which indicates when in time the impulse occurs, is zero. The reason F
is the magnitude of the impulse can be seen from the basic physics definition of an
impulse as the integral of a force over a time interval. Hence, between the limits of
zero minus and zero plus,

∫
F(t)dt = ∫

Fδ(t)dt = F . Let this same force be the sole
force applied to a mass of fixed magnitude m. Then from Newton’s second law

mü = Fδ(t) so

0+∫
0−

mdu̇ =
0+∫

0−

Fδ(t)dt = F

or mu̇(0+) = mu̇(0−) + F .

It is clear that any impulsive force causes an increment in the velocity (or momentum)
of the mass on which it acts. If the velocity of the mass is zero at time zero minus,
then the velocity of the mass at time zero plus is F/m.

Now, to parallel the above, consider a impulsive modal force Pj (t) = Π j δ(t), where
Π j has the units of force-time when pj (t) has the units of length. In other words, Π j

is an impulsive force magnitude in modal space just as F above is an impulsive force
magnitude in physical space. Then the jth modal equation of motion becomes

p̈ j + 2ζ jω j ṗ j + ω2
j pj (t) = Π j

Mj
δ(t). (7.8)

Consider the case where both the modal initial deflection and the modal initial veloc-
ity, pj (0−) and ṗ j (0−), are zero. If the initial conditions are other than null for this
linear equation, then the free vibration response to those other initial conditions can
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simply be added to the result soon obtained. Now multiply this equation throughout
by dt , so ṗdt = (dp/dt)dt = dp, and so on. Now directly integrate this equation from
time zero minus to time zero plus so that Eq. (7.8) becomes

0+∫
0−

d ṗj + 2ζ jω j

0+∫
0−

dpj + ω2
j

0+∫
0−

pj (t)dt = Π j

Mj

0+∫
0−

δ(t)dt = Π j

Mj
.

Since the right-hand side of the above equality is a finite value, so too must be the
left-hand side. The first integral, the integral of the exact differential of the modal
velocity, produces just the modal velocity at time zero plus because of the presumed
zero value of the modal velocity at time zero minus. The second integral, the integral
of the exact differential of the modal deflection, produces the difference in the modal
deflection at times zero plus and zero minus, where the latter term is also zero from
the presumed initial conditions. It is important to note that the modal deflection, like
any deflection, obeys the general rule that rate (velocity) times time equals distance.
Here, the modal velocity is finite, and the time interval is infinitesimal. Therefore,
the modal deflection at time zero plus is also infinitesimal and thus can be neglected.
That is, the modal displacement at time zero plus can be said to be zero relative
to any finite deflection. Thus the total result from the second integral is zero. The
third integral is bounded by the product of the infinitesimal modal deflection and the
infinitesimal time duration from zero minus to zero plus. Hence, it, too, is assigned a
value of zero. Therefore, the final form of the above equation is simply

ṗ j (0+) = Π j

Mj
and pj (0+) = 0,

which exactly follows the previous result using Newton’s second law. For the purpose
of examining the modal motion after the application of this impulsive load, that is for
the time interval starting at zero plus, the above result has the interpretation that the
application of the impulsive modal load Π jδ(t) produces the initial modal velocity
of Π j/Mj , and a zero initial modal deflection.

To perhaps more easily understand the argument that follows, and for the sake of
versitility, it is convenient to now replace the modal equation of motion, Eq. (7.5),
by the equation of motion for a single oscillator, its extact analog. Recall that an
oscillator is a single-DOF system that consists of a discrete mass m, a dashpot c,
and a spring k. The oscillator differential equation of motion, with u(t) as the single
DOF, is

ü(t) + 2ζω1u̇(t) + ω2
1u(t) = F(t)

m
= F

m
δ(t). (7.5a)

The recognition of the above one-to-one correspondence allows easier reference
to, say, the motion of the modal mass. Since the applied (modal) force is impulsive,
this external input vanishes forever after time zero plus. Thus, after time zero plus,
the (modal) mass (of the oscillator) undergoes a force free vibration, and the modal
deflection response, u(t) or pj (t), depends exclusively on the (modal) initial condi-
tions that are now the (modal) deflection and the (modal) velocity at time zero plus.
Hence, it is now just a matter of determining the constants of integration C0 and ψ
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from Eq. (5.3b), which is the damped single-DOF, free vibration solution. That is,
copying the previous single-DOF free vibration solution from Chapter 5, but writing
it in terms of the modal quantities instead of the their single-DOF analogs

pj (t) = C0e−ζ j ω j t sin
(

ω j t
√

1 − ζ 2
j + ψi

)

where pj (t = 0+) = 0 and ṗ j (t = 0+) = Π j

Mj
.

Application of the modal deflection initial condition yields C0 sin ψ j = 0. Since C0

cannot be zero, ψ must be either zero or π . If ψ j equals π , (a 180◦ phase shift) then
the effect is simply that of introducing a negative sign into the above equation which
can be absorbed by C0. Therefore choose ψ j to be zero. Then differentiating with
respect to time to obtain the expression for the modal velocity, leads to the result

that C0 = Π j/(Mjω j

√
1 − ζ 2

j ). Substituting this result and the result that ψ is zero
into the general, damped, free vibration solution above leads to

pj (t) = Π j

Mjω j

√
1 − ζ 2

j

e−ζ j ω j t sin
(

ω j t
√

1 − ζ 2
j

)

or pj (t) = Π j h j (t), (7.9)

where h j (t), which has units of length divided by force-time when the modal deflec-
tion has units of length, is called the impulse response function for the jth mode.
Equation (7.9) says that the modal deflection response to an impulse occurring at
time zero, with perhaps a rectangular shape, is simply the magnitude of the jth modal
impulse, Π j , multiplied by the impulse response function h j (t).

The solution for the modal deflection response to an arbitrarily varying modal
force is quickly built on the impulse response function. Before doing so, there is a
third special loading case, with its corresponding particular response function, that
is worth examining even though this third response function is neither necessary nor
does it provide any advantage relative to the impulse response function with respect
to solving the general loading case. This case does, however, provide a clear contrast
between a structural system response to a static load and a dynamic load. Consider
the case where the jth modal loading4 is the sudden application of a constant force
of magnitude P0

j . Physically, this type of force loading could be achieved by holding
a fixed weight of magnitude P0

j just slightly above the surface of a structure and
then releasing it so that it drops through a near zero distance. This third special case
can be considered to be the opposite to the impulse loading case. In this case the
time duration of the loading after time zero is unbounded while the magnitude of the
applied force is finite. In the impulsive loading case, the smallness of the time duration
of the applied force and the peak amplitude of the applied force are unbounded,
whereas the magnitude of the impulse is finite. To deal with this sudden, constant
loading, it is convenient to introduce another mathematical distribution called the
unit or Heaviside step function, stp (t − τ ), as a form for such a suddenly applied load.

4 Or, relative to a single-DOF system, a physical loading.
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stp(t − τ)

0

0

1.0

t

τ− τ+

Figure 7.2. The Heaviside or unit step function.

Therefore define the Heaviside step function, where again t is the variable and τ is
the parameter, as (i) everywhere differentiable; (ii) stp(t − τ ) − 1/2 is an odd function
about τ (which makes stp(0) = 1/2); and, as shown in Figure 7.2, (iii)

stp(t − τ ) =
{

0 t ≤ τ − ε/2 = τ−

1 t ≥ τ + ε/2 = τ+ .

In simple terms, the value of the nondimensional step function is zero when its
argument is negative, and its value is +1 when its argument is positive. The unit step
function is related to the Dirac delta function. Consider the integration of δ(t̃ − τ )
from t̃ equal to minus infinity to t̃ equal to an arbitrary value of time, t. From Fig-
ure 7.1, whenever t is less than τ , the value of the integral is zero. Whenever t is
greater than τ , the value of the integral is 1. Thus the values of the integral of the
Dirac delta function match the values of the Heaviside step function outside the zero
minus to zero plus time interval. With the smooth transition indicated in Figure 7.2,
the values of the integral of the Dirac delta function also can match those of the
Heaviside step function within the interval of length epsilon. Therefore write

t∫
−∞

δ(t̃ − τ )dt̃ = stp(t − τ ). (7.10a)

Note that because t̃ is merely a dummy variable of integration, the left- and right-
hand sides of the above equation are functions of t and τ. Differentiating the above
equality with respect to t yields

δ(t − τ ) = d
dt

stp(t − τ ). (7.10b)

Clearly, the Heaviside step function has units of radians (i.e., no units). The Heaviside
step function fully describes the time variation of a suddenly applied load. Thus the
suddenly applied modal force of zero magnitude before time zero, and constant
magnitude P0

j after time zero, can be written, as in Eq. (7.5a), as Pj (t) = P0
j stp(t).

Then the current form of the modal equation of motion, Eq. (7.5), becomes

p̈ j + 2ζ jω j ṗ j + ω2
j pj = P0

j

Mj
stp(t), (7.11a)

where again P0
j , is a constant. The mathematical solution to this equation for time less

than zero minus, that is, when the applied force is zero, is simply pj (t) = 0 because,
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as before, it is presumed that the structural system is at rest before time zero minus.
However, after time zero plus, when the applied modal input is the constant P0

j , the
equation of motion is simply

p̈ j + 2ζ jω j ṗ j + ω2
j pj = P0

j

Mj
. (7.11b)

This is an easy equation to solve because the particular solution pj (t)particular is simply
the constant P0

j /Mjω
2
j . Thus the complete solution for time greater than zero plus

is this particular solution plus either standard form of the complementary solution
such as

pj (t) = Cj e−ζ j ω j t sin
(

ω j t
√

1 − ζ 2
j + ψ j

)
+ P0

j

Mjω
2
j

or

pj (t) = P0
j

Mjω
2
j

+ e−ζ j ω j t
[

Aj sin
(

ω j t
√

1 − ζ 2
j

)
+ Bj cos

(
ω j t

√
1 − ζ 2

j

)]
.

The initial conditions associated with this solution, those at time equals zero plus,
can be deduced as follows. Consider the infinitesimal time interval from zero minus to
zero plus. In this interval, the applied modal force behaves as does the step function in
the time interval epsilon. Therefore, in this time interval, the modal force is bounded
by the finite value P0

j , which is the modal force value at time zero plus. Therefore, the
acceleration of the modal mass is also finite. Hence, the modal velocity at time zero
plus, which is bounded by the finite modal acceleration multiplied by the infinitesimal
time interval, is infinitesimal. The only way to quantify this infinitesimal velocity is
to call it zero relative to all finite values. The modal deflection at time zero plus
is bounded by the product of this infinitesimal modal velocity and the length of
the infinitesimal time interval. Thus, it, too, is zero. Hence, in summary, the modal
velocity and modal deflection at time zero plus are both zero. Applying these initial
conditions to the above complete solution yields

pj (t) = P0
j

Mjω
2
j


1 − e−ζ j ω j t


 ζ j√

1 − ζ 2
j

sin ω j t
√

1 − ζ 2
j + cos ω j t

√
1 − ζ 2

j







or, in another form

pj (t) = P0
j

Mjω
2
j


1 − e−ζ j ω j t

cos
(
ω j t

√
1 − ζ 2

j − ψ j

)
√

1 − ζ 2
j


 ,

where cos ψ j =
√

1 − ζ 2
J or tan ψ j = ζ j√

1 − ζ 2
j
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Figure 7.3. The response to an applied step force.

or, in still another form

pj (t) = P0
j

Mjω
2
j


1 − e−ζ j ω j t

sin
(
ω j t

√
1 − ζ 2

j − ψ j

)
√

1 − ζ 2
j




where sin ψ j =
√

1 − ζ 2
j or or tan ψ j =

√
1 − ζ 2

J

ζ

or, for all forms

pj (t) = P0
j g j (t), (7.12)

where the function g j (t) is called the step response function. The step response func-
tion has units of length divided by force, making it another form of a dynamic flexi-
bility coefficient.

When the damping factor is zero, usually a worse case for the magnitude of the
structural response, the nondimensionalized modal deflection becomes simply

pj (t)(
P0

j /Mjω
2
j

) = 1 − cos ω j t. (7.12a)

This equation for the modal deflection, plotted in Figure 7.3, reveals an important
fact concerning dynamic loads relative to static loads. When the nondimensional-
ized time ω j t = π , or any odd, positive multiple of π , then the above nondimen-
sional, undamped, modal deflection takes of the value 2.0. However, if the normal-
ized modal force of magnitude P0

j were applied as a static load, meaning that it is
applied so slowly that the acceleration and velocity terms of the modal equation of
motion, Eq. (7.5) or (7.11b), are zero, then the above normalized modal deflection of
Eq. (7.12a), pj (t)/(P0

j /Mjω
2
j ), has the constant value 1.0. (The modal mass multi-

plied by the modal frequency-squared term makes better sense in this static case
when it is recalled that this term is equal to the modal stiffness factor Kj , which has
a general force per unit displacement meaning in the static as well as dynamic load
case.) Since this conclusion that the modal dynamic peak response is twice the static
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response is true for all modes, then it can be seen that the peak deflections (and thus
the peak strains and peak stresses) of an undamped system in response to a sud-
denly applied load are greater5 than those when the same load is applied gradually,
that is, statically. This very important mathematical result should be in keeping with
the reader’s experience that sudden blows are more effective than gradually applied
forces for the purpose of breaking something.

The presence of damping, of course, modifies (generally diminishes) the modal
and physical response, as also shown in Figure 7.3. There is another aspect of this
response worth noting. Figure 7.3 shows that the deflection response, the output,
initially lags behind the modal force input, which is a horizontal line crossing the
nondimensional abscissa at 1.0. Later it overshoots to reach its peak. Both the lag
and the overshoot can, by analogy to a single-DOF oscillator, be ascribed to the
inertia of the modal mass that causes the mass to be slow to start into motion and
then to be slow to reverse direction as it vibrates.

For a dynamic load with any type of time variation, the ratio of the peak dynamic
deflection to the corresponding static deflection is called the dynamic load factor. In
this case of a single undamped mode, the ratio of the peak modal deflection response
because of the dynamic load P0stp(t) to the static modal deflection response because
of the equal magnitude static load P0 produces a dynamic load factor of 2.0. If the
oscillator were damped, the value would be less than 2, but still significantly greater
than 1. The dynamic load factor is a convenient concept, particularly in design. If
previous experience with similar structures and similar loads allows a reasonable
approximation of the dynamic load factor, then the important advantage gained is
that a static analysis can be used throughout the design process rather than a more
expensive dynamic analysis. For example, the design code for highway bridges has 1.3
as the maximum dynamic load factor. The fact that 1.3 is considerably less than 2.0 can
be explained as follows. First of all, for highway bridges, the traffic loads are not all that
quickly applied relative to the first natural period of those bridges. For any structure,
the dynamic load factor is reduced from 2.0 by the fact that all the dynamic modal
peak amplitudes do not occur simultaneously. As is discussed in detail below, the total
deflection response of the structure involves the sum of the various modal responses,
where their individual peaks are spread out over time. That is, because any one modal
deflection time history is only a fraction of the total deflection response, if its peak
is isolated in time from the other modal peaks, then its contribution to the maxi-
mum deflection is limited. This, in addition to damping, generally lessens the over-
all dynamic load factor of any structure. Keep in mind, however, the closer the struc-
tural model to that of a single-DOF structure, the greater the possibility of a higher
dynamic load factor.

Finally, just as the Heaviside step function and the Dirac delta function are related
to each other as per Eq. (7.10), the step response function is related to the impulse
response function. It is easy to show by direct differentiation that

d
dt

g j (t) = h j (t). (7.13)

5 The dynamic response for even an undamped multidegree of freedom system would not be double the
static response because the modal peaks do not all occur at the same time value.



P1: JZP
0521865743c07 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 0:20

7.6 The Modal Solution for a General Type of Loading 351

t

t

0

0

Pj(t)

Pj(τ)

τ τ + dτ

Figure 7.4. Summing infinitesmal impulses up to time t for a pulse of arbitrary shape.

Since the step response function has units of length divided by force and the impulse
response function has units of length divided by force-time, the units of the above
equation check.

7.6 The Modal Solution for a General Type of Loading

Now that the two special cases of impulsive and sudden loads have been investigated,
it is possible to proceed to the solution for the general modal equation of motion,
Eq. (7.5), which, again, is

p̈ j + 2ζ jω j ṗ j + ω2
j pj (t) = Pj (t)

Mj
, (7.5)

where Pj (t) represents an arbitrary force history. There is more than one way to
accomplish this task. For example, this equation with the arbitrary input can be
solved using the formal mathematics of Laplace transforms. However, the same
result produced by Laplace transforms can be obtained by using physical reasoning
combined with either the impulse response function or the step response function.
The use of one of these two special functions is preferred because the logic behind
such an approach is much closer to the physical reality of applying a time-varying
force to a structure, and this special function approach avoids a lengthy introduction
to the sophisticated mathematics of Laplace transforms.

Consider the arbitrary applied modal force Pj (t), whose typical time history is
suggested in Figure 7.4, where the clock starts when the modal force first has a nonzero
value. Of course, at time t = τ , the modal force has the magnitude Pj (τ ). Consider
the infinitesimally thin rectangular area under the modal force curve between the
times τ and τ + dτ that has as its height the value Pj (τ ). Recall the fact that an
impulse can have any symmetric shape, including that of a rectangle. Therefore, as
shown in Figure 7.4, consider this rectangular area as an impulse of infinitesimal
magnitude Pj (τ )dτ . This quantity is indeed an impulse because, as has been seen, an
impulse is always the area under a force-time curve during a very short interval of
time. Now the modal response pj at time t to this impulsive input at time τ can be
written immediately by use of the impulse response function h as stated in Eq. (7.9),
which is applicable to all impulses. That is, after an elapsed time of t − τ the deflection
response is just the product of the magnitude of the impulse Pj (τ )dτ and h j (t − τ ).
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The total response at time t to all such infinitesimal impulses between time zero and
time t is just the sum (i.e., integral) of all such infinitesimal deflection responses to
such infinitesimal impulses that occur before time t . That is

pj (t) =
t∫

0

Pj (τ ) h j (t − τ )dτ

or in detail

pj (t) = 1

Mjω j

√
1 − ζ 2

j

t∫
0

Pj (τ ) e−ζ j ω j (t−τ ) sin
[
ω j (t − τ )

√
1 − ζ 2

j

]
dτ, (7.14)

where the integration is, of course, over the parameter τ . The result is a function of
t , which appears in the upper limit as well as the integrand. This integral solution is
named the duhamel integral, or the convolution integral, or the superposition integral.
Endnote (1) shows by direct substitution that this integral solution satisfies the modal
differential equation of motion. Exercise 7.5(g) discusses a slight variation on Eq.
(7.14), which is useful when the analysis includes damping and the analytical form of
the modal force is mathematically simpler than that of the impulse response function.

The advantage to a solution in the form of an integral, such as the convolution
integral of Eq. (7.14), is that the input, which is the modal force, need not be written as
a single smooth function for the purposes of completing the integration. For example,
the integration can be performed over several subintervals if the input is known
only as a series of piecewise continuous functions. Moreover, if the input is even
just a tabular listing of load magnitudes at successive time points, then a numerical
integration for the response can be performed.

The modal deflection response to an arbitrary modal force can also be written
in terms of the step response function. In this case, think of the step function as
representing an increase in the magnitude of the applied load (from zero to P0) that
lasts indefinitely over time. See Figure 7.5 where the applied modal load is described
by an initial, finite load step, followed by a series of infinitesimal load steps that
increase the magnitude of the applied force. In other words, where in the impulse case
the load increments were vertical slices of the load history, here they are horizontal
slices. Therefore, as before, consider an infinitesimal time interval. On this occasion
let the interval be [τ−, τ+]. Using the rule that “rise equals base multiplied by slope,”
conclude that the infinitesimal increase in the modal force, dP j (τ ), equals dτ Ṗ j (τ ),
where, of course, the dot indicates differentiation with respect to τ . Therefore, in
terms of the step response function, the modal deflection response at time t to this
infinitesimal step input occurring at time τ , taking into account that the elapsed time
from the occurrence of the infinitesimal step is t − τ , is

dpj (t) = dτ Ṗ j (τ ) g j (t − τ )

so summing

pj (t) = Pj (0)g j (t) +
t∫

0

Ṗ j (τ ) g j (t − τ )dτ

where Ṗ j (τ ) ≡ dPj (τ )
dτ

(7.15)
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Pj(0)
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τ

Pj(τ)dτ
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Slope = P j(τ
)

Region of negative
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t

Figure 7.5. Summing infinitesimal steps, of positive and negative heights, to create a pulse of
arbitrary shape.

and where Pj (0)g j (t) accounts for the initial, finite step. Exercise 7.5(h) estab-
lishes that Eq. (7.15) can also be obtained directly from Eq. (7.14) by means of
integration by parts. To complete the exercise, it is necessary to take into account
Eq. (7.13), the relationship between the impulse response function and the step
response function. The problem with this alternate approach is that this step
response form of the convolution integral seldom offers computational advantage
for undamped systems, and any estimate of the slope of the applied load with respect
to time is likely to be less accurate than the estimate of the modal load itself.

7.7 Example Problems

For the sake of simplicity, the problems can be considered to result from an (equiv-
alent) dynamic load vector {Q(t)} that only has a single nonzero entry in the ith
position. This analysis situation is not uncommon. Call that single entry Qi (t). Thus
jth entry of the modal load vector {P(t)} is simply A( j)

i Qi (t) = Pj (t). That is, all
the modal forces have the same time variation and differ only by a constant factor.
Therefore a solution for all modes is proportional to the solution for the jth mode.6

Hence, all example problems focus on obtaining a solution for the jth mode, or,
equivalently, they will be formulated for a single-DOF system. Furthermore, for the

6 However, each term of the modal summation, Eq. (7.3), has different modal parameters, such as natural
frequencies.
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(a) Input modal “force”

t

Pj(t)

t1

P1

(b) Modal deflection response

2ππ
ωjt

ωjt

pj(t)

0

(d) Extended input

Pj(t)

P1

t1 t2
t

t30

P1

0

Pj(t)

t1 t2
t

(c) Modified “force” input

Figure 7.6. Examples 7.1, 7.2, and 7.3. (a) Model force input time history. (b) Model deflection
response. (c) Modified applied force. (d) Force input extended to that of a pulse.

sake of analytical simplicity, all these example problems will be addressed on the
generally worst-case basis of zero damping. The chief effect of the presence of light
damping would be only to complicate the analytical integration and obscure the point
of the example.

EXAMPLE 7.1 Determine the undamped jth mode response after time zero when
the jth modal force Pj (t) has the analytical description (P1t)/t1. That is, Pj (t) starts
with a zero value and increases linearly thereafter as shown in Figure 7.6(a) with a
slope P1/t1.
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SOLUTION This is one of the very few cases where the step response form of the
superposition integral is more convenient than the impulse response form. This is
so because the derivative of the input happens to be a constant. Therefore, for the
modal deflection output, write

pj (t) = Pj (0)g j (t) +
t∫

0

Ṗ j (τ )g j (t − τ )dτ,

where Pj (0) = 0 and
dPj (τ )

dτ
= P1

t1
.

Substituting for the undamped step response function, from any of the three
forms before Eq. (7.12), but particularly the first, leads to the following calcula-
tion of the modal deflection response. Note that in the following calculation, the
integral of the cosine function was obtained by using the trigonometric identity
cos(α − β) = cos α cos β + sin α sin β. This is often the more convenient approach for
these evaluations. However, in this case, the calculation of the integral of the cosine
function could have been shortened by rewriting the differential dτ as – d(t − τ ) and
then integrating directly using the variable (t − τ ).

pj (t) = P1

Mjω
2
j t1

t∫
0

[1 − cos ω j (t − τ )] dτ

= P1

Mjω
2
j t1


t − cos ω j t

t∫
0

cos ω jτdτ − sin ω j t

t∫
0

sin ω jτdτ




= P1

Mjω
2
j t1

[
t − cos ω j t sin ω j t

ω j
+ sin ω j t cos ω j t

ω j
− sin ω j t

ω j

]

or pj (t) = P1

Mjω
3
j t1

[ω j t − sin ω j t]

or
pj (t)(

P1/Mjω
2
j

) =
[

t
t1

− sin ω j t
ω j t1

]
,

where the latter expression contains only nondimensional quantities. A plot of this
response in nondimensional terms is presented in Figure 7.6(b) where the value of
ω j t1 is selected to be +1.0. From the plot it can be seen that, as always, because of
the inertia of the modal mass, the response of the modal mass initially lags the modal
force. Later, the momentum of the modal mass carries it beyond the modal force,
where after the modal spring force causes it to alternately lead and lag the modal
force. ★

EXAMPLE 7.2 Redo the problem where now the linearly increasing input force
drops to a constant zero magnitude at time equal to t2 as shown in Figure 7.6(c).
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SOLUTION Since the triangular force input contains a point of discontinuity at time t2,
different response expressions need to be written for the time intervals (i) 0 ≤ t ≤ t2
and (ii) t2 ≤ t . The solution for the first time interval is exactly that of the previous
example

0 ≤ t ≤ t2 pj (t) = P1

Mjω
3
j t1

[ω j t − sin ω j t] .

The response solution for the second time interval utilizing the step response function
requires careful consideration; that is, it is easy to make a mistake. The response using
the step response function can be determined by realizing that (i) the response for
an arbitrary time t in this second time interval is dependent on an integration from
time zero to the discontinuity time point t = t2, plus an integration from time t2 to the
arbitrary time t and (ii) the slope of the zero force input is zero for all times greater
than t2. Hence it might appear that the solution for the can be adapted to this time
interval by merely changing the upper limit of the integral in the solution from t to
t2. That is, it might appear that the solution can be written as

pj (t) ?= P1

Mjω
2
j t1

t2∫
0

[1 − cos ω j (t − τ )] dτ +
t∫

t2

0 dτ,

where the value of the second integral is, of course, zero. However, this description
of the response is wrong for the following reason. This description of the response
does not distinguish between a time-varying force behaving as shown in Figure 7.6(c),
where the force drops to zero after time t2 and, for example, a time-varying force that
after time t2 remains at the constant value P1t2/t1, which also has a zero slope after
time t2. The necessary correction to the above expression is based on the recognition
that not only is there a discontinuity in the time rate of change of the force, but that
there is also a discontinuity in the force itself at t2. It is necessary to account for the
finite sized step in the value of the force at time t2 of magnitude −P1t2/t1 by adding to
the above right-hand side the response to such a step. That is, the above right-hand
side must be augmented by

− P1t2
t1

[1 − cos ω j (t − t2)].

Then the final result for all time greater than t2 is

pj (t) = P1

Mjω
2
j

[
sin ω j (t − t2)

ω j t1
− sin ω j t

ω j t1
+ t2

t1
cos ω j (t − t2)

]
.

It is all too easy when using the step response form of the convolution integral solution
to forget the necessity of including any finite steps at discontinuities in the applied
force time history. For this reason, the step response function will no longer be used
to obtain modal responses in the remainder of this textbook.

The alternative to the use of the step function formulation of the response is, of
course, the use of the impulse function formulation. This approach is always more
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straightforward even if just occasionally more tedious. In this case, using a table of
integrals,7 the solution for t2 ≤ t is simply obtained as

pj (t) = P1

Mjω j t1

t2∫
0

τ sin ω j (t − τ )dτ +
t∫

t2

0 dτ

or pj (t) = P1

Mjω j t1


sin ω j t

t2∫
0

τ cos ω jτdτ − cos ω j t

t2∫
0

τ sin ω jτdτ




or pj (t) = P1

Mjω
3
j t1

sin ω j t (cos ω j t2 + ω j t2 sin ω j t2 − 1)

− P1

Mjω
3
j t1

cos ω j t (sin ω j t2 − ω j t2 cos ω j t2)

or pj (t) = P1

Mjω
3
j t1

[sin ω j (t − t2) + ω j t2 cos ω j (t − t2) − sin ω j t] ,

which is the same as above. A weak check on this solution can easily be obtained
by merely checking the continuity at time t2 between the deflection solution for the
time interval 0 ≤ t ≤ t2, as given in Example 7.1, and that for the time interval t2 ≤ t ,
as stated above. ★

EXAMPLE 7.3 Use the result of Example 7.1 to determine the modal deflection
response to the pulse8 shown in Figure 7.6(d).

SOLUTION The deflection response to a linearly increasing modal force P1t/t1, as
calculated in the first example problem, can be rewritten as

pj (t) = P1

Mjω
3
j t1

(ω j t − sin ω j t) ≡ P1

t1
r j (t),

where, as a matter of future convenience, r j (t), the ramp response function is now
so defined. Again, the quantity P1/t1 is simply the slope of the ramp. The availability
of the ramp response function greatly simplifies the writing of the modal deflection
response. The superposition strategy is as follows. For the time interval (0, t1), the
response is simply as above, pj (t) = (P1/t1) r j (t). The modal deflection response
after the first time break, t1, is obtained by superimposing on the original applied
modal force at t = t1, a new applied modal force equal to the negative of the original
applied modal force. That is, the sum of a positive slope force and a negative slope

7 Again, another option for obtaining the desired analytical solution for a Duhamel integral is to use
suitable software such as Mathematica. See Refs. [7.1,7.2].

8 A pulse is an applied force time history where nonzero values occur over a time interval greater than
the fundamental (first) period of the system. A shock is an applied time history where the nonzero
values occur over a time interval less than the fundamental period but over a time interval too long to
be called an impulse.
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force of the same absolute magnitude produces the desired zero slope force, which is
the same as a constant applied modal force of magnitude P1 in the time interval (t1, t2)
as shown in Figure 7.6(d). In other words, the modal deflection response in that time
interval is the response from the continuing original load, plus the response to the
new load that starts at time t1. The mathematical description of the modal deflection
response can be written as

for 0 ≤ t ≤ t1 pj (t) = P1

t1
r j (t)

for t1 ≤ t ≤ t2 pj (t) = P1

t1
r j (t) − P1

t1
r j (t − t1)

= P1

ω3
j t1

[ω j t1 + sin ω j (t − t1) − sin ω j t]

= P1

ω3
j t1

[ω j t1 − (1 − cos ω j t1) sin ω j t − sin ω j t1 cos ω j t].

At time t2, it is again a matter of superimposing another negative ramp force. That
is, for the time period t2 ≤ t ≤ t3 the modal deflection response is the above response
for t1 ≤ t ≤ t2 plus the following negative quantity

− P1

(t3 − t2)
r j (t − t2) = − P1

ω3
j (t3 − t2)

[ω j (t − t2) − sin ω j (t − t2)],

where the slope of the modal force input, −P1/(t3 − t2), is the slope used with
the modal deflection output. Finally, for t3 ≤ t , the modal deflection response is
the above response for t2 ≤ t ≤ t3 plus the quantity +P1r j (t − t3)/(t3 − t2). Again,
all these deflection responses are for zero damping. Damping always mitigates the
magnitude of the response to an extent depending on the amount of damping present
and eventually will eliminate the response sometime after time t3. ★

In this next example problem, for the sake of variety, there is a change in style,
and style only, from the modal equation form to exactly the same equation form
for a single-DOF structural model. The single-DOF equation of motion and the
corresponding convolution integral solution are, of course

q̈(t) + 2ζω1q̇(t) + ω2
1q(t) = Q(t)

m

so q(t) =
t∫

0

Q(τ )h(t − τ )dτ.

The generalized force Q(t) can, of course, be the result of an estimated foundation
motion, say u(t). In that case the generalized force has the form ku + cu̇. The reason
for this change of style is that a single-DOF system can be used sometimes as a rough
approximation for a simple structure for the purpose of gaining design information
for dynamic responses. The rough approximation of a multidegree of freedom system
by a single-DOF model can be accomplished by means of a Rayleigh analysis. See
Endnote (2) for a simple demonstration of this procedure.
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Figure 7.7. Example 7.4: Base motion activated one degree of freedom system.

EXAMPLE 7.4 The undamped, single-DOF structural system shown in Figure 7.7
is subject to a sinusoidal base motion starting at time zero, which is described as
u(t) = Υ 0 sin(π t/t0), where Υ0 is a constant magnitude. Use the superposition inte-
gral to determine the response q(t)of the mass m. The structure is at rest before time
zero.

SOLUTION The generalized coordinate q(t) is measured relative to the fixed axis SEP.
Therefore the kinetic energy expression only involves the first time derivative of q(t),
whereas the strain energy expression (and the formula for the elastic force acting
on the mass) involves the difference between q(t) and u(t). The cantilevered beam
tip stiffness factor, if not already known, can be deduced from the beam element
stiffness matrix as discussed in the solution to Exercise 7.6. That tip stiffness factor
is k = 3EI/L3. Hence the kinetic and strain energy expressions, and the resulting
Lagrange equation of motion, and the integral form of its solution are

T = 1
2

mq̇2 U = 1
2

3EI
L3

(q − u)2

so q̈ + 3EI
mL3

q = 3EI
mL3

u(t) = 3EI
mL3

Υ0 sin
π t
t0

= ω2
1Υ0 sin

π t
t0

and then q(t) = ω1Υ0

t∫
0

sin
πτ

t0
sin(t − τ )dτ.

After checking units it is now a matter of carrying out the integration. Perhaps the
most straightforward approach to evaluating this integral is to expand the second sine
function. Then, after factoring out of the integral with respect to τ those functions
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that depend only on t , the above integral can be written in terms of two integrals, I1

and I2, whose definitions below are obvious.

q(t) = ω1Υ0


sin ω1t

t∫
0

sin
πτ

t0
cos ω1τdτ − cos ω1t

t∫
0

sin
πτ

t0
sin ω1τdτ




or q(t) = ω1Υ0[(I1) sin ω1t − (I2) cos ω1t].

The integrals I1 and I2 can be evaluated most efficiently by consulting a table of
integrals or a computer program, an approach that is always recommended when
damping is included in the structural model. However, for the sake of self-reliance,
the integrations are evaluated here by first writing the products of these trigonometric
functions as sums by use of the following two identities easily obtained from cos(α ±
β) and sin(α ± β) formulas:

sin α cos β = 1/2[sin(α + β) + sin(α − β)]

sin α sin β = 1/2[cos(α − β) − cos(α + β)].

Then the integrals I1 and I2 can be written as

I1 = 1/2

t∫
0

sin
(

πτ

t0
+ ω1τ

)
dτ + 1/2

t∫
0

sin
(

πτ

t0
− ωτ

)
dτ

I2 = 1/2

t∫
0

cos
(

ω1 − π

t0

)
τ dτ + 1/2

t∫
0

cos(ω1 + π

t0
)τ dτ.

To carry out what is now a straightforward integration, it is necessary to first
require that π/t0 
= ω1 to avoid the singularity that occurs at the undamped resonance
condition π/t0 = ω1. The case where π/t0 = ω1 has to be treated separately. After
integration and some simplification, the integrals I1 and I2 are

I1 = 1[
(π/t0)2 − ω2

1

] [
π

t0
− π

t0
cos

π t
t0

cos ω1t − ω1 sin
π t
t0

sin ω1t
]

I2 = 1[
(π/t0)2 − ω2

1

] [
ω1 sin

π t
t0

cos ω1t − π

t0
cos

π t
t0

sin ω1t
]

.

When these two integrals are combined, the result, after a small amount of simplifi-
cation, is

q(t) = ω1Υ0[
(π/t0)2 − ω2

1

] (
π

t0
sin ω1t − ω1 sin

π t
t0

)
.

In the same spirit that led to the defining of a ramp response function as a convenience
for representing shocks and pulses, now define the sinusoid response function as

s1

(
t ,

π

t0

)
= 1

m
[
(π/t0)2 − ω2

1

] (
π

ω1t0
sin ω1t − sin

π t
t0

)

so that the response to a sinusoidal force of magnitude m ω2
1Υ0 and period 2t0 is simply

q(t) = m ω
2
1Υ0 s1(t , π/t0). Of course, only slight adjustments are required to adapt
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Figure 7.8. Example 7.5: Simplified vehicle traversing a speed hump at constant speed.
(a) Vehicle system before encountering the hump. (b) Vehicle system in displaced config-
uration while on the hump.

this sinusoid response function for the single-DOF system to the sinusoid response
function for the jth mode. ★

The following example problem summarizes the entire dynamic load analysis solu-
tion process. A two-DOF system is chosen to minimize the amount of calculation.

EXAMPLE 7.5 In terms of the modal coordinates, write the analytical solution
for the dynamic response of the two-dimensional, undamped vehicle shown in Fig-
ure 7.8(a) during and after its encounter with a smooth, long speed hump. Leave the
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solution in convolution integral form (i.e., do not bother to carry out the integra-
tion). Let the maximum height of the rise, Υ0, be sufficiently small that, as a close
approximation, the mass moves at a constant horizontal velocity u̇0 at all times, and
the rotation of the mass, as per usual, is also small enough (less than 10◦) to say
that the sine of the angle is equal to the angle in radians. Assume that the vehicle is
traveling at a speed such that the wheels are always in contact with the road surface.
Use stiffness centered generalized coordinates, and in this case let L � 2a, that is,
more so than can be indicated in the figure.

SOLUTION The first task is to write the equations of motion. To this end, choose
the fixed reference generalized coordinates, q1 = v1, and q2 = v2, which measure the
stretch in the springs as shown in Figure 7.8(b). Then the kinetic and strain energy
expressions are

T = m
2

u̇2
0 + m

2

(
v̇1 + v̇2

2

)2

+ ma2

10

(
v̇2 − v̇1

2a

)2

U = 1/2k[v1 − y(x − a)]2 + 1/2k[v2 − y(x + a)]2.

The horizontal velocity term of the kinetic energy expression, being a constant,
disappears when the kinetic energy is substituted into the two Lagrange equations.
However, as it must, the horizontal velocity enters the problem as a means of locating
the position of the mass on the rise. From the basic rule “speed multiplied by time
equals distance”, the distance the mass moves horizontally is simply x = u̇0t . Then,
after application of the Lagrange equations, for the times when both wheels are on
the hump, the mass, stiffness, and generalized force matrices for {q} = �v1 v2�t are

[m] = m
10

[
3 2
2 3

]
, [k] = k

[
1 0
0 1

]
, {Q} = kΥ0




1 − cos
2π(u̇0t − a)

L

1 − cos
2π(u̇0t + a)

L


 .

After inserting these matrices into the standard form of the matrix equation of
motion, the next step is to solve the homogeneous equation for the two natural
frequencies and mode shapes. (Contrary to the usual guidelines of necessity and
accuracy as discussed in the next section, because of the small number of DOF used
for this illustrative example, both of the natural modes are used to describe the
system motion.) Choosing matrix iteration, first invert the stiffness matrix to get the
first modal matrix equation and then, avoiding the use of a sweeping matrix, invert
the mass matrix to get the last modal matrix equation. Then the dynamic matrix
iteration equations for the first and second modes are, respectively,

[
3 2
2 3

] {
v1

v2

}
= 10k

mω2
1

{
v1

v2

} [
3 −2

−2 3

] {
v1

v2

}
= mω2

2

2k

{
v1

v2

}
.

This approach for the second and last mode is valid because matrix iteration always
converges to the largest eigenvalue, which for this latter setup is the one containing
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the estimate of the second natural frequency. The results of the matrix iterations
are

ω1 =
√

2k
m

ω2 =
√

10k
m⌊

A(1)⌋ = �1 1� ⌊
A(2)⌋ = �1 −1�

thus [Φ] = [Φ]t =
[

1 1
1 −1

]
.

A quick calculation confirms that these mode shapes are orthogonal when weighted
by either the mass matrix or the stiffness matrix. Substituting into the matrix equa-
tions of motion the modal transformation {q} = [Φ][p] and premultiplying by [Φ]t

yields the following uncoupled equations of motion. (Note, as another check that for
both the first and second mode, the ratio of the generalized stiffness and generalized
mass terms are indeed the squares of the natural frequencies.)

m
10

[
10 0
0 2

] {
p̈1

p̈2

}
+ k

[
2 0
0 2

] {
p1

p2

}

= kΥ0




2 − cos
2π(u̇0t − a)

L
− cos

2π(u̇0t + a)
L

cos
2π(u̇0t + a)

L
− cos

2π(u̇0t − a)
L


 .

Ignoring the short period of time that only one of the wheels is on the rise, the solution
for the first modal coordinate, for example, is

p1(t) = kΥ0

mω1

t∫
0

[
2 − cos

2π(u̇0τ − a)
L

+ cos
2π(u̇0τ + a)

L

]
sin ω1(t − τ )dτ

where k/m = ω2
1/2 or ω1 = √

2k/m , and similarly for the second modal coordinate.
The response in the first mode for the time period after the vehicle leaves the rise
can be obtained by simply setting the upper limit to (L+ 2a)/u̇0, the time the vehicle
CG exits the hump.

COMMENT The opposite case where L � 2a (a bump rather than a hump) is only
more complicated in the sense that the time period that the vehicle is in contact with
the bump has to be broken into four parts: (i) when only the front wheel is in contact
with the bump, (ii) when the wheels straddle the bump, (iii) the time when only the
real wheel is in contact with the bump, and (iv) the time after the rear wheel leaves
the bump. None of this involves a different treatment from the above, but clearly
this case has much more detail. Another complete two-DOF problem is provided in
Exercise 7.10. ★

7.8 Random Vibration Analyses

Consider formulating an engineering solution to the question of where oak leaves
will land on an x, y plane after falling through outside air from a certain height above
the point (0, 0) on that plane. The engineer would have to recognize that there is some
variation in oak leaf sizes and shapes, as well as structure, principally leaf ribbing and
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thickness. If the question were restricted to a particular oak leaf falling in still air,
then accurate measurements could be made of the leaf geometry, including curva-
tures, and its stiffness distribution. Modern computer-based numerical aerodynamic
calculations could do a reasonably accurate, but expensive, prediction of the landing
point of the center of gravity of that specific oak leaf and the orientation of that
oak leaf relative to the Cartesian axes. It would be a large problem, but if it were
of importance, it could be done for any leaf whose geometry and stiffness distribu-
tion were specified. If now the above still air condition was removed and replaced
by natural wind conditions, then the already complicated problem becomes even
more challenging. Again, if the wind velocities were specified as functions of time
and space throughout a large volume of air surrounding the experiment, then it still
might be possible, at some expense, to accurately predict the landing. However, such
wind velocity specifications are simply not known for a natural landscape because of
the large variation in weather, without even considering the very complicated wind
patterns close to the rough Earth surface because of all the vortices generated by
various objects that litter a natural surface. If now the question were reopened to
refer to oak leaves in general, then the engineer would be justified in deciding to
approach the question from a statistical point of view because it would be a lot less
expensive to conduct a lot of experiments with a variety of oak leaves and thereby
create an approximate probability distribution for the landing points of those leaves
on the x, y plane in natural air. In other words, there are problems where the force
inputs are so complicated in time and space that, rather than seek a deterministic
model of the input forces and the structure, it is much more economical to accept
some uncertainty by approaching the problem from a statistical viewpoint. When
either a flexible structure or the impressed time-varying loading is described in sta-
tistical terms, then the analysis is called a random vibration analysis. Reference [7.3]
is one of many textbooks that deal with random vibration analyses.

In aerospace engineering, random vibration analyses have been used to provide
estimates on such varied questions as crew comfort and ability to function after being
subject to many hours of flight through turbulent air and estimating the probability
that a satellite structure would impact its aerodynamic shield of the top of a rocket
as the rocket is battered by noise and aerodynamic turbulence at liftoff. A simpler
aerospace engineering problem would be estimating the resulting inertial loads on a
flexible aircraft wing as the aircraft taxies over different, rough, taxiway pavements
on the aircraft’s way to the duty runway. Mechanical engineers, of course, deal with
parallel problems for land-based vehicles. Civil engineers have to concern them-
selves with earthquakes. For present purposes, earthquakes can serve as an example
of a random motion input, even though earthquakes are more statistically compli-
cated than some other random inputs. Earthquakes produce primarily horizontal
base excitations for all sorts of very expensive and often unique structures such as
buildings, bridges, dams, and so on. See Figure 7.9 for a typical time history of an
earthquake base excitation. Much more so than a falling leaf, it has been necessary to
view earthquakes as a random phenomenon because the time history of their ground
motion cannot be predicted in advance of their occurrence. Hence, the mathematical
modeling of earthquakes, in general, depends on compiling and processing the statis-
tics of previously experienced earthquakes. Ever since the El Centro earthquake of
1940, records of earthquake excitations have been recorded in various places in the
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Figure 7.9. “Typical” earthquake ground motion, from Pacific Earthquake Engineering
Research (PEER) center ground motion database.

United States. Hence a library of earthquake inputs from the United States and other
countries is now available to the structural analyst. Again, the difficulty with using
the statistics derived from that library is that these statistics are rather complicated.
These statistics are characterized as nonstationary and nonergodic. Nonstationary
means that the various averages associated with the earthquake data vary over the
time record of the earthquake. Nonergodic means that these various averages vary
from one earthquake to another. Obviously, a statistical approach, called a ran-
dom vibration analysis, poses many problems for the analyst. There is an alternate
approach. A structure subject to an unknown earthquake base motion can be ana-
lyzed by (i) selecting various recorded earthquake base excitations from other sites,
(ii) scaling their amplitudes as appropriate for the site of interest, and (iii) using all
those records as a base excitations for the structure being analyzed. Figure 7.9 shows
that, say, using ramp input approximations and ramp function responses makes this
approach sufficiently complicated that it needs to be done numerically. Then it is a
matter of determining if any of those base excitations resulted in a structural fail-
ure as judged by whatever failure standard that was adopted for that structure. If
the structural design decision was made that the criteria for success is avoidance
of collapse while allowing plastic behavior, then that material nonlinearity has to
be included in the computer-based analysis. However, if the design is supposed to
survive a major earthquake without substantial plastic deformations, then such a
stronger and stiffer structure will have larger accelerations and hence larger iner-
tia loadings. Vibration isolation is now a common feature in large civil engineering
structures. Indeed, there are enough complexities to earthquake engineering design
to say that it is a subject that cannot be addressed here in detail. However, again,
the structural response analysis can proceed numerically on the basis of (i) using a
series of ramp or sinusoidal load functions to represent any one earthquake loading,
(ii) using the corresponding response functions to craft the deflection response, and
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(iii) using the responses from several earthquake records to estimate whether the
structure will meet the selected failure criteria. Reference [7.4] is an introduction to
the topic of earthquake engineering.

7.9 Selecting Mode Shapes and Solution Convergence

Consider an N-DOF structural system. As previously explained, the great advantage
of the matrix modal transformation

{q} = [
A(1)

∣∣A(2)
∣∣ · · · ∣∣A(m)]{p} ≡ [Φ]{p},

combined with premultiplying by the transpose of this modal matrix, [Φ], is that the
matrix equation of motion can be dissolved into M ≤ N individual second-order dif-
ferential equations in terms of a single modal DOF, say, pj (t). There is an important
second advantage associated with using the above modal transformation. By select-
ing just a small number of the total number of N modal equations to be solved for
the time-varying modal coordinates, call that small number M, the size, and hence
the cost, of the solving the problem can be greatly reduced.

The purpose of this section is to discuss how to choose the M modal DOF to be
used in the summation for the N component deflection vector

{q} = [
A(1)

∣∣A(2)
∣∣ · · · ∣∣A(m)]{p} ≡ [Φ]{p},

where again, M ≤ N. First of all, realize that the mode shapes of positive and negative
real numbers calculated by the standard procedures of the previous chapter are not
uniformly accurate relative to experimentally determined mode shapes, even after
accounting for damping, ambient air, and so on. The rule of thumb is that only the
lower half of the mode shapes correspond reasonable well to the experimental mode
shapes of most structures.9 The latter half of the mode shapes and natural frequen-
cies are inaccurate for a couple of reasons. First, the actual structure is a continuum
with an infinite number of DOF that is being approximated by a discrete model with
a finite number of DOF. That this form of modeling produces poorer results for
higher numbered modes than lower numbered modes can be surmised by consider-
ing a single beam whose mass is lumped at the beam center. Thus the beam becomes
a one-DOF system, and only the first mode will be approximated, and there is no
accuracy whatever for the higher numbered nodes. Second, the structural elements
are described using the formulas of strength of materials theory that always include
simplifying approximations. This, too, has particular importance for the higher modes
with their greater number of nodes. For example, the greater number of nodes asso-
ciated with the higher modes means shorter distances between nodes or nodal lines
in the case of, say, plates. Therefore the effective span lengths of beams and plates are
greatly reduced. This means that the use of long beam theory and thin plate theory,
even with approximate shear flexibility corrections, is less accurate for the higher
number nodes. There are even other, smaller effects. As the span length of the beam

9 Another complication is that two complex structures built of thin members from the same plans,
and hence having the same mathematical model, will not have exactly the same experimental higher
numbered natural frequencies and mode shapes.
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Figure 7.10. Periodic sawtooth function.

becomes smaller, the not-modeled rotary inertia of small beam segments begins to
make a small difference in the experimental results.

Regardless of the accuracy of the calculated mode shapes relative to the exper-
imentally determined mode shapes, the calculated mode shapes still decouple the
mass and stiffness matrices of the (approximate) mathematical model, and the series
of mode shape vectors still forms a vector basis for the general deflection vector
{q}. Considering the lesser accuracy of the higher numbered modes relative to the
actual structure, it is perhaps fortunate that it is never necessary to use the higher
numbered mode shapes in the [Φ] coordinate transformation matrix. As may be seen
more clearly in the next chapter where the eigenvectors of discrete mass models are
extended to the eigenfunctions of continuous mass models, the unimportance of the
higher numbered modal vectors is because series of modal vectors or modal functions
are quite like a Fourier series (see below) where the lower the index number of the
series term, the much larger its contribution to the sum that represents solution for
the deflection function. If the number of DOF, N, is a large number (several hundred
or many thousand), it is normally only necessary to use, say, the lowest numbered
15%, 10%, or 5% of all the mode shapes to accurately represent the motion of the
structural system. It is not possible to suggest the use of a specific percentage of the
total number of mode shapes in all circumstances. Circumstances can vary, and cases
have been reported where a couple of hundred modes were necessary to achieve an
accurate depiction of the physical motion. Rules of thumb on the number of mode
shapes to be used in an analysis are as follows. In terms of time distributions, if f is the
highest frequency component of the applied load, then use all the lower numbered
modes up to the one whose natural frequency is 2 f . In terms of spatial distributions,
the modes to be used have to be able, with reasonable accuracy, to duplicate the
visualized dynamic deflection patterns produced by the time-varying loads. As an
aid to understanding this point in a similar context, consider the sawtooth function
of x shown in Figure 7.10. This piecewise linear, periodic function can be represented
by either different linear expressions for each interval of length L/2 or by a Fourier
series over all intervals of length L. That is,

f (x) = 4x
L

+ 1 for − L
2

≤ x ≤ 0

and f (x) = − − 4x
L

+ 1 for 0 ≤ x ≤ L
2

so f (x) = 8
π2

∞∑
n=1

cos[2π(2n − 1)(x/L)]
(2n − 1)2

.
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Figure 7.11. (a) Sum of the first four nonzero terms of the cosine series of Section 7.9 showing
the closeness of the approximation away from the slope discontinuities at the corners. (b) Plot
of the one term, the two-term sum, the three-term sum, and the four-term sum superimposed
to show progressive improvement in the approx.

Consider either the interval (−L/2, L/2) or the interval (0, L). On either of these
intervals the above-cited cosine functions are orthogonal to each other (weighting
function 1.0), just as the discrete mode shapes are orthogonal to each other with
the weighting factor [m] or [k]. As is shown in Figure 7.11(a), if the above Fourier
cosine series is truncated; that is, if only the first four of the infinite number of
nonzero cosine terms are used as an approximation to f (x), then the approxima-
tion to f (x) is very good in engineering terms. Note from Figure 7.11(b) that the
lower the index number of the cosine term, the much more important it is to the
approximation.

Another way of looking at the process of choosing the mode shapes expected to
be necessary to accurately describe the dynamic deflection is to include all mode
shapes up to and including the one that has at least the same number of nodes as the
imagined dynamic deflection shape in its most complicated form. Then the prudent
analyst often takes an equal number of mode shapes beyond that mode shape with
the same number of nodes. Of course, this estimate is not always easy to make,
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particularly when experience with similar structures and loads is not available. In
that case the analyst can begin by making his or her best guess as to the minimum
number of mode shapes necessary for an accurate deflection response and complete
the analysis on that basis. Then the analyst can double the number of mode shapes
and repeat the analysis. If the two answers are sufficiently close, then the original
choice was satisfactory, and that number of modes can be used in further analyses of
that structure and as a future guide to similar structures and loadings.10 If the two
solutions are not within some acceptable measure of accuracy, then the number of
mode shapes must be increased again until two successive solutions are sufficiently
close. Unfortunately, even this sort of convergence doesn’t absolutely guarantee that
some other mode outside the chosen few will not significantly affect the deflection
solution. Returning to the above Fourier series analogy to make this point with a
pathological example, let the function to be approximated, f (x), by a Fourier series,
be the cosine function cos(50πx/L), which has a lot of zeroes in the interval (0, L).
Then the first 49 Fourier series coefficients will be zero, the 50th will be 1.0, and all
coefficients after 50 will be zero. Therefore, when comparing any two truncated series
sums, where each series contains fewer than 50 terms, the series will appear to have
converged because they both sum to zero, the obviously incorrect result. However,
when there is some higher mode of importance, some special feature of the loading
will usually clearly suggest that possibility.

There is also a simple quantitative guide to help in selecting which modes to use
in an analysis. Return to the general modal equation, Eq. (7.5),

p̈ j + 2ζ jω j ṗ j + ω2
j pj = Pj (t)

Mj
≡ 1

Mj

n∑
i=1

A( j)
i Qi (t). (7.5)

If the magnitude of the jth modal force Pj (t) divided by the modal stiffness is much
smaller than other such normalized modal forces, then, if there is no resonance effect,
the jth mode can be neglected. This simple idea of neglecting those modes that do
not have appreciable modal force inputs is sometimes quantified in the following
manner for the special case where all the applied forces have the same or similar
time variations. Consider the case where each generalized force Qk(t) of the original
generalized force vector {Q} has the same nondimensional time variation, f (t). That
is, if the kth entry in the generalized force vector Qk(t) = Q 0

k f (t), where Q 0
k is the

force magnitude whose spatial location is indicated by the subscript k (because it
corresponds to the kth generalized coordinate), then

Pj (t) = f (t)
n∑

k=1

A( j)
k Q 0

k = Γ j Q f (t),

where Q is an arbitrarily selected force amplitude, for dimensional purposes, that is
a constant for all selected modes. The quantity that varies from mode to mode, the
nondimensional quantity Γ j , is called the jth participation factor. In short, a partic-
ipation factor is a nondimensional constant associated with the spatial distribution

10 This is analogous to the Cauchy test for series convergence.
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of the applied forces that is independent to the time variation of the applied forces.
Here

Γ j = 1

Q

m∑
k=1

A( j)
k Q 0

k = 1

Q

⌊
A( j)⌋{

Q 0}.
Clearly, if the spatial distribution of the applied loads as represented by {Q 0} is near
to being orthogonal to the jth mode shape, the jth participation factor will be small.
Conversely, if the spatial distribution of the applied loads, {Q 0} is near to being
proportional to the jth mode shape, then the jth participation factor will relatively
large. The modes selected for retention in the analysis are, of course, generally those
with the larger participation factors. Another form for the participation factor is
presented in the next chapter where the generalized coordinates are continuous
functions of the spatial variables rather than tied to discrete spatial positions as is
the case with the usual finite element analysis. Remember, although a participation
factor might be small for one set of loads, the usual situation is for a structure to
be subjected to more than one set of loads. Hence, usual practice is not to omit any
modes up to the largest numbered mode selected.

Again, the reason that it is highly desirable to use as few mode shapes as possible
in a given analysis is, of course, that the number of mode shapes is the number of
modal degrees of freedom requiring solution by one method or another, and the
number of mode shapes dictates the size of the matrices that require multiplication.
If only, for example, 10% of the total number of modes are needed for the dynamic
analysis, then the use of the modal transformation reduces the number of DOF in
the core of the solution process by 90%. Thus it is worthwhile to carefully consider
the question of how many modes are sufficient to obtain reasonable convergence of
the solution for the original set of generalized coordinates, {q(t)}. In addition to the
above-discussed procedure of comparing the solution for {q} for M selected mode
shapes and, say, 2Mselected mode shapes, where M is small, there is another approach
for testing for the convergence to the solution for {q}. This alternate procedure
is called modal acceleration. The modal acceleration technique is as follows. First
solve the original, undamped, matrix vibration equation for the vector of generalized
coordinates, which again, is the objective of the vibration analysis. That result can be
written as

{q} = [k]−1{Q} − [k−1m]{q̈} = [k]−1{Q} − [D]{q̈},

where, again, the dynamic matrix, [D], is the mass matrix premultiplied by the inverse
of the stiffness matrix. Note that if the previous process of determining the system
mode shapes involved calculating the inverse of the stiffness matrix, then that inverse
matrix is already available at only the cost of storage in the computer. However, if
the stiffness matrix is large and the inverse has not been previously calculated, then
the alternative is the use of a Cholesky decomposition as on page 298. This discussion
will proceed on the basis that the inverse is obtainable at an acceptable cost.

Since the modal transformation is {p} = [Φ]{q}, premultiplication allows an easy
inversion of this equation as [Φ]t[m]{p} = [Φ]t[m][Φ]{q} = [\M\]{q}, where [\M\] is
the diagonal matrix of generalized masses. Since the inverse of any diagonal matrix is
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simply another diagonal matrix whose entries are the inverses of the diagonal entries
of the original matrix, then

{q̈} = [\M\]−1[Φ]t[m]{ p̈}
where { p̈} = [\M\]−1{P} − 2[\ζω\]{ ṗ} − [\ω2\]{p}.

Substituting the second of the above equations into the first yields the solution

{q} = [k]−1{Q} − [D][\M\]−1[Φ]t[m]
(
[\M\]−1{P} − 2[\ζω\]{ ṗ} − [\ω2\]{p}) ,

where the damping is modeled only after the modal transformation. Therefore, at the
expense of the above indicated matrix multiplications, the solution for the vibratory
system’s physical coordinates involves the full effect of the applied load vector {Q},
which is then modified using the small number of selected modal coordinates. A
small difficulty with this approach is the requirement for the modal velocities, if
modal damping is included in the analysis. There are several analytical or numerical
ways of calculating the modal velocities once the solution for the modal deflections
has been obtained. For example the convolution integral solution for p/t can be
differentiated with respect to time, or a finite difference approximation can be used
as discussed in Chapter 9.

7.10 Summary

Time-varying loadings can be classified as either continuing loadings or pulses. The
only continuing loading worthy of special attention is the sinusoidal loading that can
produce a resonance effect.11 All other continuing loadings, such as the step load,
can be treated conveniently as pulses. Pulse loadings are classified as either impulses
(very short time duration relative to the first period), shocks (time durations that are
a fraction of the first period), or pulses that occur over longer time durations than
the first period. If the load rises to a maximum value over a time duration that is, say
10 times the length of the first period, then the loading reasonably treated as a static
load, and the expense of a dynamic analysis can be avoided.

When the time variation of the loading vector of the linear matrix equation of
motion is sinusoidal, so too is the vector of the steady-state deflection responses.
After the decoupling the equations of motion by means of the modal coordinate
transformation, and using the complex algebra procedure discussed in Chapter 5,
the sinusoidal modal deflection responses can be calculated. These complex modal
deflection functions are, of course, functions of the modal frequency ratio Ω j =
ω f /ω j , and can be written in terms of that modal frequency response function. These
modal frequency response functions incorporate the modal resonance phenomena.
Specifically, where Pj (t) = w2

j Mj N̂ j exp(iw f t)

p̂ j eiω f t = N̂ j eiω f t(
1 − Ω2

j

)
+ i(2ζ jΩ j )

or pj (t) = N̂ j Hj (iΩ j )eiω f t . (7.6)

11 A more general time periodic input can, via a Fourier series, be treated as a sum of many sinusoidal
inputs.
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Note that the peak amplitude response to a nonresonating, sinusoidal input can,
and probably will, occur early during the application of the sinusoidal excitation as
a result of the combining of the transient amplitudes with the steady-state ampli-
tudes. Therefore, a sinusoidal input should also be examined for a few cycles as a
pulse input. This, and all other pulse loading cases start the solution procedure the
same way, that is, with a coordinate transformation to the modal coordinates. After
the modal transformation is used to decouple the rows of the matrix equation of
motion for light damping, the Duhamel integral (also called the convolution integral
or the superposition integral) is used to obtain an analytical or numerical solution for
each of the selected modal DOF. The convolution integral incorporates the impulse
response function, which, along with the frequency response function, is a funda-
mental descriptor of the dynamic properties of a structure. Appendix II shows that
the frequency response function and the impulse response function are related to
each other in that they are essentially a Fourier transform pair.12

Carrying out the required integration of the convolution integral analytically can
be facilitated by use of either tables of integrals (which can still be quite cumbersome
especially when damping is included) or software such as Mathematica. Again, see
Refs. [7.1,7.2]. Another option is approximating the usually imprecisely known input
forces by a series of straight lines and sine curves. Since analytical expressions for the
modal deflection output for straight line and sinusoidal modal acceleration inputs is
known, approximate output expressions can be cobbled together, preferably using
digital computer software. For easy reference, the undamped forms of the various
response functions in modal symbols are summarized as follows:

1. For an impulsive modal loading Pj (t) = Π jδ(t), the modal coordinate response
is

pj (t) = Π j h j (t) and h j (t) = 1
Mjω j

sin ω j t.

2. For a step modal loading Pj (t) = P0
j stp(t), the modal coordinate response is

pj (t) = P0
j g j (t) and g j (t) = 1

Mjω
2
j

[1 − cos ω j t].

3. For a ramp loading Pj (t) = (t/t1)P0
j , the modal coordinate response is

pj (t) = P0
j

t1
r j (t) and r j (t) = 1

Mjω
3
j

[ω j t − sin ω j t].

4. For a sine loading Pj (t) = P0
j sin(π t/t1), where ω f = π/t1, the modal coordinate

response is

pj (t) = P0
j s j

(
t ,

π

t1

)
and s j

(
t ,

π

t1

)
= 1

Mjω j

{
(π/t1) sin ω j t − ω j sin π(t/t1)

(π/t1)2 − ω2
j

}
,

12 Fourier transforms play an important role when, for example, the applied loads can only be described
in probabilistic terms.
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where of course, to avoid an indeterminate form, the forceing frequency (π/t1) can-
not equal the modal frequency ω j . If, instead of a force excitation, the excitation is a
base motion of amplitude Υ 0

j , then the force amplitude P0
j in the above expressions

needs to be replaced by Mjω
2
j Υ 0

j , which has the same units.
The final option for evaluating a superposition integral is just to use numerical

integration and form a list of modal deflection outputs at a series of closely selected
time points. This latter process is best done using commercial software. The transfor-
mation back to the physically meaningful DOF, {q} = [Φ]{p} completes the solution
procedure. Of course, most often for commercial applications, the solution for the
deflections requires further processing such as plotting and color animation for ease
of understanding, and using the deflections to calculate, and similarly plot, for exam-
ple, stresses.

EXAMPLE 7.6 In the jth mode, the time history of the modal force Pj (t) has an
isosceles triangular shape that starts at time zero, rises to a peak value of P0 at time t0,
and falls back to a zero value at time 2t0 and remains at a zero force level thereafter.
Determine the jth modal deflection as a function of time.

SOLUTION The ramp response function, r j (t), is defined in Example 7.2. This function
can be used to immediately write the modal deflection response for each time interval
after time zero from superposition of the input ramp force so as to achieve the stated
force time history. Therefore,

for 0 ≤ t ≤ t0 pj (t) = r j (t) = P0

ω3
j t0

(ω j t − sin ω j t)

for t0 ≤ t ≤ 2t0 pj (t) = r j (t) − 2r j (t − t0)

= P0

ω3
j t0

[ω j (2t0 − t) + 2 sin ω j (t − t0) − sin ω j t]

for 2t0 ≤ t pj (t) = r j (t) − 2r j (t − t0) + r j (t − 2t0)

= P0

ω3
j t0

[2 sin ω j (t − t0) − sin ω j t − sin ω j (t − 2t0)].

COMMENT One weak check on this solution is that the deflection response in the
third time interval should not be increasing as time proceeds, as are the solutions in
the first two time intervals. It is not, because this part of the solution contains only
sine functions rather than powers of the time variable. This expectation is so because,
in this time interval, there is no applied “force” to provide the energy necessary to
drive the deflection response away from its undamped mean value.

7.11 **Aeroelasticity**

As mentioned before, the dynamic interaction of structures and fluids in motion,
either fluids contained by the structure or fluids surrounding the structure, can pose
a significant challenge to an analyst. This section discusses relatively simple examples
of the latter type of interaction. Before proceeding to do that, understand that the
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former type of interaction, that of an enclosed fluid, is not so simple that the enclosed
fluid can be treated as if it were a solid. The reader can prove that statement to
himself or herself by placing both a raw egg and a hard-boiled egg on their sides
on a horizontal surface and spinning them with one’s fingers. The hard-boiled egg
will spin much more rapidly because it takes time for the viscosity of the fluid in the
raw egg to transmit the initial spinning moment throughout that fluid and thereby
overcome the inertia of the fluid.

Returning to the case of the moving fluid external to the structure, the selected
examples illustrate a situation where the external dynamic forces and moments
applied to the structure by the surrounding fluid depend on the motion of the struc-
ture as well as the far field velocity of the external fluid. In other words, there is a
feedback mechanism between the fluid and the structure. The motion of the structure,
in general, is described by the generalized coordinates and their first and second time
derivatives. In such circumstances, the applied fluid forces can be grouped together
with the inertial, damping, and elastic forces with the result that the equations of
motion are mathematically homogeneous. Homogeneous differential equations sug-
gest an eigenvalue problem, which in this case, similar to buckling problems, leads
to a stability analysis.

When the fluid of the fluid–structure interaction is air, the above interaction falls
under the topic heading aeroelasticity. This main purpose of this section is to dis-
cuss one aspect of dynamic aeroelasticity called low-speed airfoil flutter.13 Broadly
speaking, flutter is a dynamic instability resulting from the (fluid induced) forces and
moments acting on the structure doing positive work on the structure. This work
done by the airflow is converted into increased kinetic energy, which in turn leads to
increased vibratory velocities and deflections. To understand this point, recall that
from Newton’s second law F = m(dV/dt), where V symbolizes velocity of the body.
Multiply both sides of this equation by dx. After shifting the dt of the acceleration
to the dx of the path integration

x2∫
x1

Fdx =
t2∫

t1

mdV
dx
dt

or ∆W =
t2∫

t1

mVdV = ∆

(
1
2

mV2
)

= ∆T.

The increased kinetic energy of the structural motion, T, results in increased deflec-
tions, increased strains, increased stresses, and, if unchecked, structural failure. The
time to structural failure for, say an aircraft wing, can be so short that no pilot can
react sufficiently quickly to avert the failure of the wing. Furthermore, the possibility
of airfoil flutter is, and has been, so common among aircraft, that even today most
high-performance aircraft are speed constrained so as to avoid that possibility. Thus
the flutter problem is of historic as well as present concern.

Since only this section addresses the topic of aeroelasticity, it is appropriate to
provide a very brief overview of the topic as a whole. Although the flutter phe-
nomenon is its most dramatic aspect, the topic of aeroelasticity covers several types

13 A description of the fluid forces acting on an airfoil at high speeds requires consideration of compress-
ibility effects as characterized by a Mach number and, if necessary, the location and motion of shock
waves if they occur.
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of instabilities, both static and dynamic. With respect to flight vehicles, a static insta-
bility is one that only involves elastic and aerodynamic forces, and the deflections of
the structure typically continue to increase in a single direction. A dynamic instability
is one that involves elastic, aerodynamic, and inertial forces. The unstable deflections
of the structure typically involve a back-and-forth motion with increasing amplitudes.
The most critical airfoil static instability is called airfoil divergence.14 The reader has
probably had the experience of riding in an automobile at highway speeds and stick-
ing his or her arm out the window, into the airstream, with his or her hand flattened
so as to be parallel to the road surface. If so, the reader may have also slightly rotated
that flattened hand one way or the other and experienced the effect of the airstream
that was to further sweep the entire arm backward in the same direction of the rotated
hand. Airfoil divergence is very much the same thing.

To gain a mathematical insight into airfoil divergence, consider the greatly simpli-
fied mathematical model of a three-dimensional wing shown in Figure 7.12(a). Since
(i) the width (into the paper) of the uniform airfoil is unspecified, (ii) the airfoil
thickness does not directly enter into the analysis, and (iii) the only specific over-
all dimension of this airfoil is its chord length c, this is termed a one-dimensional
model. Of course, the effectiveness of a one-dimensional model for representing a
three-dimensional reality is somewhat limited. Fortunately, the mathematics of the
one-dimensional model is sufficient to illuminate the physics of airfoil divergence
phenomena, which is the present purpose.15

Such a one-dimensional model was used extensively before digital computers were
available because this type of model was the only model suitable for most hand
calculations. Also such one-dimensional models were possible because most wings
at that time were high aspect ratio wings, meaning that their span-to-chord length
ratio was 10 or more to 1. Thus the wings could be roughly viewed as nonuniform
beams. The translational spring and the rotational spring stiffnesses of this one-
dimensional model were selected, as a rule of thumb, as the beam bending and
torsional stiffnesses at 70–75% of the wing semispan, outboard from the wing root
at the fuselage centerline. Again viewing the wing as a nonuniform beam, the fore
and aft location of the springs along the airfoil chord is at the shear center of the
structural portion of the wing cross section. This is so because the shear center is
the point about which the cross section rotates if the beam is subjected to a pure
torque and the point where a vertical force will not produce a twisting of the beam.
In other words, the shear center is the unique point on the cross section where, for
small deflections, the twisting and bending motions of the beam are decoupled. For
such high aspect ratio wings, the major portion of the wing-beam structure is a box
beam with a thin, nearly rectangular, cross section. It is not difficult to calculate the
location of the shear center for such a thin beam cross section.

The two traditional symbols for the deflections of the airfoil segment of Fig-
ure 7.12(a) are h, here the positive upward vertical translation of the airfoil, and

14 Recall Section 2.10 for an earlier discussion of system stability.
15 Unfortunately, the one-dimensional model is too simple to reveal the mathematical procedure for a

wing with a finite aspect ratio (the ratio of the length of the wing span to the average airfoil chord
length), taper, sweep back, and so on. For that purpose, see Ref. [7.5], p. 816 ff.
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Figure 7.12. One-dimensional airfoil divergence model.

α, the rotation about an axis perpendicular to the paper, positive leading edge up
and trailing edge down. Let these two deflections be measured at the juncture point
of the springs and the airfoil segment. The aerodynamic loads impressed on the air-
foil segment by the airstream are the static16 (also called steady state) lift force L and
the static aerodynamic moment M, which act very close to the quarterchord (one-
quarter of the distance from the leading edge to the trailing edge). The steady-state
aerodynamic moment is very little affected by changes in either deflection and thus
it is essentially a constant in this analysis. However, over a broad range of rotations,
the steady-state aerodynamic lift is directly proportional to the airfoil rotation. With

16 The force and moment are described as “static” because the deflections of the airfoil are viewed as
occurring slowly, so slowly that kinetic energy has no part in this analysis.
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Cl being the nondimensional lift coefficient,17 ρ being the mass density of the air, V
being the airstream velocity a long way from the airfoil, and S being the planform
area of the airfoil segment (chord length multiplied by wing segment width), then
from basic aerodynamics, the lift force acting on the one-dimensional airfoil model
is L = 1/2ClρV2S. For a wide range of values of α, the lift coefficient Cl varies linearly
with α. Therefore, if α is measured from the rotation orientation where the lift force
is zero, analogous to “rise” equals “slope” multiplied by “run,” the lift coefficient
(rise) can be written as the lift curve slope multiplied by the rotation (run); that is,
Cl = Clαα, where the constant Clα≡ dCl/dα. Substituting into the lift expression

L = 1/2ClαρV2S α. (7.16)

Return now to the airfoil of Figure 7.12(a). This airfoil is statically stable with regard
to the h motion regardless of the airstream velocity. To understand this point, consider
Figure 7.12(b), where the airfoil is translated upward from its static equilibrium
position a distance dh, without any rotation α. The upward airfoil velocity vector
dh/dt plus the forward airfoil velocity V add vectorially to produce an airfoil velocity
vector that is slightly rotated clockwise from the original airfoil velocity vector that
was just V. The velocity of the airstream as seen from the airfoil is a velocity vector
that is equal and opposite to airfoil velocity vector. Thus, because of the rotation
of the velocity vector only, the effective angle of attack of the airfoil has decreased
with a resulting decrease in the lift force. A decrease in the lift force is the same
as adding a downward directed incremental lift force to the original lift force that
is equilibrated by the original spring force. Therefore an upward translation of the
airfoil results in both an aerodynamic force tending to return the airfoil to its original
position as well as a spring force doing the same. If the airfoil translates downward,
both the incremental aerodynamic force and the spring force are directed upward.
Since any translational motion of the airfoil is opposed by both the aerodynamic and
elastic forces, the airfoil is unconditionally stable in vertical translation. That is, for
all fluid velocities, the airfoil tends to return to its (stable) equilibrium position.

Now consider a positive increment in the airfoil rotational angle as shown in Fig-
ure 7.12(c). The increase in the rotation angle dα,causes an increase in the lift force,
which can be written as dL = 1/2ClαρV2 Sdα. This in turn causes a clockwise moment
about the elastic center of magnitude adL. The increment in the rotational angle
also causes an increase in the counterclockwise moment produced by the torsional
spring of magnitude Kdα. When the increase in the moment produced by the spring
is greater than the increase in the aerodynamic moment about the elastic center,
then the airfoil will rotate back toward its original position and the system will be
stable. If the reverse is true, that is, if the increase in the aerodynamic moment a dL is
greater than the increase in the opposing spring moment, then the rotation angle will
increase further. The further increase in α will lead to a further increase in that aero-
dynamic moment that will again be greater than the increase in the spring moment,
leading to a still greater increase in α, and so on, as the system diverges from its

17 For a given rotation, the lift coefficient depends on the thickness variation of the airfoil and varies with
Reynolds number, but only gradually for the airspeeds considered in this discussion. Hence it can be
considered to be nearly a constant.
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original, unstable, equilibrium position. Between these two possibilities there is a
third possibility. The third possibility is where the increases in the aerodynamic and
spring moments are equal and thus balance each other. Here is the neutral stability
point between stability and instability. This is equivalent to the glass marble being
displaced on a horizontal plane as opposed to a convex or concave surface. The mar-
ble can be moved from one point on the plane to another, but such a motion itself
does not induce further motion. To mathematically determine this balance point for
the airfoil, keep in mind that the equilibrium position from which the differential
increments in the angle of attack occur is one where the moment about the elastic
axis of the aerodynamic lift force, aL, and the spring moment, Kα,are in balance;
that is, static equilibrium. Hence it is only necessary to equate the increases in the
moments, adL to Kdα, and determine the velocity for which this second equality
exists. Doing so, and canceling the differential of alpha leads to 1/2aClαρV2S = K or
the divergence velocity solution

Vdiv =
√

2K
aClαρS

.

As a final comment on airfoil divergence, a two-dimensional analysis for an
unswept wing is not too different from the above one-dimensional analysis. See
Ref. [7.5], p. 816. When a wing is swept forward, the moment arms of outboard lifting
forces relative to inboard airfoil sections are greater, sometimes much greater, than
they would be if the wing were unswept. Hence, the swept-forward wing will suffer
divergence at a lower airspeed than the same wing would suffer if it were unswept.
The same wing swept back would have a higher, perhaps a much higher, divergence
airspeed. Thus, despite the small aeronautical and structural advantages to having
a swept forward wing, the divergence phenomenon is why swept-forward wings are
very rare, whereas swept-back wings are common for high-speed flight. The advent
of tailored, carbon fiber composite materials permitted the selective stiffening of
wings against divergence. The appeal of this concept led to the building of the XF-29.
See Ref. [7.6]. Nevertheless, the experience developed from the XF-29 was that the
advantages of forward sweep didn’t offset the risks.

Turn now to the more challenging problem of low-speed airfoil flutter. To under-
stand how such a dynamic instability could possibly occur, consider Figure 7.13(a)
and 7.13(b). These figures show an airfoil undergoing a sinusoidal vibration as it
moves through the air. The vibration could be, for example, in response to a vertical
gust or control motion. In both sketches, the vibrating airfoil is both translating up
and down and rotating. In the first sketch, as the airfoil moves upward, the lead-
ing edge rotates downward, and as the airfoil moves downward, the leading edge
rotates upward. In these circumstances, as the airfoil moves upward, the downward
rotation of the leading edge means that the angle of attack is decreasing and con-
sequently the lift force is decreasing. Thus the incremental lift force is opposing the
upward motion of the airfoil. Similarly, when the airfoil moves downward, the lift
force increases and, again, the incremental lift force opposes the motion. Since the
elastic forces of the wing structure (not shown) also oppose the motion, the airfoil
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(a)

Airfoil forward velocity

Airfoil forward velocity

(b)

Figure 7.13. (a) Vibratory phasing that causes the lift force to diminish the vibratory amplitude.
(b) Vibratory phasing that causes the lift force to increase the vibratory amplitude and thus
destabilize the system.

will always tend to return to its equilibrium position and thus is dynamically stable
in this situation. The opposite is true in the second sketch. Here the relationship
between the two independent DOF are such that as the airfoil moves, for example,
upward, the lift force increases. This tends to make the airfoil move up even further.
The elastic forces still oppose the motion, so it is a question of whether the incre-
ments in the aerodynamic forces are greater than or less than the increases in the
elastic forces. Since the aerodynamic forces depend approximately on the airspeed
squared, and the elastic forces are independent of the airspeed, it is a question of
whether the airspeed is greater or equal to that flutter airspeed where there is neutral
stability. To be more specific, neutral stability occurs when the time-varying aerody-
namic lift resulting from the vibratory motion is exactly balanced by the time-varying
elastic and inertial generalized forces that also result from the vibratory motion, as
the amplitudes of the vibratory motion neither increase or decrease. Another way of
looking at these possible examples of phase differences between the upward transla-
tion h(t) and the leading edge upward rotation α(t) is, for example, to say that in the
first case the incremental lift force does negative work on the elastically supported
airfoil, whereas in the second case, the work is positive. This positive work is stored
in the airfoil as increased strain energy and increased kinetic energy. These increases
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Figure 7.14. One-dimensional airfoil flutter model.

in energy lead to increased vibration amplitudes. Such an amplitude response is
illustrated, for example, in Figure 5.13.

To describe the flutter phenomena mathematically means, as before, describing
the inertial, damping, elastic, and aerodynamic forces and moments. Again, for the
sake of computational simplicity, only the case of the one-dimensional airfoil of
Figure 7.14 is considered here. Again there are only two DOF, and it is a simple
process to write the equations of motion. As is commonplace in flutter analyses,
damping (to be discussed later) is ignored. Then the quantities necessary to write the
Lagrange equations of motion are

T = 1/2 Hcgα̇
2 + 1/2m(ḣ + bα̇)2

and U = 1/2kh2 + 1/2 Kα2 δW = Lδh + (M + aL)δα, (7.17)

where, of course, Hcg , and later, Hea , are the airfoil mass moments of inertia about the
airfoil center of mass and the elastic axis, respectively. The difficulty with any flutter
analysis is entirely associated with writing the mathematical expressions for the time-
varying aerodynamic lift L and the time-varying aerodynamic moment M. These
expressions can be quite complicated even in the present case of a one-dimensional
airfoil in a low-speed air stream. The usual approach in engineering practice is to use a
numerical scheme to describe the airflow. Here, however, for the sake of explanation,
only analytical approaches are discussed.

The simplest approach for describing the air loads analytically is to adapt the
planar flow lift force and aerodynamic moment expressions used above in the diver-
gence analysis. The adaptation is replacing the slowly varying (i.e., static) rotational
angle α by a fully time-varying α(t). Such air loads are called quasisteady, because
the previously used time-invariant (static) air loads are called steady-state air loads.
Considerable testing has demonstrated that solutions based on the use of these
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planar flow, quasisteady air loads are in poor agreement with experimental results.
The shortcomings of quasisteady air loads, compared to the planar flow, unsteady air
loads that are discussed later, is that the latter account for the effect of the motion
of the air foil on the air flow, which in turn affects the airfoil. Nevertheless, quasis-
teady air loads are a convenient first step toward getting a grip on the concept of
aerodynamic flutter.

As per usual, the analysis begins with writing the Lagrange equations of motion for
the degrees of freedom α(t) and h(t) from the energy and virtual work expressions
set forth in Eq. (7.17). The only nonroutine aspect of this task is remembering that
the quasisteady aerodynamic moment M is independent of both these DOF. Thus
the aerodynamic moment is a constant and, as such, has no place in this dynamic
analysis. Thus, the matrix equation of motion for this airfoil segment in planar
flow is

[
m mb

mb (Hcg + mb2)

] {
ḧ
α̈

}
+

[
k 0
0 K

] {
ḣ
α

}
=

{
L

aL

}
.

As discussed above, when the airfoil is moving up and down as well as rotat-
ing, the effective angle of attack is not just α, but, for the adopted sign conven-
tion, is α − (ḣ/V). Then the lift force becomes L = 1/2ClαρV2 S[α(t) − ḣ(t)/V] =
A0V2[α − ḣ/V], where the definition of the aerodynamic coefficient A0 is obvious.
Substituting this latter expression for the quasisteady lift force into the above matrix
equation of motion yields

[
m mb

mb Hea

] {
ḧ
α̈

}
+

[
k 0
0 K

] {
ḣ
α

}
= −A0V

[
1 0
a 0

] {
ḣ
α̇

}
+ A0V2

[
0 1
0 a

] {
h
α

}
.

(7.18a)

Clearly, the aerodynamic coefficient matrices are not symmetric. The first step in solv-
ing Eq. (7.18a) is to recognize that every differential equation term involves one or
the other of the two DOF or their derivatives. That is, because the generalized forces
depend on the deflections, velocities, and accelerations, the above matrix equation
can be written in the homogeneous equation form as

[
m mb

mb Hea

] {
ḧ
α̈

}
+

[
A0V 0

a A0V 0

] {
ḣ
α̇

}
+

[
k −A0V2

0 K − a A0V2

] {
h
α

}
=

{
0
0

}
. (7.18b)

The homogeneous form itself and the fact that there are but two equations (rows)
and three unknown quantities (the two DOF and V) suggest that the above equation
is a differential equation eigenvalue, problem with V as an eigenvalue, while the
two DOF compose the eigenvector. This proves to be the case. The next step in the
solution process is to deal with the time variation of the two DOF.

The solution to Eq. (7.18) that is now sought is the one associated with the neutral
stability point, the point on the airspeed scale between a region of airspeeds where
the vibratory deflections increase without bound (i.e., where the airfoil motion is
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unstable) and the region of lower airspeeds where the vibratory motion of the airfoil
decreases over time (i.e., where the airfoil motion is stable). At the neutral stability
point the amplitudes of the deflections are constant, and no net work is done on
the airfoil by the airstream. Again, the airspeed associated with this neutral point is
called the flutter speed of the airfoil. Since the vibratory airfoil motion will persist
indefinitely at constant amplitudes, the adopted trial solution for each DOF will be
harmonic in form. The last aspect of the trial solution recognizes that, as was explained
above, phase differences between the vertical motion DOF and the rotational DOF
are crucial to the explanation of the flutter phenomenon. Therefore, to reflect math-
ematically the constant-amplitude, harmonic motion with phase differences, write
the trial solution for the two DOF as either

α(t) = A1 sin ωt + A2 cos ωt h(t) = B 1 sin ωt

or α(t) = (A1 + i A2)eiωt h(t) = B 1eiωt (7.19)

where the real amplitude components A1, A2, and B1 are unknown, and therefore
the phase angle between the up-and-down translational motion and the rotational
motion is also unknown. Using the complex form choice, as per usual, differentiating
and substituting into Eq. (7.18), after some organizing, yields[

mω2b + A0V2 mω2 − k
K − Heaω

2 − a A0V2 −mω2b

] {
A1

B 1

}

+ i
[−ωA0V mω2b + A0V2

aωA0V K − Heaω
2 − a A0V2

] {
B 1

A2

}
=

{
0
0

}
.

When a complex number is zero, both the real part and the imaginary part are zero.
Thus18 [

mω2b + A0V2 mω2 − k
K − Heaω

2 − a A0V2 −mω2b

] {
A1

B 1

}
=

{
0
0

}

[−ωA0V mω2b + A0V2

aωA0V K − Heaω
2 − a A0V2

] {
B 1

A2

}
=

{
0
0

}
.

These are two coupled matrix eigenvalue problems where, in addition to the unknown
amplitudes A1, A2, and B 1 of the two eigenvectors, there are the two unknown
quantities V and ω at the neutral stability point, which are now recognized as the
two eigenvalues. Again, nontrivial solutions exist only if the coefficient matrices are
singular. Setting the second determinant equal to zero yields the solution for the
flutter frequency

ω2
f = K

Hea − abm
.

This solution for the flutter frequency, the frequency of the vibration at the flutter
airspeed, is independent of the airspeed, and closely related to the uncoupled nat-
ural frequency for a torsional vibration. The first observation casts doubt on the

18 If sines and cosines were used rather than complex notation, the linear independence of those two
functions would allow the same separation into two matrix equations.
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completeness of this solution. Solving the equation produced by the determinant of
the first of the above matrix equations yields

V2
f =

(
k − mω2

f

)(
K − Heaω

2
f

) − (
mbω2

f

)2

A0
[
a
(
k − mω2

f

) + bmω2
f

] .

where the value of the flutter frequency is taken from the previous equation. Clearly
this simple solution for the flutter airspeed is not so simple that the effects of any
parameter other than those present in A0 are easily discerned. The dubious nature
of this approach suggest that this solution does not deserve further attention.

A more accurate answer can be obtained using the unsteady airloads developed
in the mid-1930s. Still these air loads do not account for the effect of viscosity (no
Reynolds number), the effect of compressibility (no Mach number), the effects of
finite wing aspect ratio,19 or airfoil thickness. Within these limitations, however, the
unsteady air loads differ from the quasisteady air loads by accounting for the effects
on the airfoil of the entire flow field, particularly the oscillating wake that affects the
airflow at the airfoil. As a result, these air loads depend not only on the instanta-
neous angle of attack, α(t), but also on the first and second time derivatives of both
α(t) and h(t). The expressions for the unsteady aerodynamic lift per unit of span
length and the unsteady moment per unit of span length, both acting at the elastic
axis, are, from Ref. [7.7], p. 199,

L = −πρ
c3

8

[
2ḧ
c

+ 8
Vḣ
c2

C(κ) + 2e
c

α̈ + 2V
c

[(
4e
c

− 1
)

C(κ) − 1
]

α̇ + 8
V2

c2
C(κ)α

]

M = −πρc4

16

[
4eḧ
c2

+ 4V
c2

(
1 + 4e

c

)
C(κ) ḣ +

(
1
8

+ 4e2

c2

)
α̈

− 2V
c

[
2e
c

− 1
2

+
(

1
2

− 8e2

c2

)
C(κ)

]
α̇ − 4V2

c2

(
1 + 4e

c

)
C(κ)α

]
, (7.20)

where c is the chord length (the distance in the direction of the airstream between
the airfoil leading edge and trailing edge); κ , the reduced frequency,20 is equal to the
nondimensional quantity cω/(2V); e = (a/c) − (1/4) is a nondimensional parameter
that locates the elastic axis aft of the midchord position; V is the airspeed; and ρ is
the zero-velocity mass density of the air. The quantity C(κ),which is a factor for each
of the DOF and their first time derivatives, is called the Theodorsen function. The
Theodorsen function is equal to the complex quantity F(κ) + iG(κ), where

F (κ) = J1(κ)[J1(κ) + Y0(κ)] + Y1(κ)[Y1(κ) − J0(κ)]
[J1(κ) + Y0(κ)]2 + [Y1(κ) − J0(κ)]2

G (κ) = − Y0(κ)Y1(κ) + J0(κ)J1(κ)]
[J1(κ) + Y0(κ)]2 + [Y1(κ) − J0(κ)]2

,

where J0 and J1 are Bessel functions of the first kind of order zero and 1, respectively,
and Y0 and Y1 are Bessel functions of the second kind of order zero and 1, respectively.

19 See Ref. [7.8] for the quite complicated low-speed airloads that account for the effect of finite aspect
ratio. See Refs. [7.9,7.10] for some of the history of the engineering understanding of aircraft flutter.

20 The common symbol for the reduced frequency is k. Since k is being used here to represent the
translational spring stiffness, κ is chosen instead to represent the reduced frequency.
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Here the moment is not static, and unlike the quasisteady case, this moment must be
included in the equations of motion. Since these unsteady airloads act at the airfoil
elastic axis that is the location of the two DOF, the generalized forces are simply the
above lift and moment multiplied by the airfoil width. Thus for the simple case of
the airfoil of Figure 7.14 with width �, the equations of motion are[

m mb
mb Hea

] {
ḧ
α̈

}
+

[
k 0
0 K

] {
h
α

}
=

{
�L(ḧ, ḣ, α̈, α̇, α)
�M(ḧ, ḣ, α̈, α̇, α)

}
. (7.21)

Again, inspection of the above unsteady lift and moment expressions listed above
shows that the resulting differential equations are homogeneous, and they constitute
a complex algebra eigenvalue problem that, again, is solved at the neutral stability
point where the airfoil motion is harmonic in both DOF with a phase angle difference
between the two DOF as described in Eq. (7.19).

The remainder of the solution process is similar to, but not quite the same as, that
employed above for the case of the quasisteady airloads. It is the same procedure in
that, in addition to the same three unknown deflection amplitudes A1, A2, and B 1,
the two unknown quantities of the resulting real and imaginary determinant equa-
tions are the same eigenvalues Vf and ω f . However, in the unsteady airload case there
is an important complication that was not present in the quasisteady airload case. That
difficulty is that the ratio of the two unknowns, Vf and ω f , in the form of the reduced
frequency, forms the argument of the complicated Theodorsen function. Most ana-
lysts would prefer not to deal with trying to solve equations involving the Theodorsen
function with an unknown argument. For example, if the powerful Newton–Raphson
method were used, it would be necessary to differentiate the Theodorsen function
and its ratio of the squares of Bessel functions. Hence, other solution techniques
have been sought and found. A rather clever and common approach is to begin the
remainder of the solution process by specifying a value of the reduced frequency, κ

which, again, is equal to cω/(2V). This step, of course, makes the Theodorsen func-
tion into merely a constant for each calculation associated with that selected value of
the reduced frequency. However, this specification of a reduced frequency increases
the number of equations by 1, from 2 to 3, whereas the number of unknowns remains
at 2. To restore the correct number of unknowns, an unknown, artificial, material
damping factor, g, is introduced into the problem in the form of the factor (1 + ig)
for the stiffness matrix, [k], as shown below:[

m mb
mb Hea

] {
ḧ
α̈

}
+ (1 + ig)

[
k 0
0 K

] {
h
α

}
=

{
�L(ḧ, ḣ, α̈, α̇, α)
�M(ḧ, ḣ, α̈, α̇, α)

}
.

This introduction of an artificial material damping factor is strictly a mathematical
convenience. Thus, for each selected reduced frequency, there can now be a straight-
forward solution from the real and imaginary parts of the homogeneous matrix equa-
tion of motion for the two unknowns, V and g. To be on the safe side, the actual
material damping and all the other types of actual damping, that are actually present
in the wing system, are generally ignored. Hence when the value of the selected
reduced frequency is found that results in the artificial material damping being zero,
as it should be, then that value is the flutter value of the reduced frequency. The
flutter value of the reduced frequency, along with the velocity solution, immediately
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yields solutions for Vf and ω f . A simple graph of the artificial damping factor g
versus (usually the inverse of) the selected reduced frequency, identifies which value
of the reduced frequency corresponds to a zero damping factor. See Figure 7.15(a)
for a typical example of a plot of the artificial material damping factor versus the
reciprocal of the reduced frequency. Note that each point on the curve is a neutral
stability point. Therefore, at the lower values of (1/κ), which correspond to lower
values of airspeed, negative values of damping are required for constant amplitude
vibrations, and thus this is a stable region of reduced frequency. At the higher values
of (1/κ), which correspond to higher values of airspeed, positive values of damping
are required to maintain constant amplitude vibrations, and thus this is an unstable
region of reduced frequency.

It is evident that even in this simple case of low speed flow, the unsteady aerody-
namic lift and moment require computational effort that is better suited to the use of
a computer. Computer processing is particular important when the above unsteady
air loads are applied to, say, a high aspect ratio wing rather than a single segment
of a wing. Consider a high aspect ratio, tapered wing without sweepback of the elastic
axis as shown in Figure 7.16. For simplicity of discussion, the wing is cantilevered at
the fuselage centerline as would essentially be the case if the mass of the loaded
fuselage and the tail is much larger than that of the wing. (As an alternative, a full
unsupported wing can be dealt with as outlined in Endnote (3) of the previous chap-
ter.) To facilitate the use of the unsteady airloads discussed above, the wing planform
is divided into a series of adjacent wing strips, where the edges of each strip parallel
the direction of the planar airstream. Note each wing strip has its own chord length.
Since the aspect ratio is large for such a wing, the wing can be viewed structurally
as a beam whose elastic axis is the wing’s loci of shear centers of the beam’s cross-
sections. Beam finite elements, each with its own stiffness coefficients GJ and EI, join
the finite element method nodes located at the centers of each wing strip. The beam
DOF required to account for the motion of jth strip are the vertical deflection, h j, the
beam bending slope θ j , and the angle of twist α j . The beam stiffness matrix in effect
joins together the various strips, and there are mass matrix terms associated with
each DOF. The unsteady airloads are associated only with each h j (t) and α j (t), and
zeros would be entered in the generalized force matrix corresponding to each θ j (t).
Such an application of the above unsteady airloads to each wing strip is called basic
strip theory. For a wing with sweepback, see Ref. [7.5], p. 824 and p. 817. Basically,
a sweepback angle Λ for the wing elastic axis merely means that the relationship
between the angle of attack of the aerodynamic cross section, α, and the twist, φ,
and bending slope, θ , of the beam cross section becomes α = φ cos Λ − θ sin Λ. Basic
strip theory was useful for many years because it generally produced safe estimates
of the experimental low-speed flutter speed. See Endnote (3) for a comparison of a
typical low-speed experimental result and the corresponding basic strip theory result.

If the calculated flutter speed of a wing is so low that, subject to flight testing,
the operation of an aircraft would need to be unacceptably restricted, there are
remedies available at the cost of generally greater weight, or greater wind drag, and
hence less overall aircraft performance. First of all, for example, a high aspect ratio
straight wing, modeled as a tapered beam, the wing torsional stiffness coefficient
GJ, is the most important parameter influencing flutter speed. For such a wing,
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Figure 7.15. (a) Plot of the artificial material damping factor versus reduced frequency recipro-
cal. (b) Plot of flutter airspeed versus CG location along airfoil chord calculated using unsteady
and quasisteady airload theories. (c) Calculated flutter airspeed versus altitude, Ref. [7.11].
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Figure 7.16. High aspect ratio wing model suitable for application of basic strip theory.

the usual construction consists of a forward spar near the wing’s leading edge and
a main spar near the middle of the wing, where the spars run through the fuselage
from wing tip to wing tip. Viewing such a wing as a tapered beam, the St. Venant
constant for uniform torsion, J , is somewhat proportional to the cross-sectional area
enclosed by the centerlines of the forward spar, the top wing skin, the main spar,
and the bottom wing skin. See Ref. [7.5], p. 419ff. Therefore, increasing the torsional
stiffness coefficient of the wing can be achieved by further increasing the beam
cross-sectional area between the wing front spar and the main spar, called the wing’s
torsion box. This can be done by moving the spars a bit and making the wing a bit
thicker.

The second remedy to consider for increasing the flutter airspeed is that of shift-
ing forward on the wing chord the location of the wing center of gravity. This is
sometimes even accomplished by simply adding mass ahead of the leading edge on
a forward protruding boon. The effectiveness of this approach is illustrated by Fig-
ure 7.15(b), which is taken from Ref. [7.11]. This plot is based on calculations using
the above unsteady air loads, Eqs. (7.20), as applied to the simple airfoil strip model
of Figure 7.14. Also from Ref. [7.11], Figure 7.15(c) shows how flutter speed varies
with altitude.

The interaction of blunt bodies and air streams is more complicated than that of
smooth airfoils, but that interaction can also be quite dramatic. The flow around a
blunt body, at all but the very slowest of airspeeds, results in flow separation from the
blunt body, and therefore all manner of vortices and turbulence. The classical example
of blunt body flutter is the collapse of the highly flexible Takoma Narrows bridge in
1940. The cross section of the bridge was an extended H where the horizontal bar of
the H was the road bed. The air flow that collapsed the bridge was a steady, low-speed
wind blowing down the river valley spanned by the bridge. That air flow interacted
with bridge oscillations in a way that resulted in the alternating shedding of clockwise
and then counterclockwise vortices (called von Karman vortices). These vortices
resulted in up and then down aerodynamic loads on the bridge road bed that were in
phase with the bridge oscillations; constantly increasing them until nonlinear effects
limited the oscillatory amplitudes to large values. The large amplitudes weakened the
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bridge, which led to even larger amplitudes that tore the bridge apart. See Ref. [7.12],
p. 17.

7.12 **Response Spectrums**

Return to the previous example problem of a isosceles triangular spike modal force
input of peak magnitude P0, where the pulse starts at time zero, reaches its peak at
time t0, and drops to a zero value at time 2t0. From Example 7.6, the modal deflection
response was calculated to be

for 0 ≤ t ≤ t0 pj (t) = P0

Mj ω3
j t0

(ω j t − sin ω j t)

for t0 ≤ t ≤ 2t0 pj (t) = P0

Mj ω3
j t0

[ω j (2t0 − t) + 2 sin ω j (t − t0) − sin ω j t]

for 2t0 ≤ t pj (t) = P0

Mj ω3
j t0

[2 sin ω j (t − t0) − sin ω j t − sin ω j (t − 2t0)]

it is clear that for any given input magnitude P0, the magnitude of the deflection
response, and hence the stress response, depends entirely on the two parameters
ω j and t0, which respectively characterize the period of the jth mode of the struc-
tural system and the duration of the pulse loading. This is typical of all pulses. The
engineering design question is as follows: for a given ω j (or, for a given value of
the period Tj = 2π/ω j ), what nondimensional values of ω j t0 or t0/Tj will maximize
the deflection response? In this manner, the worst possible case can be anticipated.
This question can be answered in a straightforward manner by simply plotting the
nondimensional response pj Mjω

3
j t0/P0 versus t0/Tj or ω j t0 for each of the three time

intervals discussed. Such a plot is called a response spectrum or a shock response spec-
trum. To illustrate the process of calculating a response spectrum, first consider the
simpler load input case where the jth modal force is a rectangular pulse. In this case
there are only two time intervals of concern rather than the three time intervals of
the triangular spike loading. The mathematical description of the modal force input
is

Pj (t) = P0
j [stp(t) − stp(t − t0)].

Using step response functions, the undamped modal deflection response is

for 0 ≤ t ≤ t0 pj (t) = P0
j

Mjω
2
j

[1 − cos ω j t]

for t ≥ t0 pj (t) = P0
j

Mjω
2
j

[cos ω j (t − t0) − cos ω j t].

In the first time interval, the maximum values of the deflection response, up to a
time value where ω j t = π , are controlled by the value of t0, the length of the time
interval of the applied force. That is, the ever increasing peak values obtained in this
initial time interval (0, t0) are only limited by the available time in the pulse interval.
The ever-increasing response is described by the (1 − cos ω j t)expression until that
expression reaches the value of +2.0. After ω j t = π , the maximum value of 2.0 is
never exceeded. Hence 2.0 remains the maximum value thereafter for this case of
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+ sin ωjt0

−(1− cos ωjt0)

√2(1− cos ω jt0)

ωjt

Figure 7.17. Schematic for calculating sines and cosines from tangents.

t < t0. These maximums must be compared with the maximum modal deflections
obtained for the second time interval.

To determine the maximum modal response in the time interval where t > t0, first
use the usual calculus routine for determining the time value for the maximums of
the second time interval response. (The minimum deflection response occurs when
t0 = 0.) That is, from the second of the above modal deflection solutions, write

d
dt

[cos ω j (t − t0) − cos ω j t] = −ω j [sin ω j (t − t0) − sin ω j t] = 0.

To solve for the times for the maximums expand the above expression for
sin ω j (t − t0) to obtain the following solution for tmax / min

tan ω j tmax = − sin ω j t0
1 + cos ω j t0

.

To facilitate the substitution of the above times for the maximum deflections into
the above second solution expression for pj (t), where the function cos ω j (t − t0)
is expanded to be cos ω j t cos ω j t0 + sin ω j t sin ω j t0, draw the right angle triangle
diagram of Figure 7.17, which embodies the above solution for the tangent. Now the
cosine and sine are easily determined with the result, after some algebra,

pj :max =
√

2
P0

j

Mjω
2
j

√
1 − cos ω j t .

To more easily interpret this solution, write

cos ω j t0 = cos ω j

(
t0
2

+ t0
2

)
= cos2ω j

t0
2

− sin2ω j
t0
2

and 1 = cos2ω j
t0
2

+ sin2ω j
t0
2

.

Then the solution for the maximum values of the deflection response has the simpler
form

pj :max/min = 2P0
j

Mjω
2
j

sin
ω j t0

2
.

Comparing this solution to the solution for the first time interval shows that the abso-
lute value of this solution for the maximum response is always larger than the absolute
value of the first solution for the maximum responses. That is, for the time period
0 < ω j t0 < 2π, 2 sin(ω j t0/2) > 1 − cos ω j t0 except at the point ω j t0 = π where the
two expressions are equal. Thus this second solution determines the response spec-
trum, which can be plotted as shown in Figure 7.18.
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ωj
2

(pj)max
Pj

0
jM

ωjt02

2

4 6 8

1

1.5

0.5

2 sin (        )ωjt0
2

Plot[Abs[f[x],{x,0,3 Pi}]

Figure 7.18. Response spectrum for a rectangularly shaped pulse of magnitude P0
J and dura-

tion t0 after time zero.

The response spectrum for the originally considered isosceles triangular shaped
pulse can be found in Ref. [7.13], p. 107. That reference also shows the response spec-
trum for a half-wave sinusoidal pulse on that same page, and on p. 125, it shows the
response spectrum for a ramp input that levels off at time t1. Clearly these response
spectra are more valuable when the number of modes needing consideration is small,
and they are most valuable when the structure, or, for example, the item to be pack-
aged, can be, at least crudely, modeled as a single-DOF system.
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Figure 7.19. (a) Lunar lander descending at constant velocity. (b) Measuring muzzle velocity.
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CHAPTER 7 EXERCISES

7.1 (a) The undamped m, k moon-landing vehicle shown in Figure 7.19(a) descends
to the lunar surface at a constant descent velocity V. Write the expression for the
harmonic motion of the mass m after initial contact with the lunar surface, time zero.
Let g be the lunar acceleration of gravity.

(b) Consider the single-DOF, undamped M, K system shown in Figure 7.19(b). At
time zero, the system is impacted by a bullet of mass m traveling a short distance
through air at a constant velocity v. With the constant quantities m, M, K, and U (U
being the deflection amplitude of the vibrating target plus imbedded bullet) being
measured directly, calculate the (muzzle) velocity of the bullet, v. Could a pendulum
impacted at its center of mass serve as another means of determining muzzle velocity?

(c) Consider the three-DOF pendulum system shown in Figure 2.15, for Exercise
2.4. From Examples 5.1 and 5.4, the natural frequencies and mode shapes of this
system are

ω1 = √
β A(1) = �1.0 1.0 1.0�

ω2 = √
2β A(2) = �−1.0 0.0 1.0�

ω3 = 2
√

β A(3) = �−0.5 +1.0 −0.5�.
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For initial conditions of zero initial velocity, and zero initial deflection but for a initial
angular deflection of 0.1 rad for the right-hand pendulum, calculate the deflections
of all three pendulums, and plot the time history of the middle pendulum for the time
interval (0, 4π/

√
2β).

(d) The above three exercises focus on entering initial conditions into the dynamic
response solution. Where do the boundary conditions enter the FEM matrix formu-
lation of a dynamic response problem?

7.2 This exercise leads to an introduction to the definition of transmissibility, as
discussed in the solutions to this exercise.

(a) Write the expression for the amplitude of the steady-state vibratory response
of the lightly (viscously) damped, single-DOF system shown in Figure 7.7 when the
base motion u(t) = U0 sin ω f t , where ω f 
= ω1 = √

3EI/mL3. Let the damping factor
be ζ , and let the damping force (opposing the motion) be dependent solely on the
absolute motion of the mass, q(t); that is, the magnitude of the damping force acting
on the mass is 2mζω1q̇(t).

(b) Repeat part (a), but this time let the damping force be solely dependent on the
motion of the mass relative to the base, q(t) − u(t); that is, the magnitude of the
damping force acting on the mass is 2mζω1(q̇ − u̇).

(c) It is not unusual for a structure to elastically support a large, relatively rigid mass
that contains a component that rotates at high angular velocity. Two examples are
a piece of heavy machinery used for manufacturing supported by a factory building
structure, and an aircraft engine supported by an airframe structure. The centrifugal
force associated with a slight imbalance of the rotating component impresses (in any
one direction) a harmonic force on the relatively “rigid” mass that is the piece of
machinery or aircraft engine. The design of the machine or engine mounting, that is,
the connection or interface between the rigid mass the supporting structure, often
seeks to minimize the transmission of the impressed harmonic force from the rigid
mass to the supporting structure. The design model is that of a one-DOF system
where the rigid body has mass m,the elastic elements forming the support interface
between the rigid body and the structure are grouped together as a single spring
k, and the inherent damping is represented by a dashpot c, where again the spring
and dashpot connect the mass to the supporting structure. The imbalance induced
harmonic force acting on the structure has the form F0 sin ω f t . Determine the ratio
of the magnitudes of the transmitted force (i.e., the sum of the forces in the spring
and dashpot) to the impressed force, F0. Hint: Use as your generalized coordinate,
q(t), the absolute motion of the rigid mass, and approximate the small motion of the
supporting structure as nonexistent.

7.3 As shown in Figure 7.20, a building of mass m is supported vertically by a series
of rollers and against horizontal motion by springs of total stiffness k and damp-
ing idealized as dashpots with a total coefficient c. The building is subjected to a
horizontal ground motion Υ0 sin ω f t => Υ0 exp(iω f t).

(a) Write the building’s equation of motion and then determine the building’s steady-
state response u0 exp(iω f t). Form the ratio of the amplitude of the building response
to the amplitude of the ground motion.
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k/2

c/2

k/2

c/2

m

Roller bearings

Figure 7.20. Exercise 7.3.

(b) If the frequency of the ground motion is estimated (known), then what would
you recommend with regard to the design of the horizontal stiffeners, k, and what
would you recommend with regard to system friction?

7.4 (a) Calculate the value of the frequency ratio for which Eq. (7.7) has its maxi-
mum value and that maximum value.

(b) Show that IF the amplitudes of the harmonic loading vector {Q(t)} = {Q0}eiωt

are proportional to the jth modal vector weighted by the mass matrix, that is, IF
the amplitude vector {Q0} = c̃[M]{Φ( j)}, then only the jth mode is excited (i.e., the
deflection response is limited to pj (t) deflections).

7.5 (a) Evaluate the following integrals involving the Dirac delta function

(a)

+1∫
−1

x2δ(x − 2)dx (b)

+5∫
−1

x2δ(x − 2)dx

(c)

3∫
2(precisely)

x2δ(x − 2)dx (d)

3∫
2−

x2δ(x − 2)dx

(e)

π/2∫
−π/2

tan x δ(x) dx ( f )

π∫
−π

δ(x − 1/2π) sin xdx.

(g) Show, by means of the coordinate transformation, that the impulse response
function form of the Duhamel integral can also be written as

p(t) =
t∫

0

P(τ )h(t − τ )dτ =
t∫

0

P(t − τ )h(τ )dτ .

(h) Show, by means of integration by parts, that the impulse response function form
of Duhamel’s integral and the step response form of Duhamel’s integral are the same.
That is, show

pj (t) =
t∫

0

Pj (t − τ )h j (τ )dτ = Pj (0)g j (t) +
t∫

0

Ṗ j (t − τ )g j (τ )dτ.
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h(t) h(t)

Hinge
connection

EI, LEI, L

m

u(t)

Figure 7.21. Exercise 7.6.

7.6 The undamped, planar structure sketched in Figure 7.21 moves only in the plane
of the paper in response to a time-varying foundation motion (very simplified earth-
quake motion) that is

0 ≤ t ≤ t0 h(t) = t
t0

h0 and t0 ≤ t h(t) = h0.

(a) In terms of the sideways displacement of the mass, u(t), write the equation of
motion for this structural system.

(b) Write, in integral form, the solution for the motion u(t) in the time interval
0 ≤ t ≤ t0. Do not carry out any integrations.

(c) Write the solution for the motion u(t) in the time interval t ≥ t0. Do not integrate.

7.7 (a) Use the undamped impulse response form of the Duhamel integral,
Eq. (7.14), to obtain the response to a normalized step modal force written as P0

j stp(t).

(b) Use the undamped step response form the Duhamel integral, Eq. (7.15), to
obtain the response to a normalized impulsive acceleration written as Π jδ(t).

(c) Repeat part (a), but this time use Eq. (7.14), the damped impulse response form
of the convolution integral.

7.8 (a) Write, for an undamped system model, in terms of the ramp response func-
tion and the step response function, the response for the jth mode when the nor-
malized modal force time history is, at time zero, a vertical jump to a magnitude P0

j ,
followed by a linear decline to zero at time t1, followed by a constant zero value
thereafter.
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(b) Write, for an undamped system, in terms of the modal form of the sine response
function, the response for the jth mode when the normalized modal acceleration is
a positive half sine wave in the time interval (0, t0) with a maximum value of P0

j /Mj .

7.9 Consider a lightly damped single-DOF system whose equation of motion is

q̈ + 2ζω1q̇ + ω2
1q = 2ζωv̇ + ω2

1v,

where v(t), the base motion, is zero everywhere but in the finite interval
(0, t0) and in that interval the base motion is described by the parabolic shape
v(t) = +(4Υ/t2

0)(t t0 − t2).

(a) Write the convolution integral solution for the deflection response of the mass
in the time interval (0, t0). Do NOT carry out the integration.

(b) As above, set up the integral for the deflection solution after time t0. Do NOT
integrate.

For the eager

7.10 A cantilevered beam with a uniform stiffness coefficient EI and total length L
supports nonstructural mass such that the mass properties of the beam are modeled
as a discrete mass of magnitude 2m at the beam center, and m at the beam tip. The
mass moments of inertia of the lumped masses are negligible. At time zero, the tip
mass is subjected only to a pulse loading that is a positive force described analytically
by the function F(t).

(a) Write the equations of motion for this system using only the vertical deflections
at the masses as DOF.

(b) Use the modal transformation to write the superposition integral solutions for
modal deflections for this simple model.

7.11 Substitute the step function form of the Duhamel integral into the modal equa-
tion of motion so as to prove that this integral is indeed a solution to the modal
equation of motion. Hint: See Endnote (1).

7.12 When pushing a child on a playground swing, the person pushing is careful to
time his or her pushes to coincide with the natural period of the child and swing. To
examine the effects of selecting the time duration and timing of continuous pulses,
consider an undamped one-DOF system subjected to a base motion that has the form
of a pulse of constant magnitude Υ for a nondimensional time duration of ω1t0 and
is zero thereafter. If q(t) is the deflection response, then that response can be written
as

for 0 ≤ t ≤ t0 q(t) = Υ (1 − cos ω1t)
for t ≥ t0 q(t) = Υ [cos ω1(t − t0) − cos ω1t].

(a) If ω1t0 = 2π , sketch the response for all time.

(b) If ω1t0 = π , sketch the response for all time.
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(c) What would happen in case (b) if another rectangular pulse having the same
ω1t0 = π duration were applied at time ω1t0 = 2π? Another way of viewing this is to
consider the work done on the system by the applied, or equivalent applied, force.

W =
∫

F(t)dq(t) =
∫

F(t)
dq(t)

dt
dt.

Recall that the total mechanical energy, that is, the sum of the kinetic and potential
energies (and thus the amplitude of the motion) of the system is increased whenever
positive work is being done on the system. The above formula shows that work done
on the system is positive whenever the applied force and the velocity of the system
are in phase (i.e., have the same sign). Recall further that the velocity of the mass is
just the slope of the deflection time history. Thus it is a simple matter to decide when
and how long to apply additional pulses to either increase or decrease the amplitude
of a motion.

7.13 Using the modal transformation to diagonalize a multidegree of freedom struc-
tural system modeled as having proportional or Rayleigh damping was discussed in
Section 7.4. There is a slightly more general form of the damping matrix that allows
diagonalization by the modal transformation that was developed by T. K. Caughey
[7.5]. The Caughey damping matrix can be written as follows:

[c] = [m]
N−1∑
j=0

a j
(
[m]−1[k]

) j
.

To diagonalize the Caughey damping matrix, it is first necessary to scale (i.e., normal-
ize) the modal amplitude vectors differently than previously where a positive unit
value was assigned to the largest, in absolute value, entry in the vector. This previous
normalization led to the results

[Φ]t[m][Φ] = [\M\] and [Φ]t[k][Φ] = [\ω2 M\].

Now alter each jth modal vector in the modal matrix by dividing all its entries by
the square root of its corresponding modal mass term, Mj . Then the above equations
simplify to

[Φ]t[m][Φ] = [\I\] and [Φ]t[k][Φ] = [\ω2\].

Your task is to show that the Caughey damping matrix is indeed diagonalized by
the modal transformation by considering, say, the first four terms in the Caughey
series.

ENDNOTE (1): VERIFICATION OF THE DUHAMEL INTEGRAL SOLUTION

The validity of a purported solution to a differential equation can be tested by substi-
tution of that proposed solution into the original differential equation to determine
if the equation equality is truly satisfied. To show that Eq. (7.12), the Duhamel inte-
gral solution does indeed satisfy the modal equation of motion, Eq. (7.5a), recall
the mechanics of differentiating an integral. It is not difficult to prove that when an
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integral has a parametric limit or a parameter appears in the integrand, the easily
proved rules for differentiation are

d
dy

y∫
a

f (x)dx = f (y) and
d

dy

b∫
a

f (x, y)dx =
b∫

a

∂ f (x, y)
∂y

dx.

When an integral, such as the Duhamel integral, has both a parametric limit and
the same parameter in the integrand, then the derivative is obtained from use of the
chain rule for derivatives. To be more explicit, consider a general integral where the
dummy variable of integration is τ , and the parameter is t . Let the parameter t appear
in both of the limits of the integral as well as the integrand. Then the derivative with
respect to the parameter t is obtained as follows:

d
dt

G(u(t), v(t), w(t)) = d
dt

v(t)∫
u(t)

f (w(t), τ )dτ = ∂G
∂u

du
dt

+ ∂G
∂v

dv

dt
+ ∂G

∂w
dw

dt

∴ dG
dt

= − f (w(t), u(t)) × u̇(t) + f (w(t), v(t)) × v̇(t) + ẇ(t) ×
v(t)∫

u(t)

∂ f (w, τ )
∂w

dτ.

Now apply the above formula to the Duhamel integral solution of the modal equation
of motion

p̈ j + 2ζ jω j ṗ j + ω2
j pj (t) = Pj (t)

Mj
,

which is

pj (t) =
t∫

0

Pj (τ )h j (t − τ )dτ,

where from Eq. (7.14)

h j (t) = 1

Mjω j

√
1 − ζ 2

j

e−ζ j ω j t sin
[
ω j t

√
1 − ζ 2

j

]
.

Note that for the Duhamel integral, u = 0 and v = w = t . Thus

ṗ j (t) = Pj (t)h j (0) +
t∫

0

Pj (τ )ḣ j (t − τ )dτ,

where h j (0) = 0

and p̈ j (t) = Pj (t)ḣ j (0) +
t∫

0

Pj (τ )ḧ j (t − τ )dτ,

where ḣ j (0) = 1/Mj .

Substitution of the above results into the modal equation of motion produces

Pj/Mj (t) +
t∫

0

Pj (τ )[ḧ j + 2ζ jω j ḣ j + ω2
j h j (t − τ )]dτ

?= Pj (τ )/Mj .
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The square-bracketed quantity in the integrand above is zero because the impulse
response function, h j (t − τ ), is a solution to the force free (homogeneous) differential
equation of motion. Hence, the equality is satisfied, and the Duhamel integral is
verified as a solution to the modal equation of motion. This same process can be
applied to the step response function form of Duhamel’s integral.

ENDNOTE (2): A RAYLEIGH ANALYSIS EXAMPLE

A Rayleigh analysis approximates a multidegree of freedom structure as a single-
DOF structure by guessing at the structure’s first mode shape and using only that
assumed first mode shape to describe the motion of the structure. Thus a Rayleigh
analysis is a special case of a Ritz analysis, which uses more than one assumed
mode shape and is sometimes called a Rayleigh–Ritz analysis. A person who has
no experience with Rayleigh analyses would understandably question the useful-
ness of any analysis that begins with a guess. Since the Rayleigh–Ritz procedure
was one of the very few general analysis tools available to engineers in the pre-
computer era, and certainly the most elegant one, it was used and studied exten-
sively. It has been proven that a good estimation of the first natural frequency of
the structure can be had for any reasonable estimate of the first mode shape. See
Ref. [7.14], p. 118.

A simple example suffices for a brief explanation of the Rayleigh procedure for
the present purpose of obtaining a good estimate of the first natural frequency of
a structure, and an estimate of the effective mass associated with the first natural
frequency. Consider a structure that reasonably can be modeled as a single, nonuni-
form cantilevered beam. Note that a Rayleigh analysis can be applied to any type
of structure, but choosing a beam simplifies the discussion. Let the beam structure
undergo a lateral vibration. Then, temporarily viewing this nonuniform beam as a
continuum, the kinetic energy of this beam is

T = 1
2

L∫
0

m(x)[ẇ(x, t)]2dx,

where m(x) is the mass per unit length along the length of the beam and w(x, t) is
the lateral deflection of the beam axis. From engineering beam theory, the strain in a
beam that is bending only in the x, y plane is −z(d2w/dx2). In this circumstance, the
strain energy (the energy stored because of deformation) of the nonuniform beam
can be written as

U = 1
2

∫
L

∫ ∫
A

E(x)[ε(x, t)]2 dAdx = 1
2

∫
L

EI(x)[w′′(x, t)]2dx.

To initiate the Rayleigh method, guess that the first mode shape of this can-
tilevered beam has the shape of a cubic polynomial. Then for a free vibration of
the cantilevered beam, with the coordinate x starting at the clamped end, write
w(x, t) = Wmax (x/L)3 sin ω1t , where Wmax is the tip deflection of the cantilevered
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beam. Substituting this guess for the lateral deflections into the expressions for the
kinetic energy and the strain energy leads to

T = 1
2

[Wmaxω1]2 cos2ω1t

L∫
0

m(x)
x6

L6
dx

U = 36
2

[Wmax]2 sin2ω1t

L∫
0

EI(x)
L4

x2

L2
dx.

As the beam vibrates, every point along the beam axis passes through the beam’s
undeflected position simultaneously. At that point in time, the beam velocities, and
hence the kinetic energy of the beam as a whole, are a maximum. At this same point
in time, the strain energy is zero because the beam is undeflected. At the peak of its
deflections, just as the motion of the beam is about to change direction, the velocities,
and hence the kinetic energy, are zero. However, at the peak deflections, the strain
energy is a maximum. Since, in this model, the structure vibrates without damping,
its total energy, which is the sum of the kinetic and strain energies, is a constant. From
the above discussion, this constant is equal to the the maximum kinetic energy or the
maximum strain energy. Hence, the maximum kinetic energy equals the maximum
strain energy. The points in time where the above energy expressions are a maximum
is clearly when the two trigonometric functions have the value of 1. Hence, equating
these maximum energies leads to the following approximation for the first natural
frequency for this structure

ω2
1 =

36
∫

L

EI(x)
L4

( x
L

)2
dx∫ L

0
m(x)

x6

L6
dx

= Keff

Meff
.

The integrations are easily carried out numerically by selecting 8, 10, or more nodes
along the length of the beam and using beam stiffness coefficients, EI, at those nodes,
and lumping the surrounding mass at those nodes. Hence an estimate for the first
natural frequency is obtained. Note that the mass near the beam tip, where the value
of x is greater, has a much greater influence on the result than the mass near the
base of the nonuniform beam. The natural frequency and the effective mass, which
is the denominator of the above fraction, are the only parameters required to now
treat the multidegree of freedom structure as a single-DOF system in the forced
vibration case.

ENDNOTE (3): AN EXAMPLE OF THE ACCURACY OF BASIC STRIP THEORY

Since flutter calculations based on basic strip theory do not account for such effects as
those produced by airfoil thickness, airstream viscosity and compressibility, and, par-
ticularly, a finite wing aspect ratio with its resulting wing tip vortices (a three- rather
than two-dimensional flow field), fully accurate calculated flutter speeds and flutter
frequencies should not be expected. The aircraft industry response to these limita-
tions was extensive experimentation with aircraft models and carefully monitored
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flight testing. Both flutter model testing and flight testing are expensive operations
requiring careful preparation. The testing of a cantilevered wing flutter model is the
subject of this endnote. First note that a “flutter model” requires the difficult task of
scaling not just the aerodynamic shape of the model, but also the elastic and inertial
properties of the system being modeled. It is the latter challenge that makes the
models so expensive to build.

Reference 7.15 discusses a wind tunnel flutter model wing of 37.65-in. semispan
length. The model wing had a low aspect ratio of 3.5, a taper ratio of 0.2, a root chord
length of 35.857 in., and a leading edge sweep back angle of 45◦. The scaled elastic
portion of the structure consisted entirely of a finely milled, tapered aluminum beam
that was cantilevered at 5% of the semispan. The beam was perpendicular to the
support (wind tunnel wall) until 20% of the semispan and then was swept back at an
angle of 32.54◦. To be as consistent as possible with the simplifications associated with
the unsteady aerodynamic loads of basic strip theory, the balsa wood wing segments
were connected to the aluminum beam only at the centers of those segments, which
were connections at every one-tenth of the semispan length starting at 5% of the
semispan length. Small lead weights were used to scale the mass properties of the
wing design. The wind tunnel experimental flutter speed was 95.9 mph with a flutter
frequency of 12.5 Hz. Calculations using the low-speed, unsteady airloads discussed
above estimated the flutter airspeed at 68.9 mph and the flutter frequency at 14.5 Hz.
When the more sophisticated low-speed aerodynamics developed by Eric Reissner,
Ref. [7.8], which accounted for a finite aspect ratio, were used, the calculated flutter
airspeed and frequency were 99.6 mph and 12.0 Hz, a much more accurate result, but,
alas, not on the safe side. Again see Ref. [7.15]. Unfortunately, the use of the Reissner
aerodynamics applied to other such model wings didn’t always result in such close
estimates of the experimental results, just better results than the basic strip theory
aerodynamics, which, of course, are without the finite aspect ratio correction.

ENDNOTE (4): NONLINEAR VIBRATIONS

Modern computing power makes possible the routine investigation of nonlinear
behavior by numerical methods. The presence of nonlinear behavior in a structural
system is to be expected if the amplitudes of the vibration exceed whatever are
“small” deflections for the system of interest. For example, small beam deflections are
deflections that do not exceed approximately one-quarter of the depth of the beam.
Otherwise such deflections are called “finite” deflections. “Large” deflections exceed
the depth of the beam. What often happens when the deflections are finite is that there
is significant coupling between the axial forces and those associated with beam bend-
ing, as well as coupling between the bending moments in the two orthogonal planes
of bending, and the twisting moment. The result of this coupling is that the structure
becomes stiffer as the amplitudes of vibration increase. Greater stiffness means
higher natural frequencies. Thus the situation where the natural frequencies depend
on the amplitude of the vibration. This low-damping-value situation can be depicted
graphically, say, by altering the straight-up resonant peak of Figure 5.8 by bending it
to the right so that the resonant peak that starts out at the frequency ratio Ω = 1.0 is
only reached by increasing the frequency ratio. This phenomena can lead to surpris-
ing results. In this case, an applied harmonic load of increasing frequency, sometimes
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called a frequency sweep, will lead to increasing amplitudes as the first natural
frequency is approached from below just as in the wholly linear case. However, the
increase in amplitudes will not be rapid as in the linear case. Then, as the frequency
continues to slowly increase, the amplitude will suddenly drop to the low intermode
value. The upper path of the bent over resonance diagram became unstable, and
the amplitude drops past the lower portion of the resonance curve to the intermode
value. If the sweep is from higher frequencies to lower frequencies, then as the
lower natural frequency is approached, the amplitudes will jump up from the lowest,
intermode curve past the lower path of the bent over resonance peak to the upper
path. That is the amplitudes will suddenly jump in magnitude.

Strange things happen not only with the amplitudes but also can happen with a
response frequency. A simple example of such a phenomenon is the case of a long, uni-
form, thin beam-column undergoing fully elastic Euler buckling. Although the static
Euler beam-buckling ordinary differential equation has a linear form, it is actually
a nonlinear problem because the derivation of that ordinary differential equation
requires consideration of a deformed beam element. From another viewpoint, the
static beam buckling equation (the dynamic form of beam bending equations is dis-
cussed in the next chapter) for a compressive axial force P is

EIw′′′′(x) + Pw′′(x) = 0.

The axial compressive force is related to the axial deflections u(x) according to the
formula

P = −EAu′(x).

If the second of these two formulas is substituted into the first, then the second term
of the equation involves the product of the two deflections, which is a nonlinear
term. Now let this long, thin beam-column be subjected to a harmonic axial force
whose minimum magnitude is the Euler buckling load for that beam-column, and the
maximum amplitude is some greater value that still results in fully elastic behavior
in the beam-column. Start the applied harmonic force at its minimum value. As the
force increases in magnitude to its peak value and then recedes again to its minimum
value, the beam-column will bend out from its straight position, say to the left, and
then return to its straight position. Then the beam-column’s inertia loads will carry
the beam through its straight position to the right, and the still-increasing values of
the applied axial force will abet the motion to the right. Thus a peak deflection will be
achieved on the right side and will subside to the original equilibrium position, and so
on. Note the periods of the applied axial force and the beam-column response. The
applied harmonic force goes through two periods of its motion, whereas the beam-
column goes through only one. Therefore the forced harmonic response frequency
of the nonlinear beam-column is one-half that of the applied harmonic load. Recall
that in all the previously considered linear cases, response harmonic frequency is the
same as the applied load’s harmonic frequency.

Chapter 9 provides examples of numerical calculations of vibratory responses for
relatively simple, nonlinear structural systems.
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8.1 Introduction

The previous four chapters emphasized the advantages of using discrete mass math-
ematical models wherein both the structural mass and the nonstructural mass is
“lumped” at selected (usually a relatively few) finite element nodes or at short dis-
tances from those finite element nodes. The alternative in mass modeling is the
seemingly more realistic mathematical model where the mass is distributed through-
out each structural element. Such distributed or continuous mass models are not
nearly as useful as discrete mass models. However, continuous mass models do have
enough instructional value and occasional engineering value that they cannot be
wholly ignored. Their instructional value resides in (i) seeing the results of dealing
with what is essentially an infinite DOF system; (ii) the reinforcement, and perhaps
deeper understanding, obtained through repetition of the same analysis procedures
used with discrete mass systems in a different context; and (iii) discovering the very
few types of structures which can be usefully described by this much more concise
type of modeling. Therefore the purpose of this chapter is to discuss some of those
situations where the use of continuous mass models is of some, albeit small, value in
the study of structural dynamics.

Again, continuous mass models are practical only in quite restricted circumstances.
All cases examined here are limited to structures that are modeled as a single struc-
tural element (e.g., one beam or one plate). Furthermore, each structural element
must have either a uniform geometry and mass distribution, or a geometry that varies
in such a simple and smooth manner that it can be described by use of a low-order
polynomial function.

8.2 Derivation of the Beam Bending Equation

The matrix form for the equations of motion for the general discrete mass structural
model was derived using the Lagrange equations of motion. Since the Lagrange
equations of motion utilize generalized coordinates that can represent deflections at
specific points in the structure, the Lagrange equations are very compatible with the
discrete mass finite element model of a structure. However, to derive, for example,

402
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the beam bending equation of motion in terms of a lateral deflection at any point
along the axis of a beam with continuous mass modeling, it is much more convenient
to use Hamilton’s principle. From the first chapter, after separating the total virtual
work into the sum of the virtual work of the internal loads and the virtual work of
the external loads, Hamilton’s principle can be written as

t2∫
t1

[δT + δWin + δWex] dt = 0 =
t2∫

t1

[δT − δU − δV ] dt ,

where, again, the limits of integration are wholly arbitrary. Now it is a matter of
detailing each of the three components of either integrand. For the sake of initial
simplicity, let the beam vibrations be limited to lateral vibrations in the x, z plane.
The placement of the x, y, and z Cartesian coordinates for the beam is as follows. The
y and z axes lie in the plane of the beam cross section and originate at the centroid of
the beam cross section. The x axis runs the length of the beam and is the loci of those
centroids. For this limitation of vibrating only in the x, z plane to be realized, it is
necessary that (i) the z-direction lateral loading per unit of beam length, fz(x, t), act
only along the x axis and thus have lines of action that pass through the centroid of
the beam cross section and (ii) the shear center1 of each cross section also lie on each
z axis. This alignment of the cross-section centroid and shear center will occur if the
z axis is an axis of symmetry of the beam cross section. Then the only beam lateral
deflection is w(x, t), which is positive in the z direction, and the product of inertia,
Iyz, is zero. Therefore the kinetic energy (one-half the mass multiplied by velocity
squared) of a differential length of the beam located at the point x along the length
of the beam is

dT = 1
2

[ρ A(x)dx]
[
∂w(x, t)

∂t

]2

,

where ρ is the mass density, and A is the cross-sectional area. In this case, w(x, t) can
be measured from either the shear center or the centroid of the cross section. Hence,
the kinetic energy for the entire beam when it undergoes lateral bending vibra-
tions is

T = 1
2

L∫
0

ρ A(x)
[
∂w(x, t)

∂t

]2

dx.

Therefore, the variation on the kinetic energy is

δT =
L∫

0

ρ A(x)
∂w(x, t)

∂t
∂[δw(x, t)]

∂t
dx.

In this limited circumstance, the virtual work of the external loads involves only the
lateral loading per unit length fz. The positive upward work producing force acting at

1 For small displacements, lateral loads applied along the loci of shear centers do not cause the beam to
twist. The shear center is the center of twist for a beam cross section.
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any point x along the length of the beam is fz(x, t)dx and the corresponding virtual
displacement is δw(x, t). Hence, the external virtual work for the entire beam is

δWex =
L∫

0

fz(x, t)δw(x, t) dx.

Again, the virtual work of the internal forces is equal to the negative of the variation
of its corresponding potential function, which is the elastic strain energy. That is,
δWin = −δU. The use of the elastic strain energy alone, as is done here, limits the
validity of all subsequent beam analyses based on this derivation to the elastic range
of material behavior. Since engineering beam bending theory hypothesizes that the
only significant bending strain is the normal strain εxx, the small deflection beam
bending strain energy is, from Ref. [8.1]

U = 1
2

∫∫∫
σxxεxx dx dy dz = 1

2

∫∫∫
Eε2

xx dx dy dz,

where Hooke’s law (linear elasticity) for no temperature change is used to obtain
the second integral. Any elementary strength of materials textbook explains that,
for beam bending, the above-normal strain at any point on the beam cross section
is approximated, with good accuracy, as the negative of the distance of that point
on the cross section above the centroid, z, multiplied by the local beam curvature,
∂2w(x, t)/∂x2. Thus

U = 1
2

L∫
0

E
[
∂2w(x, t)

∂x2

]2 (∫
A

∫
z2 dy dz

)
dx.

The above area integral is called the area moment of inertia about the y axis, symbol-
ized as Iyy. Since this is the only area moment of inertia to enter this development,
the symbol is shortened to just I. Applying the variational operator to both sides of
the above expression

− δWin = δU =
L∫

0

EI
∂2w(x, t)

∂x2

∂2

∂x2
[δw(x, t)] dx.

Now that all three terms of the integrand of Hamilton’s principle have been
detailed, they can be substituted into that integrand to obtain

t2∫
t1

L∫
0

{
ρ A(x)

∂w(x, t)
∂t

∂[δw(x, t)]
∂t

+ fz(x, t)δw(x, t)

− EI(x)
∂2w(x, t)

∂x2

∂2

∂x2
[δw(x, t)]

}
dx dt = 0.

To have the same varied deflection, δw(x, t), as a common factor for all three terms
of the integrand, it is necessary to integrate by parts over both time and space. For
the first term of the integrand, the time and distance integrals are first reordered,
and one integration by parts over time is performed. The second term is fine the
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way it is. The third term requires two integrations by parts over distance. When the
integration by parts is completed, the result is

t2∫
t1

L∫
0

{
−ρ A(x)

∂2w(x, t)
∂t2

δw(x, t) + fz(x, t)δw(x, t)

− ∂2

∂x2

[
EI(x)

∂2w(x, t)
∂x2

]
δw(x, t)

}
dx dt

+
L∫

0

ρ A
∂w

∂t
δw

∣∣∣∣
t2

t1

dx −
t2∫

t1

EI
∂2w(x, t)

∂x2
δ

[
∂w(x, t)

∂x

] ∣∣∣∣
L

0
dt

+
t2∫

t1

∂

∂x

[
EI(x)

∂2w(x, t)
∂x2

]
δw(x, t)

∣∣∣∣
L

0
dt = 0.

The next step is to recall that the values of the limits of integration, t1 and t2, are wholly
arbitrary. For the first single integral to be individually zero, it is sufficient that the
virtual displacement be chosen to have, as per usual, a zero value at those time limits
everywhere along the length of the beam. The second of the single integrals can be
disposed of by saying that for all values of time, either the bending moment (EIw′′)
is zero or the bending slope (w′) is a constant at both ends of the beam. The third
integral is zero for all values of time if either the shear force (EIw′′)′ is zero or the
displacement (w) is a constant at both ends of the beam. These latter two integrals
provide the general beam boundary conditions. With these requirements, the above
result reduces to the one double integral

t2∫
t1

L∫
0

−
{
ρ A(x)

∂2w(x, t)
∂t2

+ fz(x, t) − ∂2

∂x2

[
EI(x)

∂2w(x, t)
∂x2

]}
δw(x, t) dx dt = 0.

Note that this double integral has a zero value regardless of the arbitrary choice for
the values of the continuous virtual displacement function between the time limits.
For example, for any fixed value of time t , whether the value of δw is positive over
the left-hand part of the beam and zero over the right-hand portion of the beam, or
vice versa, the integral is always zero. The only way that this can happen is for the
quantity within braces to be zero for all values of x and all values of t within the time
limits. This result is the partial differential equation for beam bending

∂2

∂x2

[
EI(x)

∂2w(x, t)
∂x2

]
+ ρ A(x)

∂2w(x, t)
∂t2

= fz(x, t). (8.1)

This simplified equation is sufficient to illustrate the process of determining natu-
ral frequencies and mode shapes for beam bending and then the determination of
deflection responses to applied forces. Note if damping were part of the beam model,
it would have appeared in the external virtual work expression. Alternately, it could
be entered here as a velocity-dependent term as part of fz(x, t). More extensive
beam bending equations are set forth in Endnote (1), along with a beam twisting
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equation and a beam axial deflection equation. The plate bending equation is also
included in Endnote (1). Endnote (2) repeats much of the above for the case where
there are also point masses and springs included in the mathematical model of the
structure.

8.3 Modal Frequencies and Mode Shapes for Continuous Models

When a discrete/lumped mass model is used for a vibration analysis, the initial result
is a set of many coupled, ordinary differential equations, with time as the indepen-
dent variable. These equations are best solved in matrix form. Whenever a single
structural element with a continuously distributed mass is used as the model for a
vibration analysis, the linear governing differential equation is always a partial differ-
ential equation with time and at least one spatial variable acting as the independent
variables. This typifies the usual circumstance of a large set of ordinary differen-
tial equations being an approximation to one or more partial differential equations.
In general, partial differential equations are a significantly greater challenge than
ordinary differential equations. However, it can be established, as below, and as was
the case for the discrete mass models, that when the structure is undergoing a force
free vibration, the time variation of the motion must be sinusoidal. As will be seen,
this information allows the elimination of the independent time variable from the
free vibration differential equation. Consider, for example, a beam deflection par-
tial differential equation that has time, t , and distance along the beam axis, x, as
its two independent variables. After the introduction of harmonic motion, a known
variation of the time variable, this partial differential equation becomes a single ordi-
nary differential equation in terms of x alone. Hence, it is possible that a particular
distributed-mass beam vibration equation is open to a manageable analytic solution,
as well as to a numerical solution.

As will be seen in general, the linear partial differential equations that describe the
force free, small deflection, undamped motion of distributed mass structural elements
(beams, plates, etc.), and thus structures, vibrating about their static equilibrium
configuration all have the form

P[w(x, t)] + H[w(x, t)] = 0,

where w represents a deflection of any type, x is one or more spatial variables, and P

is an even-order, partial derivative operator in the relevant spatial coordinates only.
This operator also involves quantities that describe the geometry and the elastic prop-
erties of the structure. The partial derivative operatorHdescribes the inertial loading.
As such, it involves two time differentiations, the mass density of the structure, and
quantities that further describe the geometry of the structure. There are various tech-
niques for determining general solutions for the above partial differential equation,
such as those set forth, for example, in Ref. [8.2]. These general solutions involve
arbitrary functions just as ordinary differential equation solutions involve arbitrary
constants. With a few exceptions, such as that for the wave equation, these solutions
in the form of arbitrary functions are seldom useful in structural engineering appli-
cations. The most prominent mathematical technique for finding useful solutions for
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those partial differential equations associated with structural engineering is called
separation of variables. As the name implies, this technique applied to the above
partial differential equation would result in the unknown function w(x, t) written as
either the sum of functions each with fewer variables than w or the product of such
functions. In this case a useful solution is obtained using a product. Specifically, let
w(x, t) = W(x)T(t). Substituting this trial variables separable solution recalling that
P involves only spatial derivatives while H involves two temporal derivatives, the
above governing differential equation becomes

T(t) P[W(x)] + T̈(t) H[W(x)] = 0

or
P[W(x)]

H[W(x)]
= − T̈(t)

T(t)
= +ω2,

a constant, where the two time derivatives of the H operator were removed and
applied to the time function, leaving only the spatial operator or factor H, which
involves material density and geometric factors. The reason the above two ratios are
equal to the same constant is as follows. Note that the first ratio involves only the
spatial coordinates, whereas the second ratio only involves time. Fix all the spatial
coordinates and vary time. Since the spatial coordinates are fixed, the ratio involving
the derivatives of W(x) does not vary. Therefore, the ratio involving T(t) also does
not vary despite the fact that t is varying. Thus the ratio involving T(t) must be equal
to a constant and so, too, the ratio involving W(x). A positive constant is selected
because a negative constant would require the deflections to increase exponentially
with increasing time. Such a deflection time history is contrary to the nature of a force
free vibratory motion and thus is rejected. With the choice of a positive constant, the
function T(t) must satisfy the following now very familiar differential equation

T̈ + ω2T = 0 so T(t) = A sin(ωt + ψ).

Therefore the engineering solution to the original partial differential equation
becomes w(x, t) = W(x) sin(ωt + ψ) with the amplitude Aabsorbed into W(x). This
separation of the time and spatial variables, which is valid for all free vibrations,
allows the elimination of the time variable from the original differential equation.
That is, after canceling the function T(t), the original partial differential equation
with time and spatial variables becomes either a partial differential equation only
in terms of spatial variables or, if there is just one spatial variable, the ordinary
differential equation

P[W(x)] − ω2H[W(x)] = 0.

With the above background in place, consider the following beam example problems
that illustrate this process.

EXAMPLE 8.1 Write the mathematical description of the force free motion of
the single, undamped, uniform, simply supported beam shown in Figure 8.1(a) as
it undergoes bending vibrations in the x, z plane. Again let w(x, t) and W(x) be
respectively the z-direction bending deflection and bending deflection amplitude
beyond the beam’s static equilibrium position (SEP). To confine the motion to that
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Figure 8.1. Example 8.1. Natural frequencies and mode shapes for a simply supported, uniform
beam.

of beam bending in the plane of the paper, let, as discussed previously, the y and
z axes be the principal axes of the beam and let both the shear center (the elastic
center) and centroid (the mass center) of each cross section lie in the x, z plane so
that the beam does not twist as it deflects [8.1].

SOLUTION Equation (8.1) provides the explicit form of the governing differential
equation that can easily be adapted to describe the free vibration of this beam.
However, just for the purpose of demonstrating a different point of view, note that
because there is no axial force, N, along the length of the beam, from Endnote (1),
the fourth-order2 beam bending differential equation that describes the z-direction,
lateral deflection of this uniform beam can be written in the form

EI
∂4w(x, t)

∂x4
= fz(x, t),

where fz(x, t) is the z-direction load per unit of beam length. In this free vibration
case, this distributed loading is entirely the result of the vibratory accelerations of

2 Briefly, this form of the fourth-order beam bending equation can be obtained from the second-order
equation EI(∂2

w/∂x2) = M(x, t) by differentiating twice with respect to x while recalling that the
derivative of the internal moment is the internal shear force, and the derivative of the internal shear
force is the externally applied force per unit length of beam axis.
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the distributed mass. That is, the lateral load is the inertial force per unit length.
Since any inertia force is the negative of mass multiplied by acceleration, the lateral
inertial force per unit of beam length is the negative of the mass per unit length, ρ A,
multiplied by the second time derivative of the lateral deflection. Therefore, from this
argument, or the detailed energy approach of Endnote (2), the beam fourth-order,
governing differential equation for a free vibration in the x, z plane is

EI
∂4w(x, t)

∂x4
= −ρ A

∂2w(x, t)
∂t2

.

Since this beam is simply supported, the boundary conditions (BCs) are those of zero
deflection and zero bending moment at both beam ends. The mathematical descrip-
tion of these BCs reduces to w(0, t) = w′′(0, t) = w(L, t) = w′′(L, t) = 0, for all times
t , where primes indicate partial derivatives with respect to x. After employing the
free vibration (variables separable) substitution of w(x, t) = W(x) sin(ωt + ψ), and
after cancellation of the sin(ωt + ψ) term, the above partial derivative equation and
its associated BCs reduce to the following ordinary differential equation and its BCs

W′′′′(x) − λ4W(x) = 0,

where λ4 ≡ ρ Aω2

EI

W(0) = W′′(0) = W(L) = W′′(L) = 0. (8.2)

The differential equation and BCs of Eq. (8.2) are an example of the ordinary
differential equation form of an eigenvalue problem. Note that, just like the matrix
eigenvalue problem discussed previously, (i) there is a trivial solution for both the
differential equation and the boundary conditions, which is, again W(x) = 0; (ii) if
W(x) is a solution, then so too is cW(x), where c is an arbitrary factor; and (iii) the
single governing differential equation contains two unknowns, W(x) and λ. Hence,
when this fourth-order equation is integrated, there will be four unknown constants
of integration plus the unknown parameter λ; that is, five quantities to be determined
by the four BC equations. Thus, just as was true for the n × 1 amplitude vector of
the matrix eigenvalue problem, it will be possible to determine only the infinite
dimensioned vector (i.e., the function) W(x) up to a multiplicative constant. In other
words, for this formulation for beam bending, whereas the shape of W(x) will be
determined, its magnitude will be indefinite. This fact is evident because, again, if
W(x) is a solution to this differential equation, then cW(x) is also a solution to the
same equation.

Rather than just state the four linearly independent functions of x that satisfy
Eq. (8.1), the algebraic dexterity required makes it worthwhile to derive the solution.
The solution to this equation, as it is for all linear, ordinary differential equations with
constant coefficients, is obtained from the always successful use of the trial function
solution W(x) = Bexp(rx), where here B is a constant of integration and the constant
r is to be determined. Substitution of the trial solution into the differential equation
leads to the algebraic equation

B exp(rx)[r4 − λ4] = 0.
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At least one of these three factors must be zero. The exponential function is never
zero regardless of the value of r , real or complex. The amplitude B must be excluded
from being zero because then the trial function Bexp(rx) always would be zero,
which is the above-rejected trivial SEP case. Therefore, the only useful possibility
is when r4 = +λ4. There are four distinct roots to this algebraic equation, which is
called the characteristic equation of the structural system. These roots are

r1 = +λ r2 = −λ r3 = +iλ r4 = −iλ.

Substitution of each of these four possible distinct roots into the trial function
Bexp(r x) leads to the following form of the general solution

W(x) = B1eλx + B2e−λx + B3eiλx + B4e−iλx.

Recalling that3

exp(±iλx) = cos(λx) ± i sin(λx)

exp(±λx) = cosh(λx) ± sinh(λx)

the solution for W(x) can be rewritten in more convenient form as

W(x) = (B1 + B2) cosh λx + (B1 − B2) sinh λx

+ (B3 + B4) cos λx + i(B3 − B4) sin λx

or W(x) = C1 sinh λx + C2 cosh λx + C3 sin λx + C4 cos λx. (8.3)

Note that the constants C3 and C4 are real quantities. All these constants of inte-
gration can be proven to be real simply by noting (i) that λ is, by definition, real and
(ii) W(x) is real for all real values of x. Then select four real values of λx that produce
the following four linearly independent equations4 where j = 1, 2, 3, 4

W(xj ) = C1 sinh(λxj ) + C2 cosh(λxj ) + C3 sin(λxj ) + C4 cos(λxj )

or in matrix form

{Wj } = [real constants]{Cj }.
Since each of the above equations is linearly independent of the others, the coeffi-
cient matrix of “real constants,” derived from the sinh through cos functions, can be
inverted5 to obtain another matrix of strictly real quantities. Since the product of this
real square matrix and the vector {Wj} must also be real, so, too, are the constants
of integration. Thus the original constants of integration B3 and B4 are complex
conjugates.

3 The definitions of the hyperbolic sine and hyperbolic cosine functions are sinh z = (ez − e−z)/2 and
cosh z = (ez + e−z)/2.

4 One possible choice for the four such values of λx is (0, π/2, −π/2, π). The resulting second and third
equation prove that C2 is real. Then the first equation proves C4 is real. Then the fourth equation
proves C1 is real, and hence C3 is real.

5 See Endnote (3) for confirmation of this assertion.
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Now it is a matter of substituting the above solution for the vibration amplitude
function, W(x), into the previously stated boundary conditions. When dealing with
differential equation eigenvalue problems, usually it is best to apply the BCs in the
systematic way of writing a matrix equation. The four equations W(0) = W(L) =
W′′(0) = W′′(L) = 0 respectively yield the four rows of the matrix equation


0 1 0 1

sinh λL cosh λL sin λL cos λL
0 1 0 −1

λ2 sinh λL λ2 cosh λL −λ2 sin λL −λ2 cos λL







C1

C2

C3

C4


 =




0
0
0
0


 .

Using the same argument used in the discrete mass case that this square matrix must
be singular to avoid the otherwise inescapable trivial solution where all the coeffi-
cients of integration are zero, conclude that the determinant of the square matrix must
be zero. That is, conclude∣∣∣∣∣∣∣∣

0 1 0 1
sinh λL cosh λL sin λL cos λL

0 1 0 −1
sinh λL cosh λL − sin λL − cos λL

∣∣∣∣∣∣∣∣
= 0,

where the nonzero factor of λ2 was factored out of the last row. This determinant is
easily simplified by adding the third row to the first row. This determinant equation
can be further simplified by adding or subtracting the fourth row from the second
row. Expansion by minors quickly leads to the eigenvalue equation

sinh λL sin λL = 0.

The factor sinh λL is never zero unless λ is zero. If λ were zero, that would imply
that the natural frequency is zero. A zero natural frequency in a stable system con-
strained against rigid body motion, such as this simply supported beam, identifies
the nonvibratory (static) trivial case. That possibility is rejected. Thus the zeros must
be found in the second factor, sin λL. Since the zero value for λ has already been
rejected, conclude that the necessarily positive quantity λL = nπ . Using the above
definition of λ, the solution for the beam natural frequencies is

ωn = n2π2

L2

√
EI
ρ A

for n = 1, 2, 3, . . . . (8.4)

Just as was the case for the discrete mass model, of course, natural frequencies vary
as the square root of the stiffness term divided by the mass term. It is quite unusual
to have all the theoretical values of the natural frequencies be integer products of
the fundamental natural frequency.

Substitution of the solution for λ = nπ/L into the matrix equation for the constants
of integration yields, after some algebra, C1 = C2 = C4 = 0, whereas C3 remains
indeterminate for each value of n. Therefore the mode shapes are

Wn(x) = C3n sin
nπx

L
≡ An sin

nπx
L

.
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Figure 8.1(b) shows sketches of the first five mode shapes. These sketches show
that the number of humps, or number of nodes, in the modal deflection pattern
increases with the modal number. At some point the effective beam length, which
is the distance between nodes, will decrease to the point that long beam theory,6

the basis of this analysis, will no longer be valid. Another way of saying the same
thing is to say that the distance between nodes will eventually become so short
that shearing deflections will become a significant portion of the total deflection,
with the result that the above estimates of the natural frequencies and mode shapes
will be increasingly in error. The calculated, undamped, natural frequencies would
be larger than the “actual” undamped natural frequencies (for vibration in a vac-
uum) because the above strength of materials differential equation incorporates
the previously mentioned constraint against shearing deformations, and any such
mathematical constraint artificially stiffens a structure. Simply on the basis that nat-
ural frequencies squared are proportional to stiffness divided by mass, overestimat-
ing the stiffness overestimates the values of the natural frequencies. Furthermore,
this analysis also ignores the mass moment of inertia of each differential length of
beam about the y axis. This is a very small effect, but underestimating the effec-
tive mass also contributes to overestimating the natural frequencies. Any ambient
fluid, such as air, adds effective mass to the beam as it vibrates and thus ignoring that
effect also results in these calculated estimates for the natural frequencies to be on the
high side.

The complete solution for the beam’s free vibration deflections is the linear com-
bination of all the linearly independent modal deflection shapes. Thus the solution
for the original partial differential equation is

w(x, t) =
∞∑

n=1

An sin
nπx

L
sin(ωnt + φn),

where ωn = n2π2

L2

√
EI
ρ A

. (8.5)

★

EXAMPLE 8.2 Adapt the complete deflection solution of the previous example, as
given by Eq. (8.5), to the initial conditions of a symmetric, parabolic initial deflection
with peak amplitude w0 and zero initial velocity.

COMMENT An initial parabolic deflection pattern for the beam length could result
from equal and oppositely directed externally applied moments at each end of the
simply supported beam that would result in a constant internal moment at every
point along the length of the beam.

SOLUTION Mathematically, the given initial conditions (ICs) can be described as

w(x, 0) = 4w0

( x
L

) (
1 − x

L

)
, ẇ(x, 0) = 0.

6 The rule of thumb for long beam theory is that the beam length is at least 10 times the beam depth.
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For the sake of the second of these ICs, it is necessary to differentiate Eq. (8.5) with
respect to time. Then in both the deflection and velocity expressions, setting time
equal to zero, and making the above two correspondences, leads to

∞∑
n=1

An sin
nπx

L
sin φn = 4w0

x
L

(
1 − x

L

)
∞∑

n=1

ωn An sin
nπx

L
cos φn = 0. (8.6)

Now it is just a matter of solving these two simultaneous equations for the two sets of
unknowns, {An} and {φn}. Once their values have been determined, the undamped
motion of the beam will be completely specified.

The key to solving for these two sets of unknowns is the weighted orthogonality
of the mode shapes. The proof of the orthogonality of the mode shape functions
very closely follows that for mode shape vectors. To that end, return to the beam
deflection amplitude governing differential equation where the amplitudes An and
the cross-sectional area Aare not to be confused

EI W′′′′(x) = ω2ρ A W(x).

Let the eigenpairs ωn, Φn(x) and ωm, Φm(x) be any two distinct solutions for the beam
natural frequency and the deflection amplitude function W(x), where the φ of the
phase angle and the Φ of the mode shape are also not to be confused. That is, let

EI Φ ′′′′
n (x) = ω2

nρ A Φn(x) and EI Φ ′′′′
m (x) = ω2

mρ A Φm(x).

For example, in the case of the above beam, Φn(x) = An sin(nπx/L). Now multiply
the first of these equations by Φm(x) and multiply the second of the above pair of
equations by Φn(x). Then integrate both equations over the length of the beam. (This
integration of the product of two functions is what is called an “inner product” just
as the dot-product of two vectors or a row matrix postmultiplied by a column matrix
of the same size is called an inner product.) The result is

L∫
0

EI Φm(x)Φ ′′′′
n (x) dx = ω2

n

L∫
0

ρ AΦm(x)Φn(x) dx

L∫
0

EI Φn(x)Φ ′′′′
m (x) dx = ω2

m

L∫
0

ρ AΦn(x)Φm(x) dx.

If the left-hand sides are equal, the structural system is called self-adjoint. The left-
hand side integrals can be integrated by parts twice using the boundary conditions
that, in this case, Φn(0) = Φn(L) = 0 with the first integration and Φ ′′

n (0) = Φ ′′
n (L) = 0

with the second integration. (The BCs will always eliminate the nonintegral “uv”
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term of the integration by parts procedure.) The result is the following equal
left-hand sides

L∫
0

EI Φ ′′
m(x)Φ ′′

n (x) dx = ω2
n

L∫
0

ρ AΦm(x)Φn(x) dx

L∫
0

EI Φ ′′
n (x)Φ ′′

m(x) dx = ω2
m

L∫
0

ρ AΦn(x)Φm(x) dx.

Now subtract the second equation from the first to obtain

(
ω2

n − ω2
m

) L∫
0

ρ AΦm(x)Φn(x) dx = 0.

Since the two natural frequencies are stipulated to be distinct, then
L∫

0

ρ AΦm(x)Φn(x) dx =
L∫

0

EI Φ ′′
n (x)Φ ′′

m(x) dx = 0.

These two inner products establish the weighted orthogonality of the modal functions
themselves and the weighted orthogonality of their second derivatives. Of course,
this result closely parallels the discrete model orthogonality statements, and, as is
seen in Endnote (2), the first integral is associated with the system kinetic energy
and the system mass matrix, whereas the second integral is associated with the system
strain energy7 and the system stiffness matrix.

Return to the determination of the two sets of unknown constants, {An} and {φn}.
Multiply both of Eq. (8.6) by the orthogonal mode shape sin(kπx/L), where k is an
arbitrary integer. Since the mass density and cross-sectional area are constants in this
example, they can be omitted. Now integrate over the length of the beam to obtain
the following two equations to be solved for the constants Ak and φk

∞∑
n=1

An sin φn

L∫
0

sin
kπx

L
sin

nπx
L

dx = 4w0

L∫
0

x
L

(
1 − x

L

)
sin

kπx
L

dx

∞∑
n=1

ωn An cos φn

L∫
0

sin
kπx

L
sin

nπx
L

dx = 0.

The integrals involving the product of the sine functions (the mode shapes) are, of
course, zero whenever n 
= k. When n = k, the value of that integral is simply L/2.
The value of the integral involving the polynomial and the sine function has to be
evaluated by either using suitable software, or a table of integrals, or, as a last resort,
integration by parts. The result is

for k even: Ak sin φk = 0 and ωk Ak cos φk = 0

for k odd: Ak sin φk = 32w0

k3π3
and ωk Ak cos φk = 0.

7 Recall that the bending strain in a beam is −zw′′, and Φ is a special case of w.
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Hence Ak is zero when k is even, and when k is odd, the simultaneous solution
is

φk = π

2
Ak = 32w0

k3π3
.

Substituting these results into Eq. (8.1) yields the complete description of the force
free, undamped motion.

w(x, t) = 32w0

π3

∞∑
n=1,3,5,...

1
n3

sin
nπx

L
cos ωnt ,

where ωn = n2π2

L2

√
EI
ρ A

.

Since the first mode shape, that is, the sine function with n = 1, closely resembles the
parabolic initial deflection, it is not surprising that the first term of the sum dominates
all other terms in the sum by being 27 times larger than the next largest term. Further,
note that each term of the sum has a different time function. This means that the
undamped, free vibration motion is not simply harmonic. However, if the motion
is damped, as it always is, then the necessary additional exponential factors with
negative arguments (i.e., exp(−ζωnt)) modify the above result. In each series term,
as the index integer n increases, the value of the natural frequency in the argument of
the exponential function increases rapidly. One result is that the negative exponential
function in each term with a higher index number n goes to zero much quicker than
the lower numbered terms. The end result is that soon the damped beam is vibrating
harmonically only in the first mode at the first modal frequency. ★

EXAMPLE 8.3 Extend the problem of Example 8.1 to the forced vibration prob-
lem where there is an applied load that is an upwardly directed concentrated force of
constant magnitude F0 that is moving from left to right along the length of the beam
at a constant velocity v0. Let the force start at x = 0 at time t = 0. (This is called
the moving load problem.) Let the initial conditions for the beam be zero initial
deflection and zero initial velocity.

SOLUTION The first step is to devise an analytical description for the applied load.
Since the applied load is a concentrated force acting at the distance x = v0t , this force
can be described using the Dirac delta function as F0δ(x − v0t). Since the force is
acting upward, it is assigned a positive value. Therefore the governing differential
equation and the boundary conditions are

EIw′′′′(x, t) + ρ Aẅ(x, t) = F0 δ(x − v0t)

and w(0, t) = w(L, t) = w′′(0, t) = w′′(L, t) = 0,

where again primes indicate partial derivatives with respect to the spatial variable x
and dots indicate partial derivatives with respect to the temporal variable t . The key
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step toward solving this nonhomogeneous, ordinary differential equation is to now
seek a modal series solution to the above equations where each term in the series
is the product of an unknown amplitude (a generalized coordinate) and a vibratory
mode shape. That is, take as a trial solution the modal expansion

w(x, t) =
N∑

n=1

pn(t)Φn(x) =
N∑

n=1

pn(t) sin
nπx

L
, (8.7)

where N is the number of modes necessary for an accurate solution, and the gener-
alized modal coordinates pn(t) are again the weighting factors for the mode shapes.
This multiplication of each mode shape by a modal coordinate, of course, exactly par-
allels the discrete mass modal coordinate transformation {q} = [Φ]{p}. The modal
generalized coordinates pn(t) are also called distributed coordinates because they
are not associated with geometric points on the structure but rather are factors for
functions that distribute deflections over the entire structure. Substituting the above
trial solution into the governing differential equation leads to

EI
N∑

n=1

(nπ

L

)4
pn(t) sin

nπx
L

+ ρ A
N∑

n=1

p̈n(t) sin
nπx

L
= F0 δ(x − v0t).

To use mode shape orthogonality to uncouple the modal coordinates pn(t) in the
above equation, multiply both sides of the above equality by the mode shape function
with arbitrary integer index m and then integrate over the beam length; that is, apply
the following operator to both sides of the above equation

2
L

L∫
0

[· · ·] sin
mπx

L
dx =

∫ L
0 ρ A(x)[· · ·]Φm(x) dx∫ L

0 ρ A(x)Φk(x)Φm(x) dx
,

where the integral in the denominator produces the normalizing factor L/2. This step
parallels the premultiplication of the discrete mass matrix equation by the transpose
of the modal matrix. The result, after dividing by the mass density and cross-sectional
area, is the following single, ordinary differential equation in the variable t , where
the coefficient of the modal deflection, pm(t), is, from Example 8.1, the squared mth
natural frequency of this simply supported beam

p̈m(t) + EI
ρ A

(mπ

L

)4
pm(t) = 2F0

ρ AL

L∫
0

δ(x − v0t) sin
mπx

L
dx

p̈m(t) + ω2
m pm(t) = 2F0

ρ AL
sin

mπv0t
L

.

Since this ordinary differential equation is so simple, the convolution integral solution
is set aside to follow earlier procedures. The complementary solution to this equation
is familiar as

pm(t) = Am sin ωmt + Bm cos ωmt ,

where again ωm = (mπ)2

√
EI

ρ AL4
.
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As long as the speed of the moving force is not equal to ωmL/(mπ), the particular
solution for this undamped case is easily obtained by using the method of undeter-
mined coefficients and the single trial function sin(mπv0t/L). Then the particular
solution result is

pm(t) = 2F0L

m2π2
[
m2π2(EI/L2) − ρ Av2

0

] sin
mπv0t

L
.

Thus the complete solution is

pm(t) = Am sin ωmt + Bm cos ωmt + 2F0L

m2π2

[
m2π2

(
EI
L2

)
− ρ Av2

0

] sin
mπv0t

L
.

Note that regardless of the initial conditions and therefore regardless of the values of
the constants of integration, Am and B m, there is a resonant effect coming from the
denominator of the coefficient of the particular solution. The solution for the modal
deflection becomes unbounded when the speed of the applied force is

v0 = mπ

√
EI

ρ AL2
, where m = 1, 2, 3, . . . .

This is not normally an immediate problem. For example, for a steel beam with
a value for the radius of gyration squared, (I/A), of 60 in.2, a weight density of
0.283 lbs./in.3, and with a length of 50 feet, the resonant velocity for the index value
of m = 1 is approximately 466 mph or 750 km/hr. Clearly, such speeds are not common
for vehicular traffic. As far as the resonant effect is concerned, a vehicle traveling at
that speed, 680 ft/sec, traverses the beam in less than one-tenth of a second. This is
insufficient time for the resonance effect to be realized.

Application of the given initial conditions, and on this occasion simply utilizing
the linear independence of the sin nπx/L functions rather than modal orthogonality,
and solving for the constants of integration, Am and Bm, yields the final form of the
complete solution

w(x, t) =
N∑

n=1

2F0L

nπ
[
n2π2(EI/L2) − ρ Av2

0

] [
1

nπ
sin

mπv0t
L

−
(

v0

ωnL

)
sin ωnt

]
sin

nπx
L

.

Again, this undamped, and hence approximate, solution is valid only when the single
force is still traveling the length of the simply supported beam. After the time the force
leaves the beam, L/v0, the beam undergoes a free vibration with initial conditions
that are the deflections and velocities of the beam when the force exited the beam. If
another such force enters onto the beam as the first force is exiting, at time L/v0, then
the above analysis can be repeated with a time t being replaced by time t − L/v0.

COMMENT Exercise 8.7 discusses a variation on the above example, where the mov-
ing force is because of the weight of a moving mass. ★

EXAMPLE 8.4 Redo the first example problem involving the uniform, simply
supported beam, but here let there be an externally applied lateral loading per unit
of span length that is constant over the entire length of the beam. With respect to
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time, let the applied loading have the magnitude zero before time zero, and after
time zero, let the applied loading suddenly achieve a constant magnitude f0 acting
downward. Let the initial conditions again be zero initial lateral deflection and zero
initial velocity.

COMMENT Exercise 8.3 considers the similar problem where the magnitude of the
lateral load per unit length acting on the simply supported beam varies sinusoidally
along the span and sinusoidally with respect to time.

SOLUTION This time the beam equation of motion is

EIw′′′′(x, t) + ρ Aẅ(x, t) = − f0stp(t).

Once again, the solution process begins with writing Eq. (8.7), the modal solution
with unknown modal generalized coordinates. This time, because the step function
is simply the value 1 after time zero, the result is

EI
N∑

n=1

(nπ

L

)4
pn(t) sin

nπx
L

+ ρ A
N∑

n=1

p̈n(t) sin
nπx

L
= − f0.

Dividing by the mass density and the cross-sectional area and applying the modal
orthogonality yields

p̈m(t) + EI
ρ A

(mπ

L

)4
pm(t) = 2 f0

ρ AL

L∫
0

sin
mπx

L
dx = 2 f0

ρ AL

(
L

mπ

)
[1 − (−1)m]

= 4 f0

mπρ A
for m = odd; and = 0 for m = even.

Hence pm is zero for these initial conditions when m is even. The lack of even valued
indices just says that the resulting vibration is symmetric about the beam center as it
should be. The complete solution for m odd is

pm(t) = Am sin ωmt + Bm cos ωmt + 4 f0

mπ EI

(
L

mπ

)4

.

Applying the zero initial conditions and using the linear independence of the
sin mπx/L functions leads to the complete solution

w(x, t) =
N∑

n=1,odd

4 f0

nπ EI

(
L

nπ

)4

[1 − cos ωt] sin
nπx

L
.

This very quickly converging series, like the previous forced vibration solution, shows
that the response is composed of many mode shapes. However, because of the factor
1/n5, the first mode dominates the deflection. Moreover, if damping were part of the
model, then the higher modes would damp out sooner, leaving the vibration wholly
dominated by the first mode. ★

EXAMPLE 8.5 The uniform, cantilevered beam shown in Figure 8.2(a) is homo-
geneous, linearly elastic, and possesses a doubly symmetric cross section. At its tip,
at x = L, the beam supports a nonstructural mass of magnitude M. That mass M
has a mass moment of inertia at its center of mass (at the beam tip) about the y axis
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L, EI, ρA

z, w(x, t)

M, H

x

k = 3EI
L3

(a)

Figure 8.2. (a). Example 8.5. Cantilevered uniform beam with a tip support and a tip rigid
mass.

of magnitude H. The discrete mass is also supported by a spring that has a stiffness
factor of 3EI/L3. The beam is loaded by a spatially constant but time-varying down-
ward acting load per unit length of magnitude fz = f0 sin ω f t that starts at time zero.
Proceed toward determining the vibratory deflection response of the beam in the
plane of the paper.

COMMENT The purpose of this example problem is to present a seemingly simple
problem where the necessary calculations are far more tedious than those of the
simply supported beam and thus remedy the possibly false impression from the
previous examples that continuous mass models provide easily obtained solutions.
In fact, the distributed mass approach to this problem becomes sufficiently tedious
that it is not worth completing. Hence, the above choice of the words proceed toward
determining rather than just determine.

SOLUTION As in the previous examples, the first step is to adapt the fourth-
order beam bending differential equation, with its force per unit length loading
term, to this beam vibration. Again, if the reader is not sufficiently familiar with the
fourth-order beam bending equation to confidently use that equation in this circum-
stance, Endnote (1) provides a summary of this equation, and several others, whereas
Endnote (2) provides guidance by means of a derivation of both the beam bending
equation of motion and its associated BCs. From any source, the partial differential
equation of motion is

EIw′′′′(x, t) + ρ Aẅ(x, t) = − f0 sin ω f t.

The four required boundary conditions are the two deflection boundary conditions
w(0, t) = w′(0, t) = 0 and, say, from a free body diagram of the beam tip and end
mass using the inertia loads associated with its positive (upward) deflection and its
positive (counterclockwise) rotation

EIw′′′(L, t) − Mẅ(L, t) − 3EI
L3

w(L, t) = 0

and EIw′′(L, t) + Hẅ′(L, t) = 0.

Note that, as is appropriate, the tip mass M and the elastic spring enter the beam
equation only through the BCs at x = L in the form of tip shear forces and a tip
bending moment.
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Now the task is to solve this equation of motion subject to the above BCs. Since a
(variables separate) modal solution of the form

w(x, t) =
N∑

n=1

pn(t)Φn(x) (8.7)

is sought, the next step is to obtain the modal frequencies and mode shapes from a
solution to the homogeneous differential equation of motion. Since the homogeneous
equation has the form of a free vibration equation, it describes a beam motion that is
harmonic. Thus write the variable separable solution w(x, t) = W(x) sin(ωt + φ).
Then, using that solution, the beam homogeneous partial differential equation
becomes the ordinary differential equation

W′′′′(x) − ρ Aω2

EI
W(x) = W′′′′(x) − λ4W(x) = 0

because this is the same GDE encountered in Example 8.1, it has the same solution

W(x) = C1 sinh λx + C2 cosh λx + C3 sin λx + C4 cos λx.

The four amplitude beam boundary conditions are W(0) = W′(0) = 0,

EI W′′′(L) + Mω2W(L) − 3EI
L3

W(L) = 0,

and EI W′′(L) − Hω2W′(L) = 0

or, after division by EI and defining the usual eigenvalue and the following non-
dimensional mass ratios,

λ4 = ρ Aω2

EI
µ1 = M

ρ AL
µ2 = H

ρ AL3

the beam tip BCs are

L3W′′′(L) + [µ1(λL)4 − 3]W(L) = 0 LW′′(L) − µ2(λL)4W′(L) = 0.

Since a solution of the modal frequency equation for arbitrary values of the mass
ratios is unnecessary, as well as inconvenient, let the tip mass have, say, the mass
values of a rigid beam identical in its mass properties to the cantilevered beam when
this second beam’s center of mass is fastened to the cantilevered beam at the point
x = L on the cantilevered beam so as to form a T-shaped structure. This choice was
made so that the mass moment of inertial would be substantial. Then µ1 has the value
1, whereas µ2 has the value 1/12. Then the full set of BCs reduce to

W(0) = 0 L3W′′(L) + [(λL)4 − 3]W(L) = 0.

W′′(0) = 0 LW′′(L) − (λL)4

12
W′(L) = 0.

Now the above complementary solution W(x) = C1sinh λx + · · · can be substituted
into these BCs to obtain the transcendental determinant equation for the eigenvalue
and hence the natural frequencies. The wall BCs produce C3 = −C1 and C4 = −C2.
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Then, where z = λL(which is nondimensional), after much algebraic hand work, the
remaining 2 × 2 by two determinant equation (see below) reduces to

z4 + 9
z4 − 3

− z4 − 15
z4 − 3

cosh(z) cos(z) − z6 − 12z4 + 36
z7 − 3z3

sinh(z) cos(z)

− z6 + z4 − 36
z7 − 3z3

cosh(z) sin(z) = 0.

This transcendental equation, solvable by, say, Mathematica (or by hand using
Newton–Raphson after a lot of work), establishes the point of this example, which
again is that continuous models do not generally lead to simple solutions. Indeed
solving the above equation for the natural frequencies is but the first step in the
solution process for the originally stated problem. Those frequency solutions would
have to be substituted into the boundary condition equations to determine the mode
shapes, which can be expected to be algebraically cumbersome. Only then can the
process of determining the forced response begin.

The situation is a bit simpler if the nonstructural tip mass and the spring at the
beam tip are removed from the structure, leaving just a uniform cantilevered beam.
In this case the BCs are

W(0) = W′(0) = W′′(L) = W′′′(L) = 0.

After again using the result of the first two BCs that C3 = −C1 and C4 = −C2, the
determinant from the matrix solution for C1 and C2 is∣∣∣∣ (sinh λL+ sin λL) (cosh λL+ cos λL)

(cosh λL+ cos λL) (sinh λL− sin λL)

∣∣∣∣ = 0, (8.8)

which quickly reduces to the characteristic equation

1 + cosh λLcos λL = 0.

This equation is easily solved because all its infinity of roots alternate between being
just past the odd-numbered zeros of cos λL and then being just before the even-
numbered zeros of cos λL, with the differences between the zeros of the cosine
function and these roots rapidly diminishing as the root number increases. Thus
using Newton–Raphson, the first three hand-determined solutions, which are approx-
imately (π/2) + +, (3π/2)−, (5π/2)+, are

(λL)1 = 1.8751, (λL)2 = 4.6941, (λL)3 = 7.85476.

As before, these three values can be substituted into the matrix precursor of Eq. (8.8),
meaning the matrix equation for C1 and C2 corresponding to the above determinant
equation, which, with C3 = −C1 and C4 = −C2, determines the first three mode
shapes. For example, using the first and then the second eigenvalues, the solution for
the first and second mode shapes are

Φ1(x) = −0.7341 sinh
(

1.8751
x
L

)
+ 1.0000 cosh

(
1.8751

x
L

)
+ 0.7341 sin

(
1.8751

x
L

)
− 1.0000 cos

(
1.8751

x
L

)
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Φ2(x) = 1.0000 sinh
(

4.6941
x
L

)
− 0.98187 cosh

(
4.6941

x
L

)
− 1.0000 sin

(
4.6941

x
L

)
+ 0.98187 cos

(
4.6941

x
L

)
.

A quick check shows that these functions and their slopes are zero at x = 0. For the
sake of some consistency in normalizing the mode shapes, the final step in writing
the mode shapes is determining their maximum value and dividing by that maximum
value so that the resulting maximum value becomes 1.000. In the above cases of the
first and second mode shapes, it would mean dividing by 2.000. See Figures 8.2(b)
and (c) for graphs of these normalized mode shapes.

The next step after determining sufficient mode shapes is to use Eq. (8.6) to obtain
the particular solution. This is to be combined with the complementary (free vibra-
tion) solution and the initial conditions to obtain the complete solution. Since this
type of lengthy procedure is completed in a following example, this final step is left
uncompleted in this example. ★

The previous example problem clearly demonstrates that using continuous mod-
els to calculate deflection responses is not an efficient approach when there is more
than one structural element. Although this is generally true for single structural
elements, hand calculating natural frequencies, particularly if the algebraic charac-
teristic equation is solved on a digital computer, is sometimes feasible and may even
be advantageous. The next two example problems (along with the simplicity of the
first example) suggest that, in certain limited circumstances such as those of a single
element structure with smoothly varying elastic properties, solving the continuous
model may be even superior to creating and solving a FEM model. Of course, some
experience in dealing with differential equations is necessary to fully take advantage
of these opportunities. Hopefully this chapter does provide some help toward recon-
structing those differential equation solution skills, if they need bolstering. Toward
that end, Endnotes (3) and (4) provide a mathematical overview of the next group of
problems that involve second-order differential equations. Endnote (3) also offers
another general guarantee of orthogonal mode shapes.

EXAMPLE 8.6 Determine the natural frequencies for an axial vibratory deflec-
tions u(x, t) of the long, cantilevered beam with the tapered, square cross section
shown in Figure 8.3(a). With the origin of the spanwise coordinate located at the
beam tip, the analytical description of the cross-sectional area is A(x) = A0(x/L)2,
where A0 is the value of the cross-sectional area at the clamped end.

SOLUTION Let u(x, t) = U(x) sin ωnt , where U(x) is the beam theory axial deflec-
tion amplitude. Then from Endnote (1), where the axial force per unit length is the
axial inertia force −ρ A(x) ü(x, t), the general beam axial free vibration equation is
[EA(x)U ′(x)]′ + ρω2 A(x)U(x) = 0. Define the eigenvalue squared, λ2, as ρω2/E.

After substitution of the cross-sectional area function, the equation for the axial
vibratory amplitude distribution U(x) reduces to

x2U ′′(x) + 2xU ′(x) + λ2x2U(x) = 0. (8.9)
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In[26]:= Plot[0.5(−0.7341 Sinh[1.8751 z]+ 
  Cosh[1.8751 z] + 0.7341 Sin[1.8751 z]− 
  Cos[1.8751 z]),{z,0,1}]

Out[26]= -Graphics-

(c)
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2(x)Φ

In[1]:= a = 4.6941

Out[1]= 4.6941

Out[2]= −0.981868
In[4]:= Plot[0.5(Sinh[a z] + c Cosh[a z] − Sin[a z]

− c Cos[a z]),{z,0,1,}]

In[2]:= c = −(Sinh[a] + Sin[a])/(Cosh[a] + Cos[a])

Out[4]= -Graphics-

Figure 8.2. (b) First mode shape of a cantilevered, uniform beam. (c) Second mode shape of
a uniform, cantilevered beam.

The step following the writing the amplitude equation is dependent on the reader’s
familiarity with ordinary differential equations. Hopefully the reader has already
acquired sufficient familiarity with the subject of differential equations to note that
this amplitude differential equation appears as something like a Bessel function
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In[1]:= Plot[π Sin[π z]/z, {z,0,1}]

In[3]:= 2 Plot[π Sin[2 π z]/(2 z), {z,0,1}]

Out[1]= -Graphics-

Out[3]= 2(-Graphics-)

Wall

tip

tip
Wall

Figure 8.3. (a) Example 8.6: Solid, tapered beam undergoing axial free vibration. (b) First two
axial mode shapes of a tapered, cantilevered beam.

equation, but not quite in the standard Bessel equation form.8 After consultation
with a differential equations textbook such as Refs. [8.3,8.4], or Endnote (4), it can be
learned that the transformation necessary to put this equation in the standard Bessel

8 See the corollary at the end of Endnote (4) for a helpful template for solving linear, ordinary differential
equations with polynomial coefficients.
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function equation form is U(x) = V(x)/
√

x, where, of course, V(x) is a function to
be determined. Substituting

dU
dx

= x− 1
2

dV
dx

− 1
2

x− 3
2 V

and
d2U

dx2 = x− 1
2

d2V

dx2 − x− 3
2

dV
dx

+ 3
4

x− 5
2 V

into the given equation yields

x2V′′(x) + xV′(x) +
(

λ2x2 − 1
4

)
V(x) = 0.

This is the desired standard form for the Bessel equation of order one-half for which
the solution can immediately be written as

V(x) = C1 J1/2(λx) + C2 J−1/2(λx)

or U(x) = C1√
x

J1/2(λx) + C2√
x

J−1/2(λx).

From Ref. [8.5], the half order Bessel functions, the only such Bessel functions, can
be expressed in terms of “simple” functions. That is, the solution to Eq. (8.8) can be
written in the more convenient form

U(x) = A1

x
sin λx + A2

x
cos λx. (8.10)

The reader is urged to verify this latter form of the solution by directly testing it in
Eq. (8.8). The natural frequencies are determined by application of the BCs, which
are zero axial force at x = 0 and zero deflection at x = L. In terms of the deflection
function, the second BC is U(L) = 0, but the first boundary condition at x = 0,
EA(0)U ′(0) = 0, cannot be usefully written because the cross-sectional area at the
beam tip, A(0), is zero. That is, this BC just becomes the identity 0 = 0. All that can
be said for the beam tip is that the deflection amplitude, U, must be finite there at
x = 0. This statement, however, is sufficient to conclude that A2 must be zero so as to
avoid the singularity. The boundary condition at x = L leads to the conclusion that

sin λL = 0 or ωn =
√

nπ E
ρL

for n = 1, 2, 3, . . . .

Notice how the frequencies crowd each other as n increases. The mode shapes are
simply

Φn(x) = An

x
sin

nπx
L

,

where the undetermined constant of integration A2 is now a set of modal factors,
An. Plots of the first two normalized mode shapes are shown in Figure 8.3(b). Notice
that the nodal locations for these and all other modes are evenly spaced because of
the sine function.

COMMENT Consider the contrast between the above analysis and a finite element
model of the same beam. To reasonably approximate the actual variation in the bar
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Figure 8.4. Example 8.7: Hollow, tapered beam undergoing torsional free vibration.

cross-sectional properties with the (usually) constant cross-sectional properties of
the bar elements, the analyst would have to use at least 8 to 10 bar elements with as
many axial deflection DOF. Hence, in addition to not being open to a hand solution,
the numerically determined mode shapes and frequencies would not readily reveal
the pattern for all mode shapes and frequencies. ★

The previous example problems involved beam bending and beam extension.
Therefore, to cover all three of the important types of beam motion, the last of
these example problems involves beam twisting. This problem is presented to further
contrast: (i) the corresponding finite element model with its many discrete masses and
its (usually) uniform elastic elements that can provide only a step-type approxima-
tion to a varying stiffness and (ii) the use of the differential equation approach. From
the point of view of simplicity, this contrast is not particularly to the advantage of the
differential equation approach even in these limited circumstances. However, the
differential equation solution can be viewed as a bit more reliable because it better
describes the system geometry, and it certainly is more concise for reporting purposes.

As is the case for a finite element analysis, solving this particular differential equa-
tion, as a practical matter, also requires the use of sophisticated software. Mathe-
matica has been used here. Even so, this task is challenging even to those who are
not new to Bessel functions. The reader can judge if all that can be said in favor of
this differential equation approach is that it is an alternate approach, one that can
be used to validate a finite element model.

EXAMPLE 8.7 Consider the long, uniformly tapered, truncated conical structure
shown in Figure 8.4 as it undergoes free torsional vibrations. The cylinder material is
homogeneous, linearly elastic, and isotropic. Treating the structure as a beam9 rather
than as a conical shell, determine the first few natural frequencies for the twisting of
this structure.

SOLUTION The general, free vibration, beam twisting equation, without warping
restraint, is

∂

∂x

[
GJ (x)

∂φ(x, t)
∂x

]
− ρ Ip(x)

∂2φ(x, t)
∂t2

= 0,

9 Since the cross section is annular, there is no warping as the structure twists. Thus, if the structure is, say,
10 times as long as it is wide, and not too thin, then beam theory will provide a reasonable approximation
for calculating torsional modes.
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where φ is the angular twist of the cross section at a spanwise position x, G is the shear
modulus of the beam material, J (x) is the St. Venant torsion constant (a constant
for any one cross section) for uniform torsion, and Ip is the area polar moment of
inertia about the cross-sectional center. Annular and circular cross sections have the
special property that the St. Venant constant for uniform torsion is the same as the
polar moment of inertia. In this thin-walled case, J = Ip= 2π R3h. For the sake of
simplifying the use of the BCs later in this example, let the length coordinate x orig-
inate where the beam radius has the minimum value R0. Then R(x) = R0(x + �)/�.
Substituting these expressions for J, Ip, and R and canceling common terms
leads to

∂

∂x

[
(x + �)3 ∂φ(x, t)

∂x

]
= ρ

G
(x + �)3 ∂2φ(x, t)

∂t2
.

Again a solution of the form φ(x, t) = Φ(x) sin ωnt is sought, where φ(x) is the twist
amplitude, not to be confused with the Φn, symbol for mode shapes, which always has
at least one subscript. Substituting for φ produces the ordinary spatial differential
equation

d
dx

[
(x + �)3 dΦ(x)

dx

]
+ λ2(x + �)3Φ(x) = 0,

where λ2 = ρω2

G
.

Now the task is to solve this GDE subject to the BCs that the torque at x = 0 is
zero [i.e., GJ (0)Φ ′(0) = 0] and the twist at x = L is zero [i.e., Φ(L) = 0]. Simplifying
any equation is usually a worthwhile step, so let x + � = ξ and note that

dΦ(x)
dx

= dΦ(ξ)
dξ

dξ

dx
= dΦ(ξ)

dξ
, and so on.

Substituting and carrying out the differentiation on the left-hand side produces

ξ 3Φ ′′(ξ) + 3ξ 2Φ ′(ξ) + λ2ξ 3Φ(ξ) = 0

or ξ 2Φ ′′(ξ) + 3ξΦ ′(ξ) + λ2ξ 2Φ(ξ) = 0.

If the coefficient 3 were not there, the latter equation would be the Bessel equation
of order zero. However, the 3 is there, and the latter equation is something that
is just close in appearance to being a Bessel equation. As the material pertaining
to Eq. (8.10) in Endnote (4) explains, there is a transformation, this time on the
dependent variable Φ, that converts this type of equation into a Bessel equation.
That transformation in this case is Φ(ξ) = Ψ (ξ)/ξ . Noting that

Φ ′(ξ) = Ψ ′(ξ)
ξ

− Ψ (ξ)
ξ 2

and Φ ′′(ξ) = Ψ ′′(ξ)
ξ

− 2
Ψ ′(ξ)

ξ 2
+ 2

Ψ (ξ)
ξ 3

this transformation results in the Bessel equation of order 1

ξ 2Ψ ′′ + ξΨ ′ + (λ2ξ 2 − 1)Ψ (ξ) = 0.
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Since the order of the Bessel equation is an integer, in this case 1, the solution must
be written in terms of a Bessel function of the second kind of order 1 as well as a
Bessel function of the first kind of order 1. That is, the solution is

Ψ (ξ) = C1 J1(λξ) + C2Y1(λξ)

or Φ(x) = C1

x + �
J1(λ(x + �)) + C2

x + �
Y1(λ(x + �)).

To apply the BC at x = 0, it is first necessary to differentiate the solution for Φ(x).
To carry out that differentiation using the formulas offered in Endnote (4), it is
best to reintroduce ξ = x + � so as to write the above solution as

Φ(ξ) = C1
1
ξ

J1(λξ) + C2
1
ξ

Y1(λξ).

Then using the following derivative formula from Endnote (4) that is applicable to
both kinds of Bessel functions

d[x−ν Jν(x)]
dx

= −x−ν Jν+1(x)

the result is
dΦ(ξ)

dξ
= C1

d
dξ

[
1
ξ

J1(λξ)
]

+ C2
d

dξ

[
1
ξ

Y1(λξ)
]

= −λ
C1

ξ
J2(λξ) − λ

C2

ξ
Y2(λξ).

Using the recurrence relations stated in Endnote (4) that

Jν+1(x) = 2ν

x
Jν(x) − Jν−1(x) or J2(x) = 2

x
J1(x) − J0(x)

the derivative of the twist amplitude can be written as

dΦ(ξ)
dξ

= C1

[
λ

ξ
J0(λξ) − 2

ξ 2
J1(λξ)

]
+ C2

[
λ

ξ
Y0(λξ) − 2

ξ 2
Y1(λξ)

]

or, returning to the original spatial coordinate, x,

dΦ(x)
dx

= C1

[
λ

x + �
J0(λ(x + �)) − 2

(x + �)2
J1(λ(x + �))

]

+ C2

[
λ

x + �
Y0(λ(x + �)) − 2

(x + �)2
Y1(λ(x + �))

]
.

Now all is prepared to write the BCs GJ (0)Φ ′(0) = 0 and Φ(L) = 0. Since GJ (0) is
not zero, it may be canceled. Therefore, the first of these two BCs is

0 = C1

[
λ

�
J0(λ�) − 2

�2
J1(λ�)

]
+ C2

[
λ

�
Y0(λ�) − 2

�2
Y1(λ�)

]
.

The second BC is

0 = C1

L+ �
J1(λ(L+ �)) + C2

L+ �
Y1(λ(L+ �)).

Casting these equations in matrix form and requiring that the determinant of the
square coefficient matrix be zero yields the characteristic equation. To reduce the
number of parameters, let � = L, and for the sake of simplifying the writing of
the characteristic equation, let η = λL. Then the equation to be solved for the eigen-
value, and hence the natural frequency, is

ηJ0(η)Y1(2η) − 4J1(η)Y1(2η) − ηJ1(2η)Y0(η) + 4J1(2η)Y1(η) = 0.
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This is an equation that, given a month or more, can be solved by hand using, say,
Newton–Raphson, along with tables of Bessel functions values. However, Mathemat-
ica does this calculation in the blink of an eye.10 The first seven roots of the above
equation are

2.59803 5.33476 8.27884 11.3131
14.3893 17.4873 20.5979

which clearly approach a regular spacing as the root number increases. From the
local definitions that η = λL and λ = ω

√
ρ/G, the first seven natural frequencies are

the above values multiplied by the square root of G/ρL2.
To obtain the mode shapes, return to the zero rotation boundary condition at the

clamped end of the beam. Solving that equation for

C2 = −C1
J1(2λL)
Y1(2λL)

and substituting into the general solution, the jth mode shape has the form

Φ j (x) = Cj

x + L
J1(λ j (x + L)) − Cj

x + L

[
J1(2λ j L)
Y1(2λ j L)

]
Y1(λ j (x + L)),

where Cj L has replaced the unknowable C1. To conveniently write the expressions
for the various individual mode shapes, let ζ = x/L. Then the first mode shape in
terms of the nondimensional ζ coordinate, where ξ = L(1 + ζ ), is

Φ1(ζ ) = C∗
1

1 + ζ
J1 (2.59803(1 + ζ )) − C∗

1

1 + ζ

[
J1(5.19606)
Y1(5.19606)

]
Y1 (2.59803(1 + ζ ))

or Φ1(ζ ) = C∗
1

[
J1 (2.59803(1 + ζ ))

1 + ζ
+ 4.25851

Y1 (2.59803(1 + ζ ))
1 + ζ

]
,

where the factor C∗
1 is simply the normalizing factor for the first mode shape. In

this example, it is not worthwhile calculating the values of these mode shape factors
that, for example, cause the maximum mode shape value to be 1.0. However, a good
approximation to such values for the first four modes can be determined from the
mode shape graphs presented in Figures 8.5(a), (b), (c), and (d). For example, for
the first mode shape, the normalizing factor is approximately a little more than 1.5.
Recall that having the maximum value equal to 1.0 is merely a convention. The next
few mode shapes, without the normalizing factors, are

Φ2(ζ ) = J1 (5.33476(1 + ζ ))
1 + ζ

+ 0.538999
Y1 (5.33476(1 + ζ ))

1 + ζ

Φ3(ζ ) = J1 (8.27884(1 + ζ ))
1 + ζ

+ 0.0871505
Y1 (8.27884(1 + ζ ))

1 + ζ

Φ4(ζ ) = J1 (11.3131(1 + ζ ))
1 + ζ

− 0.134591
Y1 (11.3131(1 + ζ ))

1 + ζ

Φ5(ζ ) = J1 (14.3893(1 + ζ ))
1 + ζ

− 0.274723
Y1 (14.3893(1 + ζ ))

1 + ζ
.

10 One must be careful that a variety of initial guesses are tried so that no roots are overlooked.
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In[23]:= Plot[BesselJ[1, 2.59803*x + 2.59803]/
  (1 + x) + 4.25851*BesselY[1, 2.59803*x 
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Figure 8.5. The first four mode shapes for the cantilevered beam of Figure 8.4.

Remember that the beam length coordinate, ζ , is zero at the beam tip and 1 at the
wall where the beam is clamped. Therefore the mode shapes are oriented back-
wards from the original beam diagram, and each mode shape twist has a zero
value at ζ = 1. Note again that the number of nodes increases by 1 as the modal
number increases by 1. Further, note that for any one of the mode shape num-
bers greater than 2, the distance between nodes is very close to being the same.
It also is interesting to note, and perhaps counterintuitive, that, at least for these
first four modes, the beam tip modal deflection is never a maximum, although the
trend is clearly that it is becoming closer to being a maximum as the modal number
increases. ★
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Figure 8.5 (continued)

8.4 Conclusion

The example problems offered above dealt with single beams that were separately
bending, twisting, and extending as they vibrated. Regardless of the rigid sup-
port boundary conditions, if the beam is uniform and without the complications of
nonstructural mass or elastic support, then calculating the first few natural frequen-
cies sometimes can be done somewhat efficiently (relative to a computer-based finite
element program) using a differential equation approach. However, the mode shapes
may involve the sum of two or four terms, making their hand manipulation rather
cumbersome. However, this difficulty can be overcome using a general math program
or a modern spread sheet program.
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When the beam stiffness varies in a fashion that is representable by a low-order
polynomial (the usual engineering approximation regardless of whether the struc-
tural model mass is modeled as continuous or discrete), it is still possible, just possible,
that a differential equation approach could be reasonably efficient, particularly when
supported by a general mathematics program such as Mathematica. For this to be
so, it is necessary, after some processing, that the governing differential equation
falls into one of the special function equation categories such as a Bessel function
equation. Then the process is the same as that for a uniform beam. The skill required
is mostly in molding the original equation into the general form of a special function
differential equation. For assistance for that objective, see the theorems at the end
of Endnote (4).

There are a small number of vibratory problems, perhaps of limited usefulness, that
might pose a significant challenge to those who create only finite element models but
are solvable using a differential equation approach. For example, Ref. [8.4], p. 606,
presents the differential equation solution for the natural frequencies and lateral
deflection mode shapes of a cable (zero EI bending stiffness) hanging vertically
from one end in a gravity field and free at the other end. The tension in the cable
because of its weight provides the resistance to bending in this infinitely flexible
pendulum. The solution to this problem involves Bessel functions of the first and
second kind of order zero with arguments that involve the square root of the length
coordinate. Another problem area where a differential equation approach might be
a better approach than a finite element model is the problem of determining the
natural frequencies and out-of-plane mode shapes of uniform, circular membranes
and uniformly thick circular plates. See Ref. [8.5], p. 172 ff.

However, the natural frequencies and mode shapes of Rectangular, trapezoidal,
and quadrilateral plates are easily calculated by use of a suitable FEM pro-
gram. A differential equation solution for the natural frequencies of even a uni-
form rectangular plate is quite messy, unless that plate is simply supported on
all four sides. Since simple support boundary conditions are the most often mod-
eled, it is worthwhile to briefly consider that problem from a differential equation
viewpoint.

EXAMPLE 8.8 Calculate the natural frequencies and mode shapes for the uni-
form, isotropic, rectangular, thin plate shown in Figure 8.6.

SOLUTION Let w(x, y, t) be the plate midplane lateral deflection, positive up as
shown in Figure 8.6. Let fz(x, y, t) be the lateral load per unit area on the midplane
of the thin plate, also positive up. Then, from Ref. [8.1], p. 769, the plate bending
equation is

D∇4w(x, y, t) = fz(x, y, t) or D
[
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4

]
= −ρh

∂2w

∂t2
,

where the plate stiffness coefficient D = Eh3/[12(1 − ν
2)], h is the constant plate

thickness, ν is the Poisson ratio, and ρ is the plate mass density. Along each of the
simple supported plate edges, the lateral deflection, and the moment per unit length
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z, w(x, y, t)

y

x
a

b

Figure 8.6. Thin, rectangular plate.

in the direction normal to the edge, are zero. In mathematical terms these BCs come
down to the following eight equations [8.1]

w(0, y, t) = w(a, y, t) = w(x, 0, t) = w(x, b, t) = 0

w,xx(0, y, t) = w,xx(a, y, t) = w, yy(x, 0, t) = w, yy(x, b, t) = 0,

where each coordinate subscript following a comma indicates one partial differenti-
ation with respect to that variable.

The complete solution for the natural frequencies and mode shapes associated
with the above partial differential equation and BCs can be obtained, as per usual,
by first writing

w(x, y, t) = W(x, y) sin(ωt + φ),

where W(x, y) is the plate lateral deflection amplitude. Then, with the time variable
so removed, the partial differential equation reduces to[

∂4W(x, y)
∂x4

+ 2
∂4W(x, y)

∂x2∂y2
+ ∂4W(x, y)

∂y4

]
− ρhω2W(x, y) = 0

and the BCs reduce to

W(0, y) = W(a, y) = W(x, 0) = W(x, b) = 0

W,xx(0, y) = W,xx(a, y) = W, yy(x, 0) = W, yy(x, b) = 0.

The next step in the solution process is write a Navier series (a double Fourier series)
for the unknown deflection amplitude function. Write

W(x, y) =
∞∑

m=1

∞∑
n=1

qmn sin
mπx

a
sin

nπy
b

,

where qmn are unknown multiplicative constants that when multiplied by sin(ωt + φ)
are the generalized coordinates of the plate’s lateral deflection. This expression for
the deflection amplitude has the singular virtue that it already satisfies all eight of
the deflection amplitude BCs. Thus the only equation that remains to be satisfied
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is the (governing) partial differential equation. Substituting this series solution for
the deflection amplitude into the plate partial differential equation yields

∞∑
m=1

∞∑
n=1

qmn

[(mπ

a

)4
+ 2

(mπ

a

)2 (nπ

b

)2
+

(nπ

b

)4
− ρhω2

D

]
sin

mπx
a

sin
nπy

b
= 0.

Since all the sine functions are linearly independent, all their coefficients must be
zero. Therefore conclude that there is one natural frequency associated with each
pair of integer indices m and n whose value is

ω2
mn = D

ρh

[(mπ

a

)4
+ 2

(mπ

a

)2(nπ

b

)2
+

(nπ

b

)4
]

.

Of course, the fundamental natural frequency corresponds to m = n = 1. The case
of a square plate (a = b) produces a particularly concise solution for the natural
frequencies that is

ω2
mn = π4 D

ρha4
(m2 + n2)2,

where there would be many repeated roots.
The rectangular plate mode shapes associated with each of the m, n natural fre-

quencies are simply

Φmn(x, y) = qmn sin
mπx

a
sin

nπy
b

,

where each qmn turns out to be a modal weighting factor that can be assigned the
value 1.0. ★

As illustrated above, the simply supported, thin rectangular plate free vibration
solution is easily obtained. However, when the BCs are other than those of simple
support at all four edges, the differential equation solution is not nearly as neat
and tidy. To illustrate this point, a slight variation on the above problem is briefly
considered in the next example problem.

EXAMPLE 8.9 Redo the above example problem, but this time let the boundary
conditions at x = 0 and x = a be those of a clamped support.

SOLUTION After introducing harmonic motion and thereby eliminating the time
variable, the partial differential equation is again[

∂4W(x, y)
∂x4

+ 2
∂4W(x, y)

∂x2∂y2
+ ∂4W(x, y)

∂y4

]
− ρhω2W(x, y) = 0.

The BCs are altered by the change from simple support to fixed support at two of
the four edges. The BCs are now

W(0, y) = W(a, y) = W(x, 0) = W(x, b) = 0

W,x(0, y) = W,x(a, y) = W, yy(x, 0) = W, yy(x, b) = 0.

The form of the solution for the previous example problem, the Navier series solution,
does not satisfy these zero slope boundary conditions at x = 0, a. However the sine
function still works well for the BCs at y = 0, b. Therefore the trial solution for this
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situation is manufactured from sine functions for the y-direction variation of the
deflection amplitude and unknown general functions for the x-direction variation of
the deflection amplitude. That is, write the Lévy series trial solution

W(x, y) =
∞∑

n=1

Xn(x) sin
nπy

b
. (8.11)

Again, this trial solution satisfies the BCs at y = 0, b, but the unknown functions
Xn(x) need to be chosen so as to satisfy the plate bending equation and then be
adjusted so that the BCs at x = 0, a are also satisfied. Substitution of the trial solution
into the plate amplitude differential equation leads to

∞∑
n=1

{
X ′′′′

n (x) − 2
(nπ

b

)2
X ′′

n (x) +
[(nπ

b

)4
− ρhω2

D

]
Xn(x)

}
sin

nπy
b

= 0.

Again, because of the linear independence of the sine functions, each of the sine
function coefficients in the above sum must be zero. Therefore, the next step is to
solve the following ordinary differential equation for each value of n

X ′′′′
n (x) − 2

(nπ

b

)2
X ′′

n (x) +
[(nπ

b

)4
− ρhω2

D

]
Xn(x) = 0.

Similarly, substitution of the above Lévy series trial solution into the BC equations
yields the BCs on the function Xn(x), which are

Xn(0) = Xn(a) = X ′
n (0) = X ′

n (a) = 0.

At this point it might seem that the remainder of the solution process will be a
simple matter. This is not so because the sign of the coefficient of the zeroth order
derivative depends on the relative values of the integer index n and the magnitude of
the unknown value of the natural frequency. For this point to be clear, it is necessary
to examine the details of the solution development.

As ever the solution to the above linear, ordinary differential equation with con-
stant coefficients begins with its trial function solution

Xn(x) = Anernx.

Substitution of this trial function into the ordinary differential equation, and cancel-
ing the nonzero common factors Anexp(rnx), yields the characteristic equation

r4
n − 2

(nπ

b

)2
r2

n +
[(nπ

b

)4
− ρhω2

D

]
= 0.

The two roots for this quadratic equation are

r2
n =

(nπ

b

)2
± ω

√
ρh
D

.

One more step is necessary because the trial solution requires values of rn. The two
square roots of the above expression will be real or imaginary depending, again, on
the values of n and ω. To be clear on when the roots are real, define a noninteger
critical value n∗ such that (

n∗π
b

)2

= ω

√
ρh
D

≡ ωγ.
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Then for n < n∗, the four roots of the characteristic equation are

rn = +
√

ωγ + (nπ/b)2 rn = −
√

ωγ + (nπ/b)2

rn = +i
√

ωγ − (nπ/b)2 rn = −i
√

ωγ − (nπ/b)2.

Then, as before, converting the exponential functions with real arguments to hyper-
bolic functions, and those with imaginary arguments to circular functions, the total
solution for n < n∗ is

Xn(x) = C1n sinh rnx + C2n cosh rnx + C3n sin snx + C4n cos snx

with the definitions

rn ≡
√

ωγ + (nπ/b)2 sn ≡
√

ωγ − (nπ/b)2

For the case n > n∗, there are no imaginary roots. The four linearly independent
terms that comprise the complete solution can be written as

Xn(x) = C1n sinh rnx + C2n cosh rnx + C3n sinh snx + C4n cosh snx, (8.12)

where

rn ≡
√

(nπ/b)2 + ωγ sn ≡
√

(nπ/b)2 − ωγ

Now, for both ranges of the integer index n, it is necessary to use the boundary
conditions to determine the relationship between the constants of integration and
thereby develop the characteristic equation that determines the natural frequencies.
To simplify and condense the algebra associated with these steps, it is convenient to
combine the above two solutions into one by defining

for n < n∗ sin(h)snx ≡ sin snx cos(h)snx ≡ cos snx

for n > n∗ sin(h)snx ≡ sinh snx cos(h)snx ≡ cosh snx.

Then the combined solution is

Xn(x) = C1n sinh rnx + C2n cosh rnx + C3n sin(h)snx + C4n cos(h)snx.

Substituting the combined solution into the four boundary conditions leads, after
some algebra, to the following characteristic equation

1 = cosh rna cos(h)sna − r2
n + s2

nsgn(n∗ − n)
2rnsn

sinh rna sin(h)sna,

where sgn(θ) = −1 if θ < 0 and sgn(θ) = +1 if θ > 0.

For solution purposes, the above characteristic equation is conveniently separated
into its two parts. For n < n∗

1 = cosh rna cos sna −

(nπ

b

)2

√
ω2ρh

D
−

(nπ

b

)4
sinh rna sin sna.



P1: JZP
0521865743c08 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 2:27

References 437

For n > n∗

1 = cosh rna cosh sna −

(nπ

b

)2

√(nπ

b

)4
− ω2ρh

D

sinh rna sinh sna.

After specifying the plate geometric and material properties, the above two equations
can be solved for the natural frequency that corresponds to each chosen value of
n. These are not easy equations to solve accurately. For the sake of a numerical
calculation, a 1-in.-thick steel plate (E =29,000,000 psi, v = 0.3, ρ = 490 lbs./ft3), 50
× 50 in. was chosen. In the case of n < n∗, selecting n = 1, which determines the
shape of the mode shape in the y direction as sin(πy/b), the first two solutions for
ω, the natural frequency in radians per second, are 35.44 and 84.86. These solutions
for ω can now be substituted into Eq. (8.12), and then the constants of integration
C1n, C2n, C3n, C4n can be determined up to a multiplicative constant. When n = 2 and
the mode shape between the simple supports is sin(2πy/b), the Newton–Raphson
solution for ω barely converged to a first root of 74.65. Again, this solution procedure
for this uniform square plate does not appear to offer the slightest advantage relative
to a finite element solution. ★

Solutions for other rectangular plate problems with two opposite edges simply
supported proceed in the same fashion as above. If the rectangular plate boundary
conditions are not such that there are two opposite edges that are simply supported,
or the straight-edge planform geometry is other than a rectangle, then superposition
is necessary. See Ref. [8.6]
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CHAPTER 8 EXERCISES

8.1 By means of drawing free body diagrams of the beam tip and the tip nonstruc-
tural mass that include inertia forces, derive the tip boundary conditions for the
cantilevered beam of Example 8.5, which are

EIw′′′(L, t) − Mẅ(L, t) − 3EI
L3

w(L, t) = 0

and EIw′′(L, t) + Hẅ′(L, t) = 0.

Recall that for this doubly symmetric cross section (the area product of inertia is zero)
the internal elastic shear force is EIw′′′ and the internal elastic bending moment is
EIw′′.

8.2 (a) Redo Example 8.4 when the applied downward loading per unit length is
spatially uniform but increases linearly with time. That is, let the simply supported,
undamped beam be subject to the following force per unit of beam length

fz(x, t) = − f0t
t1

,

where f0 has units of force per length.

(b) Use the result of part (a) to get the response to a triangular-shaped pulse that
peaks at time t = t1 and that is symmetrical about t = t1.

8.3 Determine the complete response of a uniform, simply supported beam of length
L and stiffness coefficient EI, originally at rest, when it is subjected to an x, z plane
lateral loading per unit of beam length that varies sinusoidally in both space and
time. In other words, solve the beam bending equation when the upwardly acting,
externally applied loading per unit length for the time period 0 ≤ t ≤ t1 is

fz(x, t) = f0 sin
πx
L

sin
π t
t1

and is zero otherwise. Hint: Be sure to include the initial conditions.

8.4 After consulting Endnote (5), find the response to the simply supported beam
of Example 8.1 when there is no applied lateral loading over the length of the beam
( fz(x, t) = 0), and the initial conditions are zero, but there are following upward
foundation movements:

(a) At x = 0, the support motion is w0sin(π t/t0) for 0 < t < t0 and is zero otherwise.

(b) In addition to the above-discussed support motion at x = 0, there is also at x = L,
the support motion 2w0sin [π(t − t0)/t0] for t0 < t < 2t0 and is zero otherwise.

8.5 Write the equation of motion for the cantilevered beam of Example 8.5, if the
lateral loading along the length of the beam is removed and the beam-spring-discrete
mass system is driven by a foundation motion that is:

(a) A vertical wall motion W0sin ω f t starting at time zero.

(b) A motion at the base of the spring of magnitude W0 sin ω f t starting at time zero.

8.6 Consider a uniform, taut wire of length L, mass density ρ, and cross-sectional
area A that is clamped at both of its ends. Let the tensile force, N, in the wire



P1: JZP
0521865743c08 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 2:27

Endnote (1): The Long Beam and Thin Plate Differential Equations 439

be sufficiently great that its value is not significantly affected by the wire’s lateral
deflections.

(a) Consulting Endnote (1) if necessary, consider the wire’s bending stiffness coef-
ficients (EI) to be negligible and thus adapt the beam bending equation to show
that the wire’s governing differential equation for free vibration along with its two
boundary conditions are

c2 ∂2w(x, t)
∂x2

= ∂2w(x, t)
∂t2

,

where c2 = N
ρ A

and w(0, t) = w(L, t) = 0. Note that the quantity c has units of velocity. This equation
is called the wave equation.

(b) Just as general solutions for ordinary differential equations involve arbitrary
constants of integration, general solutions for partial differential equations involve
arbitrary functions [8.7]. There are not very many occasions where general solutions
to partial differential equations have proven useful for engineering purposes. This is
an exception. Let F(x − ct) and G(x + ct) be any functions of their single, compound
variables. Show that the following is the general solution for the freely vibrating
wire

w(x, t) = F(x − ct) + G(x + ct).

In this solution, called the wave solution, c is the wave velocity. When the axial
coordinate x originates at the left end of the wire and is positive to the right, the first
function represents a fixed deflection shape moving to the right. This is so because
when x increases in fixed proportion to ct , which means moving to the right along
the wire, the argument of F is constant and thus so is the form of the contribution of
F to w. Similarly, G(x + ct) represents a wave of fixed form moving to the left. This
undamped solution is particularly useful when the initial conditions are just those of
a deflection; see Ref. [8.5], Chapter 8.

(c) For the symmetric, triangular, initial deflection w(x, 0) = 2W0x/L for
0 < x < L/2, and w(x, 0) = 2W0[1 − (x/L)] for L/2 < x < Land for zero initial vel-
ocity, write the variables separable trial solution w(x, t) = W(x) sin(ωt + φ) and
thereby obtain the complete solution for an undamped wire undergoing a force
free vibration.

8.7 Set up the differential equation of motion, the boundary conditions, and the
initial conditions for the beam of Example 8.3 where now the beam is subjected to
a moving mass of magnitude m0. Hint: As is done in Endnote (2), rather than trying
to adapt the beam bending equation, write the expressions for the kinetic and strain
energies.

ENDNOTE (1): THE LONG BEAM AND THIN PLATE DIFFERENTIAL EQUATIONS

Let the x axis of the beam always be directed along the beam length, and let the y and
z beam cross-sectional axes always originate at the cross section’s centroid. Then, in
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the absence of temperature changes, for a homogeneous, isotropic,11 linearly elastic
material, the bending portion of the finite deflection, combined beam bending and
extension equation for the x, z plane,12 in terms of the lateral deflection in the z
direction at the beam cross section’s coincident shear center and centroid, w(x, t),
is, from Ref. [8.8], p. 41, and Ref. [8.1], p. 287,

∂2

∂x2

[
EI yy(x)

∂2w(x, t)
∂x2

]
+ ∂2

∂x2

[
EI yz(x)

∂2v(x, t)
∂x2

]
− N

∂2w(x, t)
∂x2

= fz(x, t) + ∂my(x, t)
∂x

,

where E is Young’s modulus, Iyy is the area moment of inertia about the y axis, Iyz

is the area product of inertia, N is the internal axial force (positive when tensile),
fz(x, t) is the external force per unit of beam length (positive in the z direction),
and my(x, t) is the externally applied bending moment about the positive y axis per
unit of beam length. There is, of course, a similar equation for bending in the x, y
plane

∂2

∂x2

[
EIzz(x)

∂2v(x, t)
∂x2

]
+ ∂2

∂x2

[
EI yz(x)

∂2w(x, t)
∂x2

]
− N

∂2v(x, t)
∂x2

= fy(x, t) − ∂mz(x, t)
∂x

.

In the case of a free vibration, the moment per unit length terms my(x, t) and mz(x, t)
would result from the beam’s mass moment of inertia, per unit of beam length, about
the y and z axes, respectively. This term is always quite small and almost always
neglected. Another recommended step when there is an axial force N, when the
BCs permit, is to rotate the beam cross sectional axes to those of the cross sec-
tion’s principal axes. When this is done, the area product of inertia becomes zero,
and the second of the above terms disappears. The internal bending stress resultants
at the centroid, which may be needed for the purpose of writing boundary condi-
tions, are as follows when the area product of inertia and temperature change are
zero

bending moment: EI yy(x)
∂2w(x, t)

∂x2
= My(x, t)

shear force:
∂

∂x

[
EI yy(x)

∂2w(x, t)
∂x2

]
= Vz(x, t) + my(x, t).

When there is no boundary constraint against the beam stretching as it bends, the
differential equation that governs beam axial extension or axial contraction under

11 The beam equation has the same form if the beam has a nonhomogeneous cross section or the material is
orthotropic [8.1]. If the beam were modeled as nonlinearly elastic, then the form of the beam equations
would change.

12 The cross-sectional coordinates y and z originate at the centroid of the cross section. The internal beam
axial and shearing forces act at the centroid. However, the loci of shear centers is the axis about which
the beam twists. Requiring the shear center and centroid to be coincident, as is done here, eliminates
coupling between bending and twisting and thus simplifies these equations.
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the same conditions stated for beam bending above, but for small axial deflections
only, is

∂

∂x

[
EA(x)

∂u(x, t)
∂x

]
= − fx(x, t),

where A(x) is the cross-sectional area, u(x, t) is the elastic axis deflection in the
positive x direction, and fx(x, t) is the externally applied force, per unit of beam
length, in the positive x direction. The axial force is related to the axial deflection
by the relationship

N(x, t) = EA(x)
∂u(x, t)

∂x
.

If the beam is long, as has been required throughout these discussions, the beam
twisting equation term involving the beam warping constant can be neglected. Then
the small deflection beam twisting equation has the same simple form as the beam
extension equation; that is,

∂

∂x

[
GJ (x)

∂φ(x, t)
∂x

]
= −mt (x, t),

where G is the shear modulus, J (x) is the St. Venant constant for uniform torsion
(only equal to the polar moment of inertia in the case of a circular or annular cross
section), φ is the beam angle of twist, and mt (x, t) is the external twisting moment
per unit of beam length. The internal twisting moment is related to the angle of twist
by the relationship

Mt (x, t) = GJ (x)
∂φ(x, t)

∂x
.

Shearing deflections in long beams are negligible.
There is no value here in writing the finite deflection plate differential equation

corresponding to the above combined beam bending and extension equation because
during a vibration, the three unknown, in-plane plate forces (corresponding to the
beam’s single axial force N) are never constant. The presence of such unknown,
nonconstant terms greatly complicates the differential equation governing the thin
plate’s lateral, finite sized deflections. Therefore, for the sake of having a relatively
simple differential equation, let the plate’s lateral deflections be limited to being
small; that is, less than one-quarter or one-third of the plate depth. In this case, with
the x and y axes imbedded in the plate’s midplane, and in the absence of a temperature
change,13 the bending and twisting of the linearly elastic, isotropic, homogeneous,
uniform thin plate is described by

D
[
∂4w(x, y, t)

∂x4
+ 2

∂4w(x, y, t)
∂x2∂y2

+ ∂4w(x, y, t)
∂y4

]
= fz(x, y, t),

where D = Eh3

12(1 − ν2)

13 Temperature changes usually occur so slowly relative to the fundamental period of the structure that
there is essentially no interaction between the temperature change as an input and the deflection or
any other dynamic output. However, this is not always the case for some highly flexible spacecraft.
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and where w(x, y, t) is the z-direction deflection of the plate midplane, fz(x, y, t)
is external applied load per unit of midplane area acting in the z direction, h is the
constant plate thickness, and ν is Poisson’s ratio. The rigid support deflection-type
boundary conditions for plates, just like those for beams, involve only fixed values
of the edge deflections and slopes normal to the edges. However, the force-type
boundary conditions for plates are more complicated and not worth discussing here.
Those boundary conditions are discussed in such references as [8.1,8.5].

ENDNOTE (2): DERIVATION OF THE BEAM EQUATION OF MOTION
USING HAMILTON’S PRINCIPLE

With specific reference to the cantilevered beam of Example 8.5, consider that beam
vibrating without twisting in the x, z plane. Consider a segment of that beam of
length dx at a typical point x along the length of the beam. The mass of this infinites-
imal segment is ρ Adx, where ρ is the mass density of the beam material. Since
w(x, t) is the beam lateral deflection, the quantity ∂w(x, t)/∂t is the lateral velocity
of this beam segment. Hence the kinetic energy of this infinitesimal beam segment
is 1/2ρ Adx (∂w/∂t)2. Integrating along the entire length of the beam and adding the
kinetic energy of the beam tip rigid mass leads to the total system kinetic energy and
its first variation

T = 1
2

L∫
0

ρ A[ẇ(x, t)]2dx + 1
2

Mẇ(L, t)2 + 1
2

Hẇ′(L, t)2

δT = ρ A

L∫
0

ẇ(x, t)δẇ(x, t)dx + Mẇ(L, t)δẇ(L, t) + Hẇ′(L, t)δẇ′(L, t).

Since the beam’s lateral deflections are measured from the SEP, the potential energy
V is zero. Since the beam tip rigid body has no strain energy, the elastic strain energy
of the system is entirely that of the beam and the spring supporting the beam tip.
From Ref. [8.1], p. 520 and p. 640, the beam and spring system strain energy14 and its
first variation are

U = 1
2

L∫
0

EI[w′′(x, t)]2dx + 1
2

(
3EI
L3

)
w(L, t)2

δU = EI

L∫
0

w′′(x, t)δw′′(x, t)dx +
(

3EI
L3

)
w(L, t)δw(L, t).

14 The elastic strain energy (the recoverable, internally stored work) per unit of beam volume is the
triangular area beneath the linear stress–strain curve. Hence, the total strain energy is one-half the
integral over both the beam length and the beam cross-sectional area, of the beam bending stress
multiplied by the beam strain. In the absence of a temperature change, and for N = Iyz = 0, this
beam stress is the moment (My) multiplied by the vertical distance from the centroid z divided by the
area moment of inertia (Iyy). The strain is the stress divided by Young’s modulus (E). Recalling that∫∫

z2dA= Iyy and replacing the bending moment by the familiar formula My = EI yyw
′′(x, t) leads to

the given result.
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Since there is no damping, the expression for the virtual work of the external forces
only involves the downward acting applied force per unit length. (Recall that the
lateral deflection w(x, t) is positive up.) The virtual work expression is determined
from consideration of the total external force f0dx acting on the same infinites-
imal beam segment, multiplied by the oppositely directed positive virtual deflec-
tion of that infinitesimal segment, δw(x, t). After integrating over the length of the
beam

δWex = −
L∫

0

f0(t)δw(x, t) dx.

Hence, in Hamilton’s principle, where δW = δWex + δWin = δWex − δU,

t2∫
t1

{δT + δW}dt = 0 or

t2∫
t1




L∫
0

ρ Aẇ(x, t)δẇ(x, t) dx + Mẇ(L, t)δẇ(L, t) + Hẇ′(L, t)δẇ′(L, t)

− 3EI
L3

w(L, t)δw(L, t) −
L∫

0

f0(t)δw(x, t) dx −
L∫

0

EIw′′(x, t)δw′′(x, t)dx


 dt = 0.

Now the task is to extract the governing differential equation and boundary condi-
tions from this variational statement by converting the above integral expressions
into other integral expressions that only have δw(x, t) as a factor in the integrands.
This step is accomplished by integration by parts, either with respect to the time
variable or the spatial variable, as appropriate. Only the terms involving the spring
constant and the applied load integral do not require integration by parts because
they already have the independent quantity δw as a factor. For the first integral, the
kinetic energy integral, interchange the order of integration (which is always possible
because both integrations are over finite intervals) and integrate by parts with respect
to t. The uv term of this integration involves the factors δw(x, t2) and δw(x, t1), which
are set to zero because all variations at the arbitrary time limits are set to zero in
the derivation of Hamilton’s principle. The same thing happens with the integration
by parts over time of the terms involving M and H. Note that the term involving H
ends up having δw′(L, t) as a factor. Since this term is not included in a spatial inte-
gral, it cannot be further integrated, nor is it necessary to do so because at a specific
point, a deflection and a bending slope are independent quantities, that is, δw′(L, t)
is independent of δw(L, t). The strain energy integral needs to be integrated by parts
with respect to x twice. After applying the requirements from the beam BCs at the
clamped end that δw′(0, t) = δw(0, t) = 0, the remaining uv terms, for this case where
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EI = constant, are −EIw′′(L, t)δw′(L, t) and +EIw′′′(L, t)δw(L, t). Therefore, the
total result of the various integrations is

t2∫
t1


−

L∫
0

ρ Aẅ(x, t)δw(x, t) dx − Mẅ(L, t)δw(L, t) − Hẅ′(L, t)δw′(L, t)

− 3EI
L3

w(L, t)δw(L, t) −
L∫

0

f0(t)δw(x, t) dx − EIw′′(L, t)δw′(L, t)

+ EIw′′′(L, t)δw(L, t) −
L∫

0

EIw′′′′(x, t)δw(x, t) dx


 dt = 0.

Regardless of the choice made for the arbitrary time interval limits, t1 and t2, the
time integral is always zero. This can be true only if the integrand is zero. Therefore,
conclude

L∫
0

[−ρ Aẅ(x, t) − EIw′′′′(x, t) − f0(t)] δw(x, t) dx

+
[
−Mẅ(L, t) − 3EI

L3
w(L, t) + EIw′′′(L, t)

]
δw(L, t)

+ [−Hẅ′(L, t) − EIw′′(L, t)] δw′(L, t) = 0.

Whatever the choice for the variation for the lateral deflection over the length of
the beam, the zero sum of all terms is unaffected. This can be true only if the factor
multiplying the varied deflection function inside the spatial integral is zero. This
leaves the terms involving the variation of beam tip deflection and the variation of
the bending slope at the beam tip. Since these two variations are independent of
each other, and because changes in one while the other is fixed also leave the zero
sum unaffected, their coefficients must also be zero. Therefore conclude in the first
instance that

+EIw′′′′(x, t) + ρ Aẅ(x, t) = − f0(t)

and in the second instance

EIw′′′(L, t) − Mẅ(L, t) − 3EI
L3

w(L, t) = 0

and EIw′′(L, t) + Hẅ′(L, t) = 0.

The first equation is, of course, the beam differential equation of motion. The second
and third equations are the force boundary conditions at x = L. (The two other BCs
for this fourth-order differential equation are the previously used kinematic BCs
of zero deflection and zero bending slope at x = 0.) This has been a somewhat long
process. The equation of motion and the BCs could have been obtained more quickly
and easily in this case from the beam bending equation and free body diagrams of
the beam tip that involved the inertia force and inertia moment associated with the
tip mass.
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ENDNOTE (3): STURM–LIOUVILLE PROBLEMS

From Ref. [8.3], the Sturm–Liouville problem is defined as a differential equation
eigenvalue problem on the interval a ≤ x ≤ b that consists of the following variable
coefficient differential equation and associated boundary conditions

[r(x)y′(x)]′ + [q(x) + λp(x)]y(x) = 0

α1 y(a) + α2 y′(a) = 0 and β1 y(b) + β2 y′(b) = 0,

where the αs and βs are constants. If the real valued functions r ′(x), r(x), q(x), and
p(x) are continuous, and p(x) > 0 on the given interval, then the eigenfunctions ym(x)
and yn(x), corresponding to the eigenvalues λm and λn, respectively, are orthogonal
on a ≤ x ≤ b with weighting function p(x). That is,

b∫
a

ym(x)yn(x)p(x)dx = 0 if m 
= n.

All the second-order differential equations considered in this chapter fit this mold.
For example, the relatively simple case of torsional vibrations of a uniform, can-
tilevered beam has the following differential equation and boundary conditions

φ′′(x) + ω2ρ Ip

GJ
φ(x) = 0,

where φ(0) = 0 and φ′(L) = 0.

If ω2ρ I p/GJ = λ2, then the three coefficient functions of the Sturm–Liouville state-
ment are simply r(x) = 1, q(x) = 0, and p(x) = 1. Since these functions fulfill the
continuity and sign requirements stated above, then it may be concluded that the
eigenfunction solutions sin(nπx/2L) for n = 1, 3, 5, . . . possess the orthogonality
relationship

L∫
0

sin
mπx
2L

sin
nπx
2L

(1)dx = 0.

The Bessel equation and its boundary conditions, discussed in the next endnote, is
another example of a Sturm–Liouville problem.

ENDNOTE (4): THE BESSEL EQUATION AND ITS SOLUTIONS

The Bessel equation is one of the more important ordinary differential equations
with variable coefficients. From, for example, Ref. [8.4], the standard form of the
Bessel equation of order ν with a parameter (eigenvalue) λ is

x2 d2 y

dx2 + x
dy
dx

+ (λ2x2 − ν2)y(x) = 0.

The transformation ξ = λx leads to the similar Bessel equation form

ξ 2 d2 y
dξ 2

+ ξ
dy
dξ

+ (ξ 2 − ν2)y(ξ) = 0.
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The infinite series solution to the above equation, defined for all positive values of x,
is obtained using the Frobenius method [8.3]. When ν is not an integer, the solution
to the above equation can be written as

y(ξ) = C1 Jν(ξ) + C2 J−ν(ξ),

where the first of these two Bessel functions of the first kind, Jν , is everywhere
bounded, but the other Bessel function of the first kind, J−ν , is singular at zero.
When ν is an integer, the above solution must be written in the form

y(ξ) = C1 Jν(ξ) + C2Yν(ξ),

where Yν is called the Bessel function of the second kind of order ν. It too is singular
at the origin. Therefore, from an engineering viewpoint, once a differential equation
has been written in one of the above standard forms for a Bessel equation, the
solution procedure is just a matter of writing one or the other of the above solutions,
depending on whether ν is an integer.

The catch may be writing the engineering equation in the standard Bessel equation
form, or the standard form of any of the other occasionally encountered named
equations, such as those covered in the last paragraph of this endnote. If, for example,
the engineering equation ends up having the form

x
d2 y

dx2 + α
dy
dx

+ xy(x) = 0,

then, unless α has the value 1, this is not the necessary standard form that allows the
immediate statement of the solution. (If α is 1, then the solution is written in terms of
the zero-order Bessel functions J0(x) and Y0(x).) However, the dependent variable
transformation

y(x) = xβu(x),

where β = 1
2

− α

2
(8.13)

will change the above equation into one with the standard Bessel equation form in
terms of u(x). Sometimes it is necessary to transform the independent variable as
well as the dependent variable. See Ref. [8.4], p. 231. Thus, whenever the engineering
equation is something like a Bessel equation, there may be a relatively simple trans-
formation that will convert it to a standard form for either a Bessel function solution,
or one of the standard polynomial solutions discussed in the last paragraph.

There are a few additional useful facts concerning Bessel functions worth men-
tioning. Higher order Bessel functions can be written in terms of lower order Bessel
functions of the first kind by means of the recurrence relation, from Ref. [8.3]

Jν−1(x) + Jν+1(x) = 2ν

x
Jν(x).

In general experience, the above equation means that other than half order Bessel
functions, Bessel functions of order zero and one are most often used to express
solutions. Graphs of the functions J0(x), J1(x), Y0(x), and Y1(x) are shown in Fig-
ure 8.7. Derivatives of Bessel functions of the first kind can be expressed by use of
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Figure 8.7. Plots of Bessel functions of the first and second kind of orders zero and one.

the following formulas, also from Ref. [8.3]

Jν−1(x) − Jν+1(x) = 2J ′
ν(x)

d
dx

[xν Jν(x)] = xν Jν−1(x) and
d

dx
[x−ν Jν(x)] = −x−ν Jν+1(x).

From Ref. [8.4], derivatives of Bessel functions of the second kind follow the same
forms as those of Bessel functions of the first kind. These recurrence and differenti-
ation formulas are useful for integration of Bessel functions.



P1: JZP
0521865743c08 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 2:27

448 Continuous Dynamic Models

When pursuing the process of determining the values of the system eigenvalues
from the boundary condition equations, it is necessary to solve transcendental equa-
tions involving Bessel functions. In simple cases, those transcendental equations may
involve only a single Bessel function. The first few of the infinite number of values
of x for which the Bessel functions of the first kind, of orders zero and 1, are zero,
that is, the values an such that J0(an) = 0 and the values bn such that J1(bn) = 0, from
Ref. [8.7], along with the values of J0(bn) and J1(an), are as follows

Roots an J1(an) roots bn J0(bn)
2.4048 0.5191 0.0000 1.0000
5.5201 −0.3403 3.8317 −0.4028
8.6537 0.2715 7.0156 0.3001

11.7915 −0.2325 10.1735 −0.2497
14.9309 0.2065 13.3237 0.2184
18.0711 −0.1877 16.4706 −0.1965
21.2116 0.1733 19.6159 0.1801

Finally, Bessel functions of the first kind and the same order ν are orthogonal to each
other over certain intervals. Return to the Bessel equation with a parameter λ

x2 d2 y

dx2 + x
dy
dx

+ (λ2x2 − ν2)y(x) = 0.

If the solutions to this equation satisfy BCs of the form

A1 y(x1) + B1 y′(x1) = 0 and A2 y(x2) + B2 y′(x2) = 0,

where A1, A2, B1, andB2 are real constants, then, from, for example, Ref. [8.4],
p. 599, those solutions are orthogonal over the interval (x1, x2) with weighting function
x.

Of course, not all differential equations of engineering interest are reducible to
a Bessel equation, per se. From Ref. [8.4], p. 586, the following two theorems are
presented for reference.

THEOREM 1. If (1 − a)2≥ 4c and if d, p, and q are not zero, then except in the special
cases when it reduces to Euler’s equation,15 the differential equation

x2 y′′(x) + x(a + 2bx p)y′(x) + [c + dx2q + b(a + p − 1)x p + b2x2p]y(x) = 0.

has as a complete solution

y(x) = xα exp(−βx p)[C1 Jν(λxq) + C2Yν(λxq)],

where α = 1 − a
2

β = b
p

λ =
√|d|

q
ν =

√
(1 − a)2 − 4c

2q
.

15 The Euler equation, also called the Euler-Cauchy equation, has the form xn y(n)(x) + a1xn−1 y(n−1)(x) +
· · · + an−1xy′(x) + an y(x) = 0. It is converted to one with constant coefficients by the transformation
of the independent variable: z = ln|x|.
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If d < 0, then Jν and Yν are to be replaced by Iν and Kν , respectively. If ν is not an
integer, Yν and Kν can be replaced by J−ν and I−ν . A corollary of this theorem is as
follows.

COROLLARY 1. If (1 − r)2 ≥ 4b, then except in the special case a = 0 r = 2, and
s = b = 0, when it reduces to Euler’s equation, the differential equation

(xr y′)′ + (axs + bxr−2)y = 0.

has the complete solution

y(x) = xα[C1 Jν(λxγ ) + C2Yν(λxγ )],

where α = 1 − r
2

γ = 2 − r + s
2

λ = 2
√|a|

2 − r + s
ν =

√
(1 − r)2 − 4b
2 − r + s

.

If a < 0, then Jν and Yν are to be replaced by Iν and Kν , respectively. If ν is not an
integer, Yν and Kν can be replaced by J−ν and I−ν respectively.

For the sake of more completeness, it is necessary to mention some of the many
other standard equations. From Ref. [8.3], p. 224, Gauss’ hypergeometric equation
has the standard form

x(1 − x)y′′(x) + [c − (a + b + 1)x]y(x) − aby(x) = 0.

The hypergeometric function solution is given at the above reference. Again from
Ref. [8.3], p. 209, the Legendre differential equation, whose solutions are Legendre
functions, is

(1 − x2)y′′(x) − 2xy′(x) + n(n + 1)y(x) = 0.

When n is a nonnegative integer, one of the two independent Legendre functions
will be a Legendre polynomial Pn(x). A convenient summary of the differential
equations, recurrence formulas, and so on, for Legendre, Tschebycheff, Laguerre,
and Hermite polynomials is found in Ref. [8.9], p. 67.

ENDNOTE (5): NONHOMOGENEOUS BOUNDARY CONDITIONS

In Exercise 8.4 the governing differential equation for the bending vibration of a
homogeneous, orthotropic, linearly elastic, uniform beam always has the same form,
which is

EIw′′′′(x, t) + ρ Aẅ(x, t) = fz(x, t),

where in this exercise the load per unit length is zero. The initial conditions are again

w(x, 0) = ẇ(x, 0) = 0.

However, instead of four BCs that have the form

F1[w(0, t)] = F2[w(0, t)] = F3[w(L, t)] = F4[w(L, t)] = 0,
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where each of the various Fj terms are possibly differential operators, now consider
the case where the BCs have the form

F1[w(0, t)] = g1(t) F2[w(0, t)] = g2(t)

F3[w(L, t)] = g3(t) F4[w(L, t)] = g4(t).

This is called the nonhomogeneous BC case. See Ref. [8.5], p. 300. This BC case, of
course, corresponds to beam support motions.

The previously discussed procedure of writing the deflection solution as a series
expansion in terms of the mode shapes for w(x, t) will not suffice when the BCs are
not homogeneous. The insufficiency of the previous procedure is quite evident in this
simply supported beam case where the mode shapes are simply sine functions. That
is, if a solution were attempted here using the previous modal expansion

w(x, t) =
N∑

n=1

pn(t) sin
nπx

L

then setting x = 0 always leads to w(0, t) = 0, which is a contradiction of the stated

BC. Clearly the previously successful procedure needs to be modified in the face of
nonhomogeneous BCs. A successful procedure is to write a transformation on the
dependent variable that turns this nonhomogeneous boundary value problem into a
homogeneous boundary value problem. That transformation has the form

w(x, t) = v(x, t) + h1(x)g1(t) + h2(x)g2(t) + h3(x)g3(t) + h4(x)g4(t),

where the functions g j (t) are the nonhomogeneous functions of the BCs, and the
generally nonunique h j (x) are chosen so as to render the new BCs for v(x, t) homo-
geneous. For example, if the beam BCs were, say,

w(0, t) = w0
t
t0

and w′(0, t) = s0
t2

t2
0

,

then write

w(x, t) = v(x, t) + t
t0

h1(x) + t2

t2
0

h2(x). (8.14)

Then

w(0, t) = v(0, t) + t
t0

h1(0) + t2

t2
0

h2(0)

w′(0, t) = v′(0, t) + t
t0

h′
1(0) + t2

t2
0

h′
2(0).

To have v(0, t) = v′(0, t) = 0, and thus achieve homogeneous BCs for the new depen-
dent variable v(x, t), it is necessary in this case to chose the functions h1(x) and h2(x)
such that h1(0) = w0, h2(0) = 0, h1

′(0) = 0, and h2
′(0) = s0. One possible choice is

simply h1(x) = w0 and h2(x)′ = s0x. Once homogeneous BCs have been achieved,
then the previously used modal expansion will work as before. The only other thing
to note is that the transformation of Eq. (8.14) will alter the beam governing dif-
ferential equation by adding additional equivalent loading terms to the right-hand
side.
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9 Numerical Integration of the
Equations of Motion

9.1 Introduction

As discussed in the last part of Chapter 5, digital computer software capabilities have
currently reached a point where numerical solutions to very large, linear, structural
dynamics problems can be successfully achieved. As an indication of the growth
in size of structural models being used in dynamic analyses, note that it is now not
uncommon for structural dynamic analyses to employ the same detailed FEM models
prepared for the purposes of static stress analyses. As a result of this marked increase
in the number of DOF used in analyses, and just as importantly, as part of the clear
trend toward automating everything, the integration of the equations of motion is
rarely done by any means other than by digital computer-based numerical methods.
Although these reasons are sufficient for looking at numerical integration techniques,
there are still other important reasons. The foremost of these other reasons is that
numerical integration is the only practical approach when material nonlinearities
(e.g., plasticity) or geometric nonlinearities are part of the system’s mathematical
model.

Today, numerical integration is a well-developed field with many textbooks avail-
able to provide a comprehensive overview on both simplistic and sophisticated levels.
See, for example, Refs. [9.1,9.2]. Therefore it is appropriate for this textbook to pro-
vide only a brief introduction to the popular numerical integration techniques that are
particularly suitable for the numerical integration of the ordinary differential equa-
tions that result from the modal transformation applied to a finite element model or
are suitable for the direct integration of the matrix equation of motion in terms of
the original generalized coordinates. Of course, either of these equation sets have
time as the only independent variable. Throughout the subsequent discussion, the
type of dynamic loading associated with these equations of motion is limited to that
of a “pulse”; that is, a loading having a duration, Tload, that does not exceed a few
natural periods.1 One reason for this focus on a shock loading is that any long-acting,

1 If the characteristic time duration of the time-dependent smoothly varying load exceeds about six times
the first natural period of the structure, then the time-varying load can be effectively treated as a static
load, meaning that the kinetic energy of the structure can be ignored.

451
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time-varying load is generally periodic; that is, the result of the superposition of sev-
eral harmonic loadings. Harmonic loadings are simply treated by the methods of
Sections 5.6 and 5.7.

9.2 The Finite Difference Method

One of the oldest of general numerical methods, and still a reasonably accurate
method for the integration of second or first order, ordinary differential equations, is
the finite difference method (FDM). The FDM gets its name from the fact that this
method of numerical integration replaces all the total derivatives of a differential
equation, where the derivatives can be viewed as ratios of two differential incre-
ments, by the approximating ratio of two finite sized increments. In other words,
this FDM approximation may be understood by viewing, for example, a first-order
derivative dw/dt as the ratio of two differentials (dw)/(dt) and then approximat-
ing this ratio of infinitesimals by the ratio of the two finite increments (∆w)/(∆t).
Furthermore, instead of approximating derivatives at every point in some interval
of interest, the approximate derivatives are evaluated only at a representative finite
number of discrete points on the time interval of interest. These solution points are
separated by various values of ∆t, and this finite set of N points is chosen to rep-
resent all the points on the time interval of interest. The quantity ∆t is called the
time step.

The replacement of the actual derivatives by approximations can be accomplished
in the following way. Since the physical nature of the deflections, velocities, and
accelerations of vibrating structures is such that these quantities are always bounded,
continuous functions, they can be deemed to be analytical functions. As such, these
functions are representable by means of a Taylor’s series. Recall that a Taylor’s series
can be written in either of the following forms

f (b) = f (a) + (b − a) f ′(a) + 1/2(b − a)2 f ′′(a)

+ 1
3!

(b − a)3 f ′′′(a) + 1
4!

(b − a)4 f ′′′′(a) + · · ·

or f (t j + ∆t j ) = f (t j ) + ∆t j f ′(t j ) + 1
2
∆t2

j f ′′(t j )

+ 1
3!

∆t3
j f ′′′(t j ) + 1

4!
∆t4

j f ′′′′(t j ) + · · · ,

where here, only because several derivatives are needed, primes rather than dots are
used temporarily to indicate derivatives with respect to time.

IF: (i) p(t) represents one the various modal degrees of freedom whose mag-
nitude is to be determined over several periods after the loading begins; (ii)
∆t j = ∆t represents a small increment in the value of the dependent variable
t ; (iii) t j designates the jth selected discrete value of the independent vari-
able, time, after time zero; and (iv) p(t j ) ≡ pj and p(t j+∆tj) ≡ p(tj+1) ≡ pj+1,
etc.;
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2�t

j−4 j−3 j−2 j−1 j j+1
t

True solution

Actual
slope at j

(pj + 1 − pj − 1)

p(t)

Finite difference  approximation
to slope at j

Figure 9.1. Geometric interpretation of the finite difference approximation to the first deriva-
tive at time step j.

THEN the Taylor’s series for this modal coordinate function can be written for
the two time points adjacent to time t j as follows

pj+1 = pj + (∆t)p′
j + 1

2
(∆t)2 p′′

j + 1
(3!)

(∆t)3 p′′′
j + 1

(4!)
(∆t)4 p′′′′ + · · ·

pj−1 = pj − ∆tp′
j + 1

2
(∆t)2 p′′

j − 1
(3!)

(∆t)3 p′′′
j + 1

(4!)
(∆t)4 p′′′′ − · · ·, (9.1)

where, in the second of these equations, the increment in time going from t j to t j−1

is negative. If the second equation is subtracted from the first, then the following
approximating expression for the first derivative is obtained

p′
j = pj+1 − pj−1

2∆t
− 1

3
(∆t)2 p′′′

j − 1
60

(∆t)4 p′′′′
j − · · ·

= pj+1 − pj−1

2∆t
+ O[∆t]2, (9.2)

where the last term is read as “terms of order delta tee squared,” meaning the largest
of these terms is proportional to the small quantity (∆t)2. Thus, if the approximation

p′
j = pj+1 − pj−1

2∆t
+ <one-step approximation error> (9.3)

is used, then the error of the approximation at the jth time point is a collection
of terms that are, at worst, proportional to the square of the small time increment.
The geometric interpretation of Eq. (9.3) is illustrated in Figure 9.1 for an arbitrary
solution function.

To be clear why the largest term of this approximation error, the term involving
(∆t)2, is a small quantity, it is instructive to temporarily nondimensionalize the modal
equation of motion over the total period of time of the integration, Ta . Introduce the
nondimensional time variable τ that is such that 0 ≤ τ = t/Ta ≤ 1. The effect that
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this transformation has on the various derivatives of the dependent variable can be
seen by considering the time derivative as the ratio of two differentials

dp
dt

= dp
dτ

dτ

dt
= 1

Ta

dp
dτ

and
d2 p

dt2 = d
dt

dp
dt

= d
dτ

(
1
Ta

dp
dτ

)
dτ

dt
= 1

Ta
2

d2 p
dτ 2

,

and so on. Also, let the nondimensional time increment ∆τ j= ∆tj/Ta. For ease of
discussion, let all the time increments be uniform. That is, let all time increments be
determined by dividing the time duration of the integration by the number of points
where the derivatives are to be approximated. Therefore, write ∆t = Ta/N. Then
∆τ = 1/N. Therefore, if the equation of motion to be solved is first nondimension-
alized, then from combining Eq. (9.2) and the previous equation, Eq. (9.3), has the
form

p′
j = pj+1 − pj−1

2∆τ
+ O

[
1

N2

]
,

where the above derivative is now with respect to τ . It is immediately evident that
since ∆τ = 1/N (i) the smaller the quantity ∆τ is (the larger the number N is), the
smaller is the error for this approximation of the first derivative at that typical time
point, and (ii) terms in the original Taylor’s series involving ∆t raised to exponents
greater than 2 are of lesser importance than those just raised to the second power.
Thus, the largest part of the error included in the quantity indicated by the O[∆t2]
symbol, read as “of order delta tee squared,” is the term associated with ∆t2 itself.
As an aside note that although the error associated with the Eq. (9.2) approximation
of the first derivative at any time point is proportional to the inverse of N 2, the total
error is proportional to 1/N. This is so because there would be N calculations at the
N time points spaced over the time interval Ta , each involving an error of 1/N 2,
which adds up to a total error of 1/N. Thus N must be a large number, and the total
error would decrease slowly as N is increased.

As is soon illustrated, individual errors of order ∆t2 for derivatives are sufficient for
routine numerical integrations. However, it is possible to obtain a still more accurate
approximation for the first and higher derivatives at the expense of a greater number
of computer calculations. Such a more accurate approximation for the first derivative
can be obtained by using two more adjacent time points in the Taylor series

pj+2 = pj + 2∆t p′
j + 4

2
(∆t)2 p′′

j + 8
(3!)

(∆t)3 p′′′
j + 16

(4!)
(∆t)4 p′′′′

j + · · ·

pj−2 = pj − 2∆t p′
j + 4

2
(∆t)2 p′′

j − 8
(3!)

(∆t)3 p′′′
j + 16

(4!)
(∆t)4 p′′′′

j − · · · . (9.4)

To isolate the first-order derivative by first eliminating the second-order derivative,
subtract the second of Eqs. (9.4) from the first. Listing that result with the similar
subtraction in Eqs. (9.1) yields

pj+2 − pj−2 = 4∆t p′
j + 8

3
(∆t)3 p′′′

j + O[∆t5]

pj+1 − pj−1 = 2∆t p′
j + 1

3
(∆t)3 p′′′

j + O[∆t5].
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Now multiply the second of these equations by 8 and subtract the first to further
isolate the first derivative. After solving for the first derivative, the result is

p′
j = pj−2 − 8pj−1 + 8pj+1 − pj+2

12∆t
+ O[∆t4].

This fourth-order approximation is clearly more accurate than the second-order
approximation because the error involves a much smaller factor. However, it involves
twice as many sums. Again, the second-order approximation is satisfactory unless the
dependent variable is changing rapidly.

A second-order approximation for the second derivative can also be obtained
from Eqs. (9.1) simply by adding those two equations. After solving for the second
derivative the result is

p′′
j = pj−1 − 2pj + pj+1

∆t2
+ O[∆t2]. (9.5)

Although other higher order finite difference total and partial derivatives can be
approximated in the same fashion as above, they are not of present concern. As a
final comment, note that the above approximations for derivatives use equal numbers
of time points on each side of the time point under consideration. Such approxima-
tions are called central differences, as opposed to forward and backward differences,
which respectively employ only time points ahead or behind the time point of interest.
Since central differences are generally more accurate, the forward and backward dif-
ference approximations are generally used only with spatially independent variables
to facilitate the expression of boundary conditions.

EXAMPLE 9.1 In Example 9.5, an undamped, one-DOF, linear vibratory system
was subjected to a sinusoidal base motion input Y0sin(π t/t0) starting at time zero. With
ω1 being the system natural frequency, the system differential equation of motion is

q̈(t) + ω2
1q(t) = ω2

1Y0 sin
π t
t0

. (9.6)

For the case of zero initial conditions, the deflection response solution was determined
to be

q(t) = ω1Y0

(π/t0)2 − ω2
1

[(π/t0) sin ω1t − ω1 sin(π t/t0)] .

A numerical integration of the equation of motion does not produce a solution such as
the above, which is an analytical expression in terms of arbitrary values of the system
parameters. Any numerical calculation requires specific choices for most, if not all,
system parameters. Thus, for the purposes of the following numerical calculations,
choose t0 to be π/2 seconds and ω1 to be 1 rad/sec. Therefore, the nondimensional
form of the above solution reduces to

q(t)
Y0

≡ q(t) = 1/3 [2 sin t − sin 2t] .

This will be referred to as the “exact” solution (in the numerical sense) for this
problem.

Now, for the purpose of comparison to the above analytical solution for this vibra-
tory system, examine the finite difference approach to numerically integrating the
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system differential equation, Eq. (9.6). That equation, in terms of the selected values
for the system parameters, is, where again q = q(t)/Y0

q ′′(t) + q(t) = sin 2t.

Let the numerical integration be carried out using the moderate-sized time step
∆t = 0.2 sec. A selected value for Y0 is not necessary for this calculation. However,
because such a selection will be necessary for the next calculation, also choose Y0 to
have the value 1.0, which makes q the same as q.

SOLUTION Using the finite difference approximation for the second derivative of
q(t), the original differential equation of motion, Eq. (9.1), is, after some algebra,
converted into the following finite difference equation for a typical time point t j

qj−1 − [2.0 − (0.2)2]qj + qj+1 = (0.2)2 sin(0.4 j)

or qj−1 − 1.96qj + qj+1 = 0.04 sin(0.4 j)

or qj+1 = 0.04 sin(0.4 j) + 1.96qj − 1.0qj−1, (9.6a)

where t j = j∆t = 0.2 j . The first initial condition of zero deflection at time equals
zero (i.e., at j = 0) leads immediately to q0 = 0. The second initial condition of zero
velocity at time zero, after using the finite difference expression for the first deriva-
tive, Eq. (9.3), leads to q−1 = q1. Application of q−1 = q1 to the above recurrence
relationship, Eq. (9.6a), at the time point j = 0 leads immediately to q1 = 0 . Sub-
stitution of these solutions q0 and q1 to Eq. (9.6a) at the time point j = 1 leads to
q2 = 0.04(0.3894183) = 0.0155767. Continuing step by step allows the calculation of
the value of qj+1 at the jth time step according to the above recursion formula. The
first few results using a hand calculator are as follows

j = 0 q j = 0.0000000 j = 6 q j = 0.3901883
1 0.0000000 7 0.5409705
2 0.0155767 8 0.6835134
3 0.0592246 9 0.7963808
4 0.1377851 10 0.8596922
5 0.2508171 11 0.8583438

A plot of the Mathematica numerical results superimposed on the exact solution is
shown in Figure 9.2. From Figure 9.2, it is evident that, with the chosen step size,
the numerical solution is a very close fit to the exact solution, especially at the peak
responses, which are of greatest interest. The slow increase in numerical error is
evident close to the baseline where the deviation from the true solution continually
increases as n increases from the low 30s to the low 60s to the low 90s. Also keep
in mind that the input load is expected to act only for several periods, after which it
goes to zero. Therefore, this slow buildup of error is not particularly consequential
in this case. ★

One of the advantages of the FDM, like other most other numerical methods,
is that it is a straightforward matter to apply the FDM to a nonlinear equation of
motion. Recall that numerical integration of one form or another is usually the only
practical procedure for obtaining solutions to nonlinear differential equations. As an
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Figure 9.2. Finite difference numerical solution for an oscillator subjected to base excitation
superimposed on the analytical solution.

example, consider the following undamped single-DOF equation of motion that is a
form of Duffing’s equation [9.3]

q̈(t) + ω2
1q(t) + µq3(t) = Q(t)

M
,

where µ is a small, positive number. Comparing this equation with its cubic deflection
term to the standard m, k, Q single-DOF linear differential equation shows that the
above second and third term together represent an elastic spring that is “hardening”;
that is, the restoring spring force has a positive curvature on the spring force versus
spring deflection curve that in turn means a larger increment in the applied force is
required for an additional increment of spring deflection than was required for the
previous increment in spring deflection. If there were a minus sign before the cubic
term, the force–deflection curve would turn down from the original linear tangent,
and the elastic spring would be labeled softening. The application of the FDM to this
quasilinear equation2 proceeds in exactly the same way as with a linear equation. In
this case, the resulting recursive, algebraic equation is

qj+1 = ∆t2 Qj

M
+ qj

[
2 − ω2

1∆t2] − µ∆t2q3
j − qj−1, (9.6b)

where again the initial deflection and the initial velocity provide the means to start
this recursive relationship.

EXAMPLE 9.2 Consider an (undamped) Duffing’s equation with a softening elas-
tic spring; that is, where the sign before the transposed term containing the parameter
µ in Eq. (9.6b) is changed from a minus sign to a plus sign. Use the finite difference
method to numerically integrate this equation to obtain the time history of the
motion, q(t). As in Example 9.1, let the externally applied generalized force result

2 A quasilinear equation is one where the nonlinearities do not involve the highest derivative.
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from a harmonic base motion described as Y0 sin(π t/t0) . As in Example 9.1, choose
t0 to be π/2, ω1 = 1.0, and, again, choose a step size of 0.2 sec. Let the value of µ be
0.2. Then the finite difference equation is

qj = 0.04 sin[(0.4( j − 1)] + 1.96qj−1 + 0.008q3
j−1 − qj−2.

Since this is a nonlinear problem, and thus the results are not easily anticipated, it is
always worthwhile redoing any “new” problem with a smaller time step as a check on
the accuracy of the first solution. Using a time step of 0.1 sec leads to the recurrence
equation

qj = 0.01 sin[(0.2( j − 1)] + 1.99qj−1 + 0.002q3
j−1 − qj−2.

Figure 9.3(a) is a plot of the solution for the 0.1-sec time step. It is very much the same
as that for the 0.2-sec time step and thus offers some confirmation of the accuracy of
the two solutions. Figure 9.3(b) is the plot of the solution for a 0.2-sec time step, but
with the parameter µ of the softening elastic spring is increased from 0.2 to 0.6. The
shape of the response with the still softer spring as shown in Figure 9.3(b) is, after the
first peak, quite different from that of Figure 9.3(a). The only difference between to
the two plots that is easily anticipated is that the peak magnitude responses with the
softer spring, µ equal to 0.6, are slightly larger than those with µ equal to 0.2. Even
though the cubic term coefficient was tripled, it seems that the amplitudes are only
slightly larger because the quantity being cubed, qj , is mostly less than 1.0. ★

In addition to applying the finite difference method to individual modal equations,
the FDM also can be applied directly to the original [m], [c], [k], {Q} matrix equation
for the system under study. This choice, for example, might be prompted by stiffness
nonlinearities or a modal damping matrix that had significant off-diagonal terms. In
the case of stiffness nonlinearities, the entries of the stiffness matrix would not be
constants but would depend on the values of the generalized coordinates, just as the
Duffing equation 1 × 1 stiffness matrix entry, divided by the mass term, is (ω2

1 ± µq2).
In the discussion that follows, the stiffness matrix entries are constants.

If, as before, {q(t)} is the N by one vector of unknown system generalized coordi-
nates, then each time derivative of the individual DOF that form the entries of this
vector can be approximated by use of the above order ∆t2 FDM equations. That is,
for the jth time step

{q′
j } = − 1

2∆t
{qj−1} + 1

2∆t
{qj+1}

and {q′′
j } = 1

∆t2
{qj−1} − 2

∆t2
{qj } + 1

∆t2
{qj+1}.

Substitution into the original [m], [c], [k] differential equation and solving for the
system DOF at the following ( j + 1)th time step leads to(

1
∆t2

[m] + 1
2∆t

[c]
)

{qj+1}

= {Qj } +
(

2
∆t2

[m] − [k]
)

{qj } −
(

1
∆t2

[m] − 1
2∆t

[c]
)

{qj−1}.
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Figure 9.3. (a) FDM numerical solution for an undamped single-DOF system with a softening
spring (Duffing’s equation with µ = 0.2) for a 0.1-sec time step. (b) FDM solution to Duffing’s
equation with µ = 0.6 (a still softer spring) using a time step of 0.2 sec.

The coefficient matrix on the left-hand side of the above equation, which is within
parentheses, temporarily call it [a], does not change when j is changed. The right-
hand side, which forms a single vector, temporarily call it {bj }, needs to be updated
with every change in j. Therefore, this is a set of simultaneous equations of the form
[a]{qj+1} = {bj} even if the stiffness matrix were dependent on qj values. Therefore
these simultaneous equations can be solved using any appropriately efficient numer-
ical technique to obtain {qj+1}. Again, for any particular chosen time step, the left-
hand side coefficient matrix needs be calculated only once. Hence this is a case where
it may be worthwhile calculating that inverse of that coefficient matrix for {qj+1}. Just
as is true for the modal equation case, the two vectors needed to start the procedure,
{q0} and {q1}, are obtained from the initial conditions cast in matrix form.
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9.3 Assumed Acceleration Techniques

There is a class of successful time step methods sometimes attributed to N. M. New-
mark [9.4,9.5], which are often referred to as Newmark’s β method. It suffices here to
discuss just one of these methods, the generally favored special case where β = 1/6.
Appropriately, this method is called the linear acceleration method. To develop the
linear acceleration method in simplest terms, again consider the linear modal equa-
tion for the ith mode

p̈i (t) + 2ζiωi ṗi (t) + ω2
i pi (t) = Pi (t)

Mi
.

Again, to simplify and avoid confusion with regard to the subscripts, drop the modal
subscript i so that hereafter all subscripts refer only to the integer value of the time
step. The basis of the linear acceleration method is to approximate the actual time
variation of the (modal) acceleration curve by a series of straight lines, one for each
time step interval. For better symbolic clarity, let a j , v j , and pj be, respectively, the
modal acceleration, modal velocity, and modal deflection at the jth time step. Intro-
duce a local time coordinate, τ , that is (i) zero at time t j , the time at the start of
the jth time step, and that (ii) has the value ∆t j = ∆t at the ( j + 1) th time step.
In other words, τ varies between zero and ∆t . In terms of τ , write the following
straight-line expression for the acceleration at any time point within the jth time
interval and then integrate with respect to τ so as to obtain the subsequent veloc-
ity and deflection expressions at that same typical time point in the same time step
interval. In symbolic form, the original straight-line approximation to the acceler-
ation from similar triangles, and the results of its integration over τ from zero to
τ , are

p̈(τ ) = a j + a j+1 − a j

∆t
τ

ṗ(τ ) = v j + a jτ + a j+1 − a j

2∆t
τ 2

and p(τ ) = pj + v jτ + 1/2a jτ
2 + a j+1 − a j

6∆t
τ 3.

Note the one-sixth factor in the last term. Specializing these general velocity and
deflection expressions within the time interval to the ( j + 1)th time step by setting
τ = ∆t, produces

v j+1 = v j + ∆t
2

(a j+1 + a j )

pj+1 = pj + ∆tv j + ∆t2

3
a j + ∆t2

6
a j+1. (9.7)

Equations (9.7) provide solutions for the velocity and deflection at the end of the
time step, but these solutions are in terms of the accelerations at the beginning and
at the end of the time step. Fortunately there are two more relevant equations to be
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combined with Eqs. (9.7). They are the dynamic equilibrium equations at these two
adjacent time steps.3 Those equations are

a j + 2ζωv j + ω2 pj = Pj

M

a j+1 + 2ζωv j+1 + ω2 pj+1 = Pj+1

M
.

These four equations are now to be manipulated to obtain algebraic expressions for
the unknown deflection and velocity values at the end of the time step entirely in
terms of the known deflection and velocity values at the beginning of the time step.
Note that the force input is considered known at all time steps. To this end, the first
and the fourth equations are to be solved simultaneously for a j+1 and v j+1, where
the velocity solution is used later. These two solutions are

(1 + ζω∆t)a j+1 = Pj+1

M
− ω2 pj+1 − 2ζωv j − ζω∆ta j

(1 + ζω∆t)v j+1 = Pj+1∆t
2M

− ω2∆t
2

pj+1 + v j + ∆t
2

a j , (9.8)

where, again, the load input value Pj+1 is a known quantity and the forward value of
the modal deflection, pj+1, will not be a difficulty because it will be combined with a
like term in the second equation of the original four equations. Now it is just a matter
of substituting the first of the above two equations and the third of the original four
equations into the original second equation so as to eliminate the two acceleration
terms. After some algebra

pj+1

[
1 + ω2∆t2

6(1 + ζω∆t)

]
= pj

[
1 − ω2∆t2

3
+ ω2∆t2(ζω∆t)

6(1 + ζω∆t)

]

+ ∆t v j

[
1 − ζω∆t

3 + ζω∆t
3(1 + ζω∆t)

]

+ Pj∆t2

6M

[
2 − ζω∆t

(1 + ζω∆t)

]
+ Pj+1∆t2

6M

[
1

1 + ζω∆t

]
.

(9.9a)

Similarly, substituting the jth time step equilibrium equation into the Eq. (9.8) solu-
tion for the velocity term so as to again eliminate a j , yields

(1 + ζω∆t)v j+1 = v j (1 − ζω∆t) − ω2∆t
pj+1 + pj

2
+ ∆t

2
Pj+1 + Pj

M
. (9.9b)

Since all the right-hand side deflection and velocity terms are known at the jth
time step, and the applied force terms are known at all time steps, the above two
equations, (9.8a) and (9.8b), can be solved first for pj+1 and then for v j+1 which
requires the value of pj+1 for its solution. Note also that there is no difficulty starting
this calculation because all that these equations require for a successful start are the
known initial conditions p0 and v0.

3 The use of these two equations means that at every discrete time step, dynamic equilibrium is being
enforced, as was done for the FDM.
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EXAMPLE 9.3 Redo Example 9.1, but this time use the linear acceleration tech-
nique, as expressed in Eqs. (9.9), to accomplish a numerical integration of the linear,
undamped, equation of motion

q̈(t) + ω2
1q(t) = ω2

1Y0 sin
π t
t0

or
q̈(t)
Y0

+ q(t)
Y0

= sin 2t ,

where Pj (t)/M = ω2
1Y0 sin(π t/t0). Again, the selected value of the time step is 0.2

sec, the natural frequency is 1.0 rad/sec, and t0 is chosen to be a nonresonant π/2 sec.
As before, now let q(t) represent the previous nondimensional deflection q(t)/Y0 or,
equivalently, let Y0 have a unit value.

COMMENT This numerical integration technique is stable only when the chosen time
step is less than 55.1% of the natural period associated with the equation being
integrated [9.4]. This is a very loose requirement in that the accuracy requirement
demands a much smaller time step. Here, because ω = 1.0 rad/sec, the natural period
is 2π sec, and the time step of 0.2 sec is only 3% of the natural period.

SOLUTION Since the single-DOF system of Example 9.1 is undamped, the damping
factor ζ equals zero. This choice, along with the other parameter choices reduces the
constant acceleration numerical integration equations to

qj+1 = 0.98013245qj + 0.198675496v j + 0.0066225159 sin[0.4( j + 1)]

+ 0.0132450328 sin[0.4 j]

and v j+1 = v j − 0.1(qj+1 + qj ) + 0.1 sin[0.4( j + 1)] + 0.1 sin[0.4 j].

These calculations were made using a spreadsheet program. Two time steps were
used. The first time step was 0.2 sec, whereas the second time step was one-third of
the first time step. The choice of the second time interval was made so that every third
time step of the second calculation falls exactly on a time step of the first calculation.
Thus at time 2.00 secs, steps 10 and 30, respectively, the corresponding deflections are
0.845 and 0.857, 1.4% difference at the first positive peak. At the first negative peak,
at 4.2 sec and steps 21 and 63, the corresponding values are −.849 and −.864, which
is a 1.8% difference. Therefore, it seems that the 0.2 sec time step is satisfactory for
this simple problem.

Figure 9.4 is a plot of those results superimposed on the exact solution. The plot
shows that this more complicated numerical integration scheme, in this simple case,
has only slightly better accuracy than the finite difference method as judged by look-
ing at time steps in the vicinity of time step 90. However, at the more important peak
responses, there is no apparent difference in accuracy in this simple case. ★

EXAMPLE 9.4 Derive the linear acceleration numerical equations necessary to
determine the response of a single-DOF system whose motion is determined by
Duffing’s stiffening equation for a value of µ equal to 0.2 as in Example 9.2. Comment
on the feasibility of this approach.
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Figure 9.4. Example 9.3: Linear acceleration solution superimposed on exact solution.

SOLUTION In terms of the nondimensional deflection, which, again, is the actual
deflection divided by the amplitude of the base motion, the equation of motion at
the mth and (m + 1)th time step, with ω = 1.0 rad/sec and µ = 0.2, are

q̈m + qm + 0.2q3
m = sin 2tm q̈m+1 + qm+1 + 0.2q3

m+1 = sin 2tm+1

or am = sin 2tm − qm − 0.2q3
m am+1 = sin 2tm+1 − qm+1 − 0.2q3

m+1.

Substituting these latter two equations into the linear acceleration equations,
Eqs. (9.7), yields

0.0013333333q3
m+1 + 1.00666666qm+1 = 0.98666666qm − 0.026666666q3

m + 0.2vm

+ 0.0133333333 sin 0.4m

+ 0.0066666666 sin 0.4(m + 1)

and vm+1 = vm + 0.1 sin 0.4m + 0.1 sin 0.4(m + 1) − 0.1qm − 0.1qm+1

− 0.02q3
m − 0.02q3

m+1.

There is no difficulty starting these two equations with q0 = v0 = 0.0. The difficulty is
that the first equation, which must be dealt with first, is a cubic equation that must be
solved for the real root at each m step. Since the cubic term of this equation is much
smaller than the linear term, it is possible to solve the cubic equation iteratively. Thus
this approach is feasible, but of limited appeal. ★

9.4 Predictor-Corrector Methods

To provide an insight to predictor-corrector methods, first consider the simplest of
all numerical integration schemes, which is known as Euler’s method or the Euler-
Cauchy method. Euler’s method uses a time-stepping approach to address the inte-
gration of first order, quasilinear, differential equations of the form

dq(t)
dt

= f (t , q(t)) or dq(t) = f (t , q(t))dt , (9.10)
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Figure 9.5. Graphical view of Euler’s method.

where f is any piecewise smooth function of its arguments. The Euler numerical
solution is based on the function f being the slope of the function q. That is, the
Euler solution for the small, finite, increment ∆qj in the function q(t) at time step j,
used to obtain the approximation for qj+1, is simply

∆qj = f (t j , qj )∆t.

This is, of course, just the finite increment corresponding to the infinitesimal incre-
ment form stated in Eq. (9.10). For the sake of simplicity in the following discussion,
let the value of the function q(t) be known precisely at the jth time step, as would be
the case for precise initial conditions at the zeroth time step. Then the fundamental
reason that this approach is unacceptably inaccurate, as illustrated in Figure 9.5, is
that the approximate slope used to obtain the increment in q(t) is just the slope at
the beginning of the time step, ∆t . Since the slope at the beginning of the interval,
f (t j,qj ), can be quite unrepresentative of the average slope on the finite interval,
inaccuracy is the result. To clarify this point, note that the average slope of an arbitrary
function g(x) on the interval (a, b) is simply

average slope ≡ 1
b − a

b∫
a

g′(x)dx = g(b) − g(a)
b − a

.

Rearranging the first and third parts of this equation shows that the value of the
function at the beginning of the time increment, g(a), plus the average slope multi-
plied by the length of the interval, b – a, yields the exact value of the function at the
end of the interval, g(b). Thus, what is clearly needed for a more accurate numerical
determination of the value of the function at the end of a time increment is a better
approximation to the average slope over the time increment. The quest for a good
approximation to the average slope has spawned all manner of methods, including the
predictor-corrector methods discussed in this section and the Runge-Kutta methods
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discussed in the next section. Of course, in any numerical integration procedure, the
exact value of the average slope is not available any more than is the exact value of
the function at the end of the interval, g(b).

Before going on to the predictor-corrector and Runge-Kutta methods as superior
approaches, note that the focus of this discussion, a second-order ordinary differential
equation in time such as the damped version of Duffing’s equation, can easily be
converted to two first-order equations to be solved simultaneously as follows. Let

q̇(t) ≡ v(t),

then the single second-order differential equation

q̈(t) + 2ζωq̇(t) + ω2q(t) + µq3 = Q(t)

becomes the following two first-order differential equations

v̇(t) = Q(t) − 2ζω v(t) − ω2q(t) − µq3 and q̇(t) = v(t). (9.11)

Return to the basic problem statement q̇(t) = f (t , q). One reasonable way to
approximate the true average slope of q(t) over the time increment ∆t is to average
(i) the slope at the beginning of the time increment and (ii) the slope at the end of
the time increment. The slope at the beginning of the time increment at time step j
can be calculated directly, as before, as simply f (t j , qj ) . The slope at the end of the
time interval, f (t j+1, qj+1), cannot be calculated directly because the true value of
qj+1 is not available. However, an Euler approximation can be made to obtain a first
estimate of qj+1. That is, write qj+1(#1) = qj + f (t j , qj )∆t and then use the average
of the initial slope and the approximate end slope, based on this first estimate, to
obtain a better approximation of the functional value at the end of the time step.
That is, write

qj+1(#2) = qj + ∆t
2

[ f (t j , qj ) + f (t j + ∆t , qj+1(#1))]. (9.12)

Clearly it is possible to continue this process of improving the prediction for the
slope at the end of the time interval, f (t j+1, qj+1), by improving the estimate for qj+1

and then correcting that prediction in an iterative fashion for a still better resulting
estimate of qj+1. The formulas given above are often referred to as Heun’s method
[9.1].

The error associated with the Euler method-based predictor portion of Heun’s
method can be reduced at the expense of a more complicated computation. To follow
this path, first substitute dq(t)/dt = f (t , q) into the chain rule formulation for the
second derivative that is obtained from this same expression to get d2q(t)/dt2 =
∂ f (t , q)/∂t + ( f )(∂ f/∂q) where q̇ has been replaced by f . Then write the Taylor
series expansion for the desired function q(t), which can be extended one more term
as follows

qj+1 = qj + ∆t q′
j + 1/2(∆t)2q′′

j + O(∆t3)

or qj+1 = qj + ∆t f (t j , qj ) + 1/2(∆t)2
[
∂ f (t j , qj )

∂t
+ f (t j , qj )

∂ f (t j , qj )
∂q

]
+ O(∆t3),
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where now the local error term is of order ∆t3 rather than just ∆t2. The price to be
paid for this increase in accuracy in the predictor portion of the calculation is the
calculation of the partial derivatives of the given function f . If the partial derivatives
of f are complicated, this procedure is not recommended.

EXAMPLE 9.5 Using Heun’s method, numerically integrate the second-order
ordinary differential equation of Example 9.1, which is, again,

q̈(t) + q(t) = sin 2t.

Use, for the sake of comparison, the same time step of 0.2 sec, and the same zero
initial conditions. For the sake of simplicity, use the Euler predictor and limit the
number of iterations to one rather than use a percentage difference criteria.

SOLUTION The first step is to reduce this second-order equation to two first-order
equations that can be written as

q̇(t) = v(t) and v̇(t) = −q(t) + sin 2t.

Then, with subscripts referring as usual to the time step, and the number in paren-
theses referring to the iteration number, the Euler predictor portion of the Heun’s
method equations start out as follows, where use is made of the initial conditions
q0 = v0 = 0

q1(#0) = q0 + ∆t q̇0 = q0 + ∆tv0 = 0

v1(#0) = v0 + ∆t v̇0 = v0 + ∆t[−q0 + sin 2t0] = 0.

The corrector portion of the equations for this first time step are

q1(#1) = q0 + ∆t
2

[q̇0 + q̇1(#0)] = q0 + ∆t
2

[v0(#0) + v1(#0)] = 0

v1(#1) = v0 + ∆t
2

[v̇0 + v̇1(#0)]

= q0 + ∆t
2

[−q0 − q1(#0) + sin 2t0 + sin 2t1]

= 0 + 0.1 sin(0.4) = 0.038941834.

Iterating once, where, again, t0 = 0 and t j = j∆t = 0.2 j

q1(#2) = q0 + ∆t
2

[q̇0 + q̇1(#1)] = q0 + ∆t
2

[v0 + v1(#1)] = 0 + 0.0038941834

v1(#2) = v0 + ∆t
2

[v̇0 + v̇1(#1)] = v0 + ∆t
2

[−q0 − q1(#1) + sin 2t0 + sin 2t1]

= 0 + 0.1 sin(0.4) = 0.038941834.

It is immediately evident that because these two calculations are done sequentially,
the calculation for v j can be improved by making use of the previous calculation for
qj . Therefore, revise the second of the above two equations as follows:

v1(#2) = v0 + ∆t
2

[−q0 − q1(#2) + sin 2t0 + sin 2t1]

= 0 + 0.1[−0.00389418 + sin(0.4)] = 0.03855242.
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Figure 9.6. Predictor-corrector results for Example 9.5 (the solid line is merely a curve fit).

The calculation pattern is now established. The predictor equations are

qj+1 = qj + ∆tv j and v j+1 = v j + ∆t[−qj + sin(0.4 j)]

and the corrector equations for the final values of qj+1 and v j+1 are where n indicates
the number of the iteration

qj+1(n + 1) = qj + ∆t
2

[v j + v j+1(n)] and

v j+1(n + 1) = v j + ∆t
2

[−qj − qj+1(n + 1) + sin(0.4 j) + sin(0.4 j + 0.4)] .

A spreadsheet program is well suited to these calculations. Figure 9.6 shows a plot of
the spreadsheet results, where, again, each qj and v j value were recalculated twice
and where the solid line here is not the analytical (i.e., not the exact solution which
is unavailable) but merely a line that connects the data points. As the graph shows,
from examining the results near the zero deflection line, this result is no more or less
accurate than the preceding finite difference and linear acceleration methods. ★

EXAMPLE 9.6 As in Example 9.2, using the above predictor-corrector algorithm,
solve the undamped Duffing’s equation, but this time with a hardening spring, as
represented by the equation

q̈(t) + ω2
1q(t) + µq3(t) = ω2

1Y0 sin
π t
t0

,

where ω1 = 1.0, µ = 0.2, and t0 = π/2.

SOLUTION Once again, after nondimensionalizing the deflection response q(t) by
dividing by the input amplitude Y0 (while retaining the same symbol), it is necessary



P1: JZP
0521865743c09 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 2:55

468 Numerical Integration of the Equations of Motion

1

0.8

0.6

0.4

0.2

−0.2

−0.4

−0.6

−0.8

−1.2

−1

0

D
ef

le
ct

io
n

Time

Normalized deflection response q(t)

Figure 9.7. Predictor-corrector results for Example 9.6, which involves a hardening spring.
Again, the solid line is only a curve fit for the calculated results.

to break the one second-order differential equation into two, first-order differential
equations. That result is

q̇(t) = v(t) and v̇(t) = −q(t) − 0.2q3(t) + sin 2t.

The close similarity of these equations with those of the previous example, the single
nonlinear term being the only difference, permits the above equations to be modified
to the present circumstances as follows. The predictor equations are

qj+1 = qj + ∆t v j and v j+1 = v j + ∆t[−qj − 0.2q3
j + sin(0.4 j)],

whereas the two corrector equations, where again n is the number of the iteration, are

qj+1(n + 1) = qj + ∆t
2

[v j + v j+1(n)] ,

which is exactly the same as in the linear case, and

v j+1(n + 1) = v j + ∆t
2

[−qj − qj+1(n + 1) − 0.2q3
j − 0.2q3

j+1(n + 1)

+ sin(0.4 j) + sin(0.4 j + 0.4)] .

The spreadsheet implementation of these Duffing equations is little different from
that for the linear equation of the previous example. The numerical result is presented
in Figure 9.7. ★

9.5 The Runge-Kutta Method

One of the two most popular, general purpose, numerical integration techniques
is the fourth-order Runge-Kutta method (RK method). It, like predictor-corrector
methods, is a sophisticated version of Euler’s method and differs from other methods
only in its approach to calculating the average slope between time steps. There are
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many different classifications of Runge-Kutta methods. The primary classification
refers to the “order” of the method. The order number is related to the number
of calculations in the time increment between the integer numbered steps, ∆t . For
example, a second-order RK method will employ two calculations (one each at two
different points in this case) in the interval of the time increment, and a fourth-order
RK method will employ four calculations (in this case at three different points). From
Ref. [9.1], a common choice for a fourth-order RK method solution for the unknown
step value qi+1 of the deflection function q(t) described by a first-order quasilinear
equation of the form

q̇(t) = F(t , q)

is the following sum of a present (ith) value plus the time increment multiplied by a
four-term approximation for the average velocity

qi+1 = qi + ∆t
6

(k1 + 2k2 + 2k3 + k4),

where k1 = F(ti , qi ) k2 = F
(

ti + ∆t
2

, qi + ∆t
2

k1

)

k3 = F
(

ti + ∆t
2

, qi + ∆t
2

k2

)
k4 = F(ti + ∆t , qi + ∆tk3). (9.13)

Note that the slope terms k1, k2, k3, and k4 terms are calculated sequentially, and
that the k1 and the k4 terms are respectively, the approximations to the slope at the
beginning and end of time step interval. The double-weighted k2 and k3 terms are
two different approximations to the slope at the midpoint of the time interval.

EXAMPLE 9.7 Using the above version of the fourth-order RK method, redo
Example 9.1, the single-DOF, forced, linear vibration problem whose differential
equation is

q̈(t) + ω2
1q(t) = ω2

1Y0 sin
π t
t0

.

Again let the natural frequency be 1 rad/sec and t0 be π/2 sec. Therefore, as before,
dividing the deflection response by the input amplitude, Y0 (or setting the input
amplitude to a unit value), the normalized differential equation is simply

q̈(t) + q(t) = sin 2t.

To avoid a round-off error in the numerical integration, slightly change the previously
used time step from 0.2 to 0.198 sec, which, when divided by 6 as required by the
above equations, is exactly 0.033 sec.

SOLUTION As before, first rewrite the above second-order differential equation as
the following two first-order differential equations

v̇(t) = ω2
1Y0 sin

π t
t0

− ω2
1q(t),

and q̇(t) ≡ v(t)
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where the parameters ω1, Y0, and t0 are temporarily retained for the purpose of
checking units in each of the RK method expressions. Now write each of these two
equations in increment form as an initial value plus a time increment multiplied by
an RK averaged slope

vn+1 = vn + ∆t
6

[k1 + 2k2 + 2k3 + k4]

qn+1 = qn + ∆t
6

[h1 + 2h2 + 2h3 + h4],

where the symbol h is used to distinguish the slope terms in the deflection expres-
sion from those in the velocity expression. Of course the ks are acceleration terms,
whereas the hs are velocity terms. Adapting the formulas of Eqs. (9.13) to this exam-
ple problem, the explicit values of the RK method slope terms are, where tn = n∆t

k1 = ω2
1Y0 sin

nπ∆t
t0

− ω2
1qn

k2 = ω2
1Y0 sin

(
n + 1

2

)
π∆t

t0
− ω2

1

(
qn + ∆t

2
h1

)

k3 = ω2
1Y0 sin

(
n + 1

2

)
π∆t

t0
− ω2

1

(
qn + ∆t

2
h2

)

k4 = ω2
1Y0 sin

(n + 1)π∆t
t0

− ω2
1(qn + ∆t h3)

h1 = vn h2 = vn + ∆t
2

k1 h3 = vn + ∆t
2

k2 h4 = vn + ∆t k3.

Now, as before, substituting the selected values of the natural frequency and the time
scale value for the forced motion, t0, normalizing the deflection response by the input
amplitude, and noting that 2(n + 1/2) = 2n + 1, the above equations reduce to

k1 = sin(2n∆t) − qn

k2 = sin[(2n + 1)∆t] −
[

qn + ∆t
2

h1

]

k3 = sin[(2n + 1)∆t] −
[

qn + ∆t
2

h2

]

k4 = sin[(2n + 2)∆t] − [qn + ∆t h3]

h1 = vn h2 = vn + ∆t
2

k1 h3 = vn + ∆t
2

k2 h4 = vn + ∆t k3.

It may appear that there is a difficulty that the two sets of slope terms are interde-
pendent; that is, the slope terms for the deflection depend on the slope terms for the
velocity and vice versa. This difficulty can be resolved with proper sequencing. A
successful procedure to both start and continue the time step calculation is to calcu-
late the k1 and h1 values first using the initial or previous step values of the deflection
and velocity. Then use the h1 and k1 quantities to calculate the h2 and k2 quantities.
Then use h2 and k2 to calculate h3 and k3, and these latter two quantities to calculate
h4 and k4. Thus the next time step values for velocity and deflection are obtained with-
out difficulty. In this manner the calculation can proceed from time step to time step.
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Figure 9.8. Example 9.7: Runge-Kutta results for the linear vibratory system.

The plot of the spreadsheet calculation results for this example problem are shown
in Figure 9.8. Judging by the result near the zero deflection line, this is the most
accurate of the four-linear calculations that have been carried out. Of course, the
computational effort was also slightly greater. ★

EXAMPLE 9.8 Apply the fourth-order RK method to the Duffing equation with
a softening spring as first treated in Example 9.2 (µ = 0.2) and the Duffing equation
with a hardening spring as first treated in Example 9.6. Compare the results of the
previous calculations with the RK result.

SOLUTION Using the same parameter selections of Examples 9.2 and 9.4, the result-
ing softening and hardening spring equations to be numerically integrated for the
nondimensional deflection q/Y0 (represented as q) are, respectively,

q̈(t) + q(t) − 0.2q3(t) = sin 2t and q̈(t) + q(t) + 0.2 q3(t) = sin 2t.

Beginning with the case of the softening spring, the first-order RK equations are

h1 = vn h2 = vn + ∆t
2

k1 h3 = vn + ∆t
2

k2 h4 = vn + ∆t k3

and

k1 = −qn + 0.2q3
n + sin 2n∆t

k2 = −
(

qn + ∆t
2

h1

)
+ 0.2

(
qn + ∆t

2
h1

)3

+ sin(2n + 1)∆t

k3 = −
(

qn + ∆t
2

h2

)
+ 0.2

(
qn + ∆t

2
h2

)3

+ sin(2n + 1)∆t

k4 = −(qn + ∆t h3) + 0.2(qn + ∆t h3)3 + sin 2(n + 1)∆t.
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Figure 9.9. Example 9.8: Runge-Kutta solution for a softening spring system.

Again the computational procedure adopted here is to calculate the k1 and h1 values
first using the previous step (or initial) values of the deflection and velocity. Then
the h1 and k1 quantities for that step are used to calculate the h2 and k2 values for
that step, etc. The spreadsheet plot of the numerical results are shown in Figure 9.9.
Again, the solid line on the plot is a curve fit only for the numerical data. Comparison
to Figure 9.3(a), which is for a time increment of only 0.1 sec, shows good agreement
between the two different types of solution through the end of the third cycle. This
good agreement serves to generally validate both solutions.

The equations for the case of the hardening spring are the same as those above
with the sole exception the sign before the cubic terms is changed from a plus sign to a
minus sign. The calculated results from a spreadsheet are shown in Figure 9.10, where
the time step was again set at 0.198 sec. Again, the solid line in the plot merely connects
the calculated deflection response. The Figure 9.10 response compares quite closely
with the predictor-corrector result displayed in Figure 9.7. As a final confirmation
of the accuracy of these calculations, a Mathematica derived result for the same
Duffing equation with a hardening spring is shown in Figure 9.11. If it were not

Deflection response

D
ef

le
ct

io
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0

Time

Figure 9.10. Example 9.8: Runge-Kutta solution of the Duffing equation for a hardening
spring.
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2.5 5 7.5 10 12.5 15 17.5
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In[4]:= z = NDSolve[{y''[x] + y[x] + 0.2*y[x]∧3 == 
 Sin[2*x],y[0] == 0.0,y'[0] == 0.0},y,
 {x,0,6*Pi}]

Out[4]= {{y InterpolatingFunction[{{0.,18.8496}},
  <>]}}

Out[5]= InterpolatingFunction[{{0.,18.8496}},
  <>][x]

In[5]:= F[x_] = y[x]/. First[z]

In[7]:= Plot[F[x],{x,0,18.8}]

Out[7]= -Graphics-

Figure 9.11. Mathematica solution to the same Duffing equation whose solution is presented
in Figures 9.7 and 9.10. Note the irregularity of the “zero crossings”.

clear that the previous RK and Heun calculations provided a sufficient number of
calculated deflection responses per bump in the deflection response curve for the
purpose of accurately estimating the deflection response curve, this Mathematica
result confirms that the choice of the time step, 0.2 or 0.198 sec, was a satisfactory
choice.

The application of the Runge-Kutta method need not be constrained to equations
with a single DOF. The RK method can be directly applied to, say, the nth-order
linear matrix equation as follows. Let {q(tn)} = {q}n, with the same notation for the
velocity vector. Then, undertaking, say, the expense of an efficient inverse of the mass
matrix, the second-order matrix equation of motion can be rewritten as

{q̇}n = {v}n and {v̇}n = [m]−1 (−[c]{v}n − [k]{q}n + {Q(tn)}) .

Then the RK matrix equations become

{v}n+1 = {v}n + ∆t
6

({k1}n + 2{k2}n + 2{k3}n + {k4}n)

{q}n+1 = {q}n + ∆t
6

({h1}n + 2{h2}n + 2{h3}n + {h4}n) ,
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where the various slope vectors, from Eqs. (9.13), are calculated as follows:

{k1}n = [m]−1 ({Q(n∆t)} − [c]{v}n − [k]{q}n)

{k2}n = [m]−1
({

Q
(

n∆t + ∆t
2

)}
− [c]

(
{v}n + ∆t

2
{k1}n

)
− [k]

(
{q}n + ∆t

2
{h1}n

))

{k3}n = [m]−1
({

Q
(

n∆t + ∆t
2

)}
− [c]

(
{v}n + ∆t

2
{k2}n

)
− [k]

(
{q}n + ∆t

2
{h2}n

))

{k4}n = [m]−1 ({
Q(n∆t + ∆t)

} − [c] ({v}n + ∆t{k3}n) − [k] ({q}n + ∆t{h3}n)
)

and

{h1} = {v}n {h2} = {v}n + 1
2
∆t{k1}n

{h3} = {v}n + 1
2
∆t{k2}n {h4} = {v}n + ∆t{k3}n.

Clearly, (i) the use of these equations involves a significant computational effort and
(ii) the matrix equations may have to be reduced in size, as explained previously,
so that the inverse of the mass matrix can be calculated in a cost-effective manner.
The importance of the above equations lies in the possibility that, for example, the
stiffness matrix [k] may depend on the deflection amplitudes. In that case the original
matrix equation of motion would no longer be a linear equation, and hence the use
of the modal method would at least be tainted, if not wholly incorrect. If the stiffness
matrix were deflection amplitude dependent, then, in the spirit of the RK calculation,
the each slope calculation would use the corresponding deflection estimate. ★

9.6 Summary

According to Ref. [9.1], tests performed on numerical methods tend to favor the
Runge-Kutta methods, particularly the fourth-order method relative to the Heun
predictor-corrector method. Butcher’s method, which is the fifth-order RK method,
provides better accuracy, but the increased numerical effort is such that the usual
judgement is that the fourth-order RK method is optimum.

There are additional aspects of numerical integration that, although not mentioned
previously, are of importance. Foremost among these additional techniques is adap-
tive step size control. Adaptive step size control is simply increasing the size of the
time step when the solution values are not changing much when the previous step size
is used and decreasing the time step when the calculated slopes exceed a preset value.
As has been seen by the results shown for the example problems, the solutions to
dynamic problems usually involve significant changes most of the time. Thus adaptive
step size control is not all that valuable for dynamic problems. Another adaptation
that will only be mentioned is a class of solutions called multistep methods. For exam-
ple, in the case of the Heun method and the RK method, the solution value at time
step n + 1 was calculated entirely on the basis of the previously obtained solution at
time step n. Multistep methods also use the solution result at the n − 1 time step and
perhaps other previous time steps. The finite difference method fits this category. A
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possible drawback of these methods is that they often require the use of a differ-
ent method to start the calculation. Among these methods, Adams-Bashforth, which
uses a combination of a Taylor’s series expansion and a backward finite difference
equation, is popular. Again, see Ref. [9.1], p. 618.

9.7 **Matrix Function Solutions**

Although not a numerical method in the sense of the above direct time integration
methods discussed in the previous sections of this chapter, there is still another
approach for computing the deflection solution to the N × N forced vibration, linear,
matrix equation of motion

[m]{q̈(t)} + [c]{q̇(t)} + [k]{q(t)} = {Q(t)}.

It must be emphasized that this additional approach bears mentioning just for the
sake of a more complete discussion of solution techniques. This approach, that of
using functions of matrices, is merely an additional topic because it has not been
found to offer computational advantage relative to the previously discussed solution
methods. Hence, this approach, at present, is more of a curiosity than a fruitful
alternate computational approach.

The first thing to do is to explain what is meant by a function of a matrix. To this
end, consider the mathematics of an arbitrary, real N × N symmetric matrix [B], and
the associated [B], [I] matrix eigenvalue equation

[B]{u} = λ{u} = λ[I ]{u}.

Since the identity matrix [I] is one of the two weighting matrices of this eigenvalue
problem, the N × 1 modal vectors, {A(n)}, are mutually orthogonal is the usual vector
sense; that is, without a weighting matrix

⌊
A(n)⌋[I]

{
A(n)} = ⌊

A(n)⌋{
A(n)} = 0 if m 
= n.

For present purposes, normalize these eigenvectors so that

⌊
A(n)⌋[I]

{
A(n)} = ⌊

A(n)⌋{
A(n)} = 1,

which is easily done by dividing each entry of an eigenvector by the square root of
the original result of the product of the eigenvector with itself. Let the N eigenvalue
and eigenvector solutions to this equation be arranged, as before, as

[B][Φ] = [Φ][\Λ\] or [B] = [Φ][\Λ\][Φ]t,

where the [\Λ\] matrix is the diagonal matrix of the eigenvalues and where the
second of the above equations is obtained by postmultiplying by the transpose of
the matrix of eigenvectors. That is, after normalizing the eigenvectors as above, the
modal matrix inverse equals the transpose of the modal matrix,

[Φ]t[Φ] = [Φ][Φ]t = [I].
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Now consider, for example, the square and the cube of the symmetric matrix [B],
where those terms mean what they should mean.

[B]2 = [B][B] = [Φ][\Λ\][Φ]t[Φ][\Λ\][Φ]t = [Φ][\Λ\][\Λ\][Φ]t

= [Φ][\Λ\]2[Φ]t = [Φ][\Λ2\][Φ]t

[B]3 = [Φ][\Λ\][Φ]t[Φ][\Λ\][Φ]t[Φ][\Λ\][Φ]t = [Φ][\Λ3\][Φ]t.

Note that whereas the product of a symmetric matrix with another, different, sym-
metric matrix is generally not symmetric, the product of a symmetric matrix with
itself is always symmetric.

Recall that a scalar analytical function can be expanded as power series. For exam-
ple, these common scalar functions have the following power series expansions

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · ·

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ · · ·

exp x = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ · · · .

Using, for example, the first of these series expansions as a model, define the sine
function of the product of the constant, symmetric matrix [B] and the scalar variable
t as follows:

sin([B]t) = [B]t − 1
3!

[B]3t3 + 1
5!

[B]5t5 − 1
7!

[B]7t7 + · · ·

= [Φ][\(Λt − 1
3!

Λ3t3 + 1
5!

Λ5t5 − · · ·)\][Φ]t = [Φ][\ sin λt\][Φ]t,

where the diagonal entries of the matrix [\sin λt\] are the N ordered, individual sines
of the product of the eigenvalues and the variable t . This definition of the sine of
a symmetric matrix is useful because, just as is the case with the scalar function,
the derivative of the sine of a matrix is essentially the cosine of that matrix. To
demonstrate this fact, differentiate both sides of the above equation with respect to
time. Using the last part of the above equality

d
dt

sin([B]t) = d
dt

[Φ][\ sin λt\][Φ]t = [Φ][\λ cos λt\][Φ]t

= [Φ][\Λ\][\ cos λt\][Φ]t = [Φ][\Λ\][Φ]t[Φ][\ cos λt\][Φ]t

= [B] cos([B]t) = cos([B]t)[B].

The added bonus is the above-indicated commutativity that is easily proved by revers-
ing the order of the scalar factors Λ and cos λt on the above second equation line. It
is also easy to show that the derivative with respect to time of the cos[B]t is similarly
the negative of the sine of that matrix, and the derivative of the exponential function
of a symmetric matrix is similarly the exponential function of that matrix, and so on.
The only other result that will be needed below is

[B] = [B1/2][B1/2]

and [B1/2] = [Φ][\Λ1/2\][Φ]t.
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There are basically two ways of using functions of matrices to write solutions to the
matrix equation of vibratory motion. The first approach is to create a matrix form for
the Duhamel integral. To simplify that discussion by keeping the algebra as simple as
possible, only the undamped form of the matrix equation of motion is considered in
the first approach. The damping matrix, estimated as best it can be, is retained in the
second approach, which is called the phase state approach. For the first approach, let
the applied forces be a collection of impulses written as

[m]{ü(t)} + [k]{u(t)} = {F0}δ(t),

where the right-hand side vector is a vector of fixed magnitudes. Note that all the
impulses are centered at time zero. The first step in this procedure, as per Sec-
tion 5.8, is to use a Cholesky decomposition to obtain a symmetric dynamic matrix.
Let

[m] = [Lm][Lm]t and {u(t)} = [Lm]−t{r(t)},
where {r} has the strange units of deflection divided by the square root of mass (or
mass moment of inertia). Making the above substitutions and premultiplying by the
inverse of [Lm] leads to

[I ]{r̈(t)} + [Lm]−1[k][Lm]−t{r(t)} = [Lm]−1{F0}δ(t)

or, after consolidating the above terms, where [D] is a symmetric matrix

{r̈(t)} + [D]{r(t)} = {R0}δ(t).

The first step in solving this equation is to directly integrate this equation over time
between the limits of 0− and 0+, where, without loss of generality, it is specified
that all deflections and velocities are zero at time 0−. Therefore, the integral of the
acceleration vector leads to the velocity vector at time zero plus. As for the second
integral, because [D] is a matrix of constants, it comes out of the time integral, leaving
only the vector of deflections. Reusing the argument first made in Section 7.5 that the
time duration between zero minus and zero plus is so short that the finite velocities
generated by the impulsive loading can produce only a negligible deflections, the
result of this time integration are

{ṙ(0+)} = {R0} and {r(0+)} = {0}.
These two results become initial conditions for the vibration after time zero plus.
Again, after time zero plus, there is no further force input. Hence, after time zero plus,
the system undergoes a force free vibration. As can be proved by direct substitution
into the above differential equation, the free vibration solution can be expressed in
the following form

{r(t)} = sin([D]1/2t){C1} + cos([D]1/2t){C2},
where, concerning the square root of the dynamic matrix, the solution to Exercise
9.8 shows that all the (selected) natural frequencies are represented in this solution.
The initial conditions, those at time zero plus, can be used to determine the entries
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in the constant of integration vectors. To this end, note that, where [0] is the null
matrix, an N × N by n matrix of zeros

sin[0] = [ΦD][0][ΦD] = [0] and cos[0] = [ΦD][I][ΦD] = [I].

Then

{C2} = {0} and {C1} = [D]−1/2{R0}.
Therefore, the free vibration solution is

{r(t)} = sin([D]1/2t)[D]−1/2{R0}
or {u(t)} = [Lm]−t sin([D]1/2t)[D]−1/2[Lm]−1{F0}.

Just as was done in Section 7.6, the above impulse response solution can be used to
build the response solution to an arbitrary load vector {F(t)} at time t by breaking
each of those force–time histories into a continuous series of infinitesimal impulses,
which at the representative time τ , have the magnitudes {F(τ )}dτ . Then summing
all the resulting responses to the infinitesimal impulses over the elapsed time t − τ

leads to

{u(t)} =
t∫

0

[Lm]−t sin([D]1/2(t − τ ))[D]−1/2[Lm]−1{F(τ )}dτ,

where the square matrix of impulse response functions is everything in the integrand
but the applied force vector, {F(τ )}. Since the above integrand has the form of a
N × 1 vector, the integration should not pose any unusual problems. The challenge
here is simply obtaining the triangular, square root, and sine matrices.

The second approach to a nonmodal solution of the matrix equation of vibra-
tory motion using functions of matrices begins by writing the equation of motion in
the first-order differential equation form where the first column vector is the first
derivative of the second column vector[

m 0
0 −k

] {
ü(t)
u̇(t)

}
+

[
c k
k 0

] {
u̇(t)
u(t)

}
=

{
F(t)

0

}
.

The other possible symmetric arrangement for a first-order differential equation[
0 m
m c

] {
ü(t)
u̇(t)

}
+

[−m 0
0 k

] {
u̇(t)
u(t)

}
=

{
0

F(t)

}

is not suitable here because of the singularity of the leading square matrix due to
the zero submatrix on the main diagonal. This double-sized matrix approach has
the advantage relative to the preceding matrix approach that the presence of the
estimated damping matrix does not complicate this approach. Indeed, the damping
matrix need only be symmetric, which of course it should be if [c] only involves
damping terms.4 Again, adopting the first possibility for symmetric matricies assures
that the leading 2N × 2N matrix is nonsingular.

4 From Ref. [9.6], gyroscopic terms produce a skew-symmetric coefficient matrix for the velocity terms.
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The next step is to accomplish a Cholesky decomposition of the leading square
matrix [

m 0
0 −k

]
= [Ll][Ll]t .

Then write the coordinate transformation �u̇ u�t = [Ll]−t �q̇ q�t and premulti-
ply by the matrix [Ll]−1 for the result{

q̈(t)
q̇(t)

}
+ [L]−1

[
c k
k 0

]
[L]−t

{
q̇(t)
q(t)

}
= [L]−1

{
F(t)

0

}

or {ṙ(t)} + [B]{r(t)} = {R(t)},

where [B] is a symmetric matrix. In passing, note that all attempts to date to apply
modal procedures to this first-order equation have been unsuccessful because, unlike
the case for the modes for the second-order form of the equation of motion, there is no
diminishing in the importance of the mode shapes to the solution as the modal number
increases. Indeed, in one test for heat transfer equations, the highest numbered mode
proved to be the most important.

As might be expected for such a first-order equation as {ṙ(t)} + [B]{r(t)} = {R(t)},
the matrix form of the solution involves the exponential function of the matrix [B]
and follows the same pattern as the solution to the first-order scalar equation. To
quickly review the meaning of exp[B]t, write the eigenpair solutions for the matrices
[B] and [I] as

[B][ΦB] = [ΦB][\ΛB\] or [B] = [ΦB][\ΛB\][ΦB]t.

Then, mimicking the Taylor’s series expansion for

exp(x) = 1 + x + x2/2! + x3/3! + x4/4! + · · · , define

exp([B]t) = [I] + [B]t + (1/2!)[B]2t2 + (1/3!)[B]3t3 + (1/4!)[B]4t4 + · · · .

This definition provides the result that the derivative of exp([B]t) with respect to t
is [B] exp ([B]t) or exp([B]t)[B]. Now the complete solution to {r(t)} + [B]{r(t)} =
{R(t)} can be obtained by multiplying both sides by the integrating factor exp([B]t).
The result is

exp(+[B]t){ṙ(t)} + exp(+[B]t)[B]{r(t)} = exp(+[B]t){R(t)}

or
d
dt

(exp(+[B]t){r(t)}) = exp(+[B]t){R(t)}.

Since the integral of a matrix is the matrix of the integrals of the matrix entries,
integrating the above equation from time equals 0 to time equals t yields

exp(+[B]t){r(t)} − {r(0)} =
t∫

0

exp(+[B]t){R(t)} dt.
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Hence the complete solution for the phase state vector containing both the veloc-
ities and the deflections, and their initial conditions, is

{r(t)} = exp(−[B]t){r(0)} + exp(−[B]t)

t∫
0

exp(+[B]t){R(t)} dt.

This is the result that provides a means of dealing with a nonproportional damp-
ing matrix that cannot be approximated by a diagonal matrix after a modal trans-
formation.
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CHAPTER 9 EXERCISES

9.1 (a) Using Taylor series expansions, derive a central finite difference approxima-
tion for a second total derivative at the jth time step where the error is of order
∆t4.

(b) Using Taylor series expansions, derive a central finite difference approximation
for a fourth total derivative at the jth spatial step where the error is of order ∆x2.

9.2 (a) Using spreadsheet software, repeat the step time integration of Example
9.1, but this time use the larger time step of 0.04 sec for 50 time steps. Compare this
result with that obtained in Example 9.1.

(b) As in part (a), use a time step of 0.01 sec for 200 time steps.

9.3 Using spreadsheet software and (a) Heun’s method; (b) the fourth order Runge-
Kutta method; numerically integrate the linear, undamped, one-DOF equation of
Example 9.1, but here let the base motion input be a step function. That is, numerically
solve

q̈(t) + ω2
1q(t) = ω2

1Y0stp(t − 0).

Again, let the natural frequency have a unit value, and extend the integration from
time zero to t = 10 sec. Choose your own time step. Compare your numerical result
with the correct analytical solution.
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Figure 9.12. Exercise 9.4: A piecewise linear, one-DOF, vibratory system.

9.4 (a) Using spreadsheet software and (a) Heun’s method; (b) the fourth order
Runge-Kutta method; find a numerical solution for the horizontal, one-DOF motion
of the mass shown in Figure 9.12 for the time period (0. 6.28 sec). Note that the
second set of springs do not engage the mass unless the mass’ deflection exceeds
q0, and then only the spring on one side of the mass resists the motion to that side.
Assume the mass maintains constant contact with the second spring whenever its
deflection exceeds q0. (This is one way to approximate a nonlinear spring by use
of two linear segments for the force–displacement curve.) The differential equation
that describes this motion is called piecewise linear. Let the small deflection natural
frequency of the system have a unit value, and let the base motion be described by
the equation

Y(t) = Y0 sin 2t.

Hint: For example, in Excel, the “logical if” function can be used to replicate the
effect of the initial gap between the mass and the second set of springs.

9.5 (a) Using spreadsheet software and either (i) Heun’s method or (ii) the fourth-
order Runge-Kutta method, numerically integrate the following single-DOF equa-
tion with velocity-squared damping

q̈(t) + 0.1[q̇(t)]2 + q(t) = sin 2t.

Integrate from time zero to t = 6.28 sec. Choose your own time step, and then halve
that time step for a check on your first calculation for this nonlinear equation.

(b) As above, letting g/L = π2, corresponding to a 2-sec period, numerically inte-
grate the following nonlinear pendulum differential equation subject to the stated
BCs

θ̈(t) + 1
2

g
L

sin θ = 0 θ(0) = π

3
, θ̇(0) = 0

through three full swings of the pendulum. Is the period of the vibration larger or
smaller than that predicted by the linear equation?
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9.6 Using spreadsheet software and (a) Heun’s method; (b) the fourth-order Runge-
Kutta method; redo the Duffing’s hardening spring problem, but this time with an
input force four times the magnitude of that in the example problems.

q̈(t) + q(t) + 0.2q3(t) = 4 sin 2t.

A force of a larger magnitude leads to a larger deflection, which makes the spring
nonlinearity more prominent.

9.7 Repeat the previous exercise, 9.6, but this time for the softening spring.

9.8 (a) Given a symmetric matrix of constants, [A], explain how to determine the
square root of this matrix, symbolized as [A]1/2.

(b) Find and check the square root of the following arbitrarily chosen symmetric
matrix. (From examination of the main diagonal determinants of various sizes, it can
be concluded that this matrix is positive definite. Hence the eigenvalues will all be
positive, but since it was arbitrarily chosen do not expect the eigenvectors to follow
the normal pattern for nodes.)

[A] =

 6 2 0

2 8 1
0 1 8


 .
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APPENDIX I

Answers to Exercises

CHAPTER 1 SOLUTIONS

1.1 (a) Draw an arbitrary velocity vector for the mass, v, and another arbitrary velocity
vector, v2, to represent the motion of the second coordinate system relative to the first
coordinate system. Placing these two vectors tail to tail shows that the velocity of the
mass relative to the second coordinate system is v − v2, which is the vector connecting
the heads of the first two vectors. Since v2 is a constant, the time derivative of v − v2,
the acceleration of the mass relative to (i.e., “in”) the second coordinate system is the
same as that for mass relative to the first coordinate system. Then Newton’s second law
is exactly the same in both coordinate systems.

(b) The angular momentum of any one of the particles is simply the cross product of
the position vector and the linear momentum vector. The latter vector is, of course, the
product of the particle mass and the time rate of change of the position vector. Then
the time rate of change of the angular momentum involves two terms that arise from
differentiating with respect to time. The first term is zero because it is the cross product
of the time rate of change of the position vector with itself. The second term is also zero
because the second time derivative of the position vector is zero in this case of constant
velocity:

n∑
i

d
dt

(r i × mi ṙ i ) =
n∑
i

[(ṙ i × mi ṙ i ) + (r i × mi r̈ i )] = 0 + 0.

(c) Draw a diagram of two collinear and equal but opposite forces f . From the arbi-
trarily selected point that represents the moment center, draw the position vectors
to the base points of the above two forces. Call these two position vectors r 1 and r 2.
The cross product of these position vectors with their respective forces is equal to the
product of the magnitudes of the position vectors, the magnitudes of the forces, and
the sine of the angle between the positively directed position vectors and the forces.
In the case where there is an obtuse angle, write the product as one with the negative
value of the force and the sine of the acute angle that is the complement to the obtuse
angle. From the sketch it is possible to see that the value of the product of each position
vector magnitude and its respective sine term is equal to the perpendicular distance
between the line of action of the forces and the arbitrarily selected moment center.
Thus with the above introduction of the minus sign, the sum of the two moments is
zero.

483
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1.2 The center of mass is located at the geometric center of the rectangular parallelepiped.
Locate the origin of the Cartesian coordinate system at the center of mass. The differ-
ential volume can be written as c dx dy, which is equivalent to immediately carrying
out the integration over the z variable. Thus

HCG = cρ

b/2∫
−b/2

a/2∫
−a/2

(x2 + y2)dx dy

= cρ
12

(a3b + ab3) = m
12

(a2 + b2),

where the total mass m = ρabc.

1.3 (a) Two. One way to view this task is to break the motion into a rolling motion and
a slipping motion. When the cylinder rolls without slipping, the distance the cylinder
rolls is the same as the distance around the circumference that defines the total angle of
the cylinder rotation. Thus either the distance the cylinder rolls or the angle of rotation
could be chosen as the one generalized coordinate that defines the location of all mass
particles in the cylinder for the rolling portion of the motion. When the cylinder slips,
another coordinate measures how far the cylinder moves without rotating. A simpler
and more basic approach is simply to have one DOF for the distance from the datum
to the point of contact between the cylinder and the plane and another to define the
rotation of the cylinder with respect to its original orientation.

(b) Five. Two DOF (e.g., polar-type coordinates) are needed to locate on the plane the
point of contact between the sphere and the plane. Two more DOF (e.g., a colatitude
angle and an east longitude angle) are required to locate that point of contact on
the surface of the sphere. One further angle is required to define the rotation of the
sphere around the instantaneous axis passing through the point of contact and the
center of the sphere. In other words, this sphere can be viewed as a rigid body in space
with those six spatial DOF (say three rectilinear coordinates to locate the CG, plus
pitch, roll, and yaw angles) subjected to the one constraint equation that is that the
sphere’s center must be the distance of its radius above the plane. Six coordinates less
one constraint leaves five unconstrained, independent coordinates that are the five
generalized coordinates.

1.4 (a) The variation of the deflection function is obtained by remembering that the gen-
eralized coordinates are the dependent quantities. As such, only they have a nonzero
variation. The application of the variational operator to the independent quantities that
are part of the deflection function (e.g., f, X) and constants (e.g., �, EI) only produces
zero. Thus

δw(x) = (2X 3 − 3X 2 + 1)δw1 + �(X 3 − 2X 2 + X )δθ1

+ (−2X 3 + 3X 2)δw2 + �(X 3 − X 2)δθ2.

(b) Give each generalized coordinate a virtual change in turn and note the movement
of the externally applied forces. When q1 is augmented by the positive quantity δq1,
the sole external force F doesn’t move because its point of application is fixed by the
constant value of q2. When q2 is augmented, the virtual word done is +Fδq2. Hence,
Q1 = 0, whereas Q2 = +F .
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(c) The virtual work done by the external loads is

δW = − f0

L∫
0

[δq1 sin(πx/L) + δq2 sin(2πx/L)]dx

= − f0δq1

L∫
0

sin(πx/L) dx − f0δq2

L∫
0

sin(2πx/L)dx

= − 2
π

f0 Lδq1

Carrying out the integrations yields

Q1 = − 2
π

f0 L, Q2 = 0.

1.5 Let Fr and Fθ be the conservative or nonconservative forces at the CG in the r and θ

directions, respectively. Then,

T = 1/2m(ṙ 2 + r 2θ̇2) and δW = Frδr + Fθrδθ.

Substitution into the Lagrange equations with q1 = r, q2= θ yields

Fr = mr̈ − mr θ̇ 2 and Fθ = mr θ̈ + 2mṙ θ̇ .

1.6 (a) Draw a diagram of the Earth’s equatorial plane with the projection of the north
pole at the center of the equatorial disk. Let x, y be the (valid) fixed Cartesian coor-
dinate system originating at the center of the equatorial disk, and XY be the (invalid)
coordinate system fixed at a general point on the rotating equator that has a counter-
clockwise rotation from the x axis of magnitude ωt . Let X be the above-the-equator
altitude coordinate, whereas Y is the equatorial tangential coordinate. This latter coor-
dinate system is perfectly fine for everything but writing Newton’s law or equations
derived from Newton’s laws such as the Lagrange equations. Let u, v be the general-
ized coordinates of the particle. Let these two DOF originate at the origin of the XY
coordinate system and parallel those two axes respectively. Now, it is correct to write
the virtual work equation in terms of those generalized coordinates and, in effect, the
invalid coordinate system, because virtual work has nothing to do with Newton’s laws.
Therefore, write

δW = FXδu + FYδν.

However, the kinetic energy, which is part of the Lagrange equation, must be written
in terms of the fixed coordinate system. However, once written in terms of the fixed
system, valid substitutions can be made freely. That is, write

T = 1/2m(ẋ2 + ẏ2)

where x = (R + u) cos ωt − v sin ωt

y = (R + u) sin ωt + v cos ωt.

Now it is simply a matter of differentiating x and y with respect to time and substituting
the result into T, and the T and the δW result into the Lagrange equations for u and ν.

(b) The derivative of the position vector r(t) is

ṙ = ṙ p + r ṗ.

Since there is no rotational kinetic energy for the particle, the total kinetic energy is

T = 1/2m(ṙ 2 + r 2φ̇2 + r 2θ̇2sin2
φ),
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which shows that the radial arm for the motion in the θ direction ( just as was true for
the spherical pendulum problem) is r sin φ. Thus, with the gravitational force being just
one part of Fr , the virtual work is

δW = Frδr + Fφrδφ + Fθr sin φδθ.

Substituting into the Lagrange equations of motion, where again the gravitation force
is simply one part of Fr , and then simplifying, leads to

mr̈ = Fr + mr φ̇2 + mr θ̇ 2sin2
φ

mr φ̈ = Fφ − 2mṙ φ̇ + 1/2mr θ̇2 sin 2φ

mr θ̈ = Fθ cscφ − 2mṙ θ̇ − 2mr θ̇ φ̇ cot φ.

(d) Again the first task is to obtain orthogonal rectilinear velocity components
for the center of mass. Since the horizontal displacement of the center of mass is
u − (L/2)(1 − cos ψ), and the vertical displacement is 1/2Lsin ψ , differentiating with
respect to time provides

T = 1
2

m

[(
u̇ − L

2
ψ̇ sin ψ

)2

+ 1/4 L2ψ̇2cos2ψ

]
+ 1

2

(
mL2

12

)
ψ̇2

V = 1
2

mgLsin ψ thus m(u̇ − Lψ̇ sin ψ) = C1

and
7mL2

12
ψ̈ − mL2

2
ü sin ψ + 1

2
mgLcos ψ = 0,

where the wall and floor reaction forces do no virtual work and the angle ψ is not
small. Clearly the first of these two equations of motion can be use to eliminate u(t)
in the second equation of motion with the result of one nonlinear equation in the one
unknown time function, ψ .

1.8 Calculate the first Lagrange equation term with the correct order of differentiation,
and then do the same calculation reversing the order of differentiation to show that
there is an additional term when the order is reversed

d
dt

(
∂T
∂q̇

)
= ∂2T

∂q̇2
q̈ + ∂2T

∂q∂q̇
q̇ + ∂2T

∂t∂q̇

∂

∂q̇

(
dT
dt

)
= ∂

∂q̇

(
∂T
∂q̇

q̈ + ∂T
∂q

q̇ + ∂T
∂t

)

= ∂2T
∂q̇2

q̈ + ∂2T
∂q̇∂q

q̇ + ∂T
∂q

+ ∂2T
∂q̇∂t

.

CHAPTER 2 SOLUTIONS

2.1 (a) This is a single-DOF pendulum problem where the motion is about a fixed axis.
After drawing the system in its displaced configuration, write the equation of motion.
If the fixed axis form of Newton’s law is used, where weight = mg, obtain

HF Aθ̈ = −mgh sin θ ,

where HF A = HCG + mh2
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so θ̈ +
(

mgh
HCG + mh2

)
θ = 0

therefore
2π

T1
= ω1 =

√
mgh

HCG + mh2

then HCG = wh
(

T2
1

4π2
− h

g

)
> 0.

Note that the units for the mass moment of inertia check.

(b) One relatively cheap design concept is as follows. The mass of the long object can
be determined by any or all of various types of measurements. The location of the center
of mass can be determined by balancing the object. The design of the object can be
adapted to facilitate the balancing of the object and simplifying the labeling of the CG
for measuring distances from the suspension points. As indicated in the hint, measuring
the periods of oscillation for the first and second suspension points (i.e., for two different
pendulums with the same mass characteristics) allows forming the ratio of the natural
frequency squared for the first suspension point over that for the second suspension
point. That measured ratio is � = (h1/h2)[(Hcg + mh2

2)/(Hcg + mh2
1)], which can be

solved for the mass moment of inertia about the center of mass. Unfortunately, the
mathematical result involves a ratio of accuracy losing differences between numbers
with close numerical values. However, the good news is that the design can make the
denominator the larger of the two differences. Then it is a simple matter of calculating
the acceleration of gravity from either (use both) period measurements. There are other
ways of measuring the acceleration of gravity. How is your way better, and how is it
worse?

2.2 (a) [mr 2(R − r)2+H(R − r)2]θ̈ + mgr 2(R − r)θ = 0. Thus the square of the natural
frequency is ω2= mgr 2(R − r)/[mr 2(R − r)2 + H(R − r)2]. The natural period is 2π/ω

(b) (π − 2)Rθ̈ + gθ = 0. The natural frequency is the square root of g/[R(π − 2)].

2.3 (a) It is quite possible to solve this one-DOF problem by working with each of the two
rigidly connected arms individually. However, it is much easier to locate the center of
mass of the system and thereby deal with the entire system in terms of this single CG.
Of course, the system center of mass lies halfway between the centers of mass for each
arm, which puts it at a distance

√
3 L/4 below the pivot point. Mimicking the analysis

that lead to Eq. (2.1), leads to the following equation of motion when the mass moment
of inertia of the arms is ignored

2M

(√
3L
4

)2

θ̈ + 2Mg

(√
3L
4

)
θ = 0

thus ω2 = 4g√
3L

and T = π

√√
3L
g

,

where, as always, the square of the circular frequency is equal to the coefficient of the
θ term over the coefficient of the θ̈ .
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(b) Since the given mass moment of inertia value for each of the two pendulum arms is
already stated for an axis parallel to the desired axis passing through the system center
of mass, only a transfer through a distance L/4 for each arm is necessary to obtain the
system value of 7ML2/48. Again referring to Eq. (2.1), this adjustment leads to

ω2 = 3
√

3g
4L

and T = 4π

√
L

3
√

3g
.

Thus it can be seen that the effect of the mass moment of inertia, in this case where the
mass distribution is not compact about the center of mass, is 25%.

2.4 This is, of course, a three-DOF system. Arbitrarily assume that θ3 is greater than θ2,
which in turn is greater than θ1. With this assumption in mind, the energy quantities
required for the three Lagrange equations are

T = 1/2mL2θ̇2
1 + 1/2mL2θ̇2

2 + 1/2mL2θ̇2
3

U = 1/2k[αL(sin θ2 − sin θ1)]2 + 1/2k[αL(sin θ3 − sin θ2)]2

or U ≈ 1/2α
2kL2[(θ2 − θ1)2 + (θ3 − θ2)2]

V = mgL(1 − cos θ1) + mgL(1 − cos θ2) + mgL(1 − cos θ3)

or V ≈ 1/2mgL
(
θ2

1 + θ 2
2 + θ 2

3

)
and δW = 0.

Before substituting the above energy quantities into the three Lagrange equations
(one for each θ), note that in this case where there is a fixed axis of rotation for each
pendulum, the direct application of Newton’s fixed axis rotation equation is particularly
simple. After setting the sines of angles equal to the angles, the result is

mL2θ̈1 = −mgLθ1 + αLk[αL(θ2 − θ1)]

mL2θ̈2 = −mgLθ2 − kα2 L2(θ2 − θ1) + kα2 L2(θ3 − θ2)

mL2θ̈3 = −mgLθ3 − kα2 L2(θ3 − θ2).

The application of the Lagrange equations, of course, produces the same result. Using
the stated relation g/L = α2k/m and casting the above equations in matrix form (i.e.,
writing the first equation in the first row, the second equation in the second row, etc.)
leads to the following matrix equation, where the first square matrix is the inertia
matrix divided by the mass value and the second square matrix is the stiffness matrix,
also divided by the mass value

 1 0 0
0 1 0
0 0 1







θ̈1

θ̈2

θ̈3


 + α2k

m


 2 −1 0

−1 3 −1
0 −1 2







θ1

θ2

θ3


 =




0
0
0


 ,

Once again, it is not possible in a linear multidegree of freedom system, as it is possible
in a linear one-DOF system, to determine the system natural frequencies by merely
inspecting the constant coefficients of the equations of motion. How those natural
frequencies are determined is explained later.

2.5 (a) Note that the total velocity of the center of mass is not simply the product of the
offset distance a multiplied by the angular velocity θ̇ . This is so because the center of
mass is not moving about a fixed axis. Rather, the rectilinear portion of the kinetic
energy is obtained by first obtaining the horizontal and vertical components of the
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total movement of the center of mass as the cylinder moves through and angle θ . These
components are, respectively, Rθ − a sin θ and a(1 − cos θ). Thus,

T = 1/2m[(Rθ̇ − aθ̇ cos θ)2 + (aθ̇ sin θ)2] + 1/2Hθ̇2

U = 1/2k(Rθ)2 V = mga(1 − cos θ).

Substitution into the Lagrange equations produces

[H + m(R 2 − 2Ra cos θ + a2)]θ̈ + mRaθ̇ 2 sin θ + mga sin θ + kR 2θ = 0.

This equation linearizes to

[H + m(R − a)2]θ̈ + (kR 2 + mga)θ = 0

so T = 2π

√
H + m(R − a)2

kR 2 + mga
.

(b) This is clearly a pendulum problem because gravity causes a restoring torque to
act on the swinging gate. As always, the (constant) natural frequency is determined by
first writing the (linearized) equation of motion for this single-DOF system. Using the
Lagrange equation, the kinetic energy of the gate swinging through an angle θ is simply

T = 1/2m(1/2bθ̇)2 + 1/2

(
mb2

12

)
θ̇2 =

(
mb2

6

)
θ̇2 = 1/2HF Aθ̇2.

The potential energy expression is the challenge in this problem. As always, the poten-
tial energy is the weight, mg, multiplied by the height the center of mass rises vertically
above its datum point, which, as per usual, is the lowest point attained by the center of
mass. For the sake of greater clarity, redraw Fig. 2.16, the front view of the gate, with
an angle α approximately equal to somewhere between 30◦ and 45◦. Picture the gate
rotating out of the plane of the paper, say, toward you. From this front view, the center
of mass appears to move along the perpendicular line between the hinge line and the
datum point for the center of mass. In the plane of the swinging center of mass, the cen-
ter of mass moves up in that plane a distance (1/2b)(1 − cos Θ). Since the plane of the
swinging center of mass is not vertical, the vertical rise of the center of mass is not this
quantity. With this quantity as the hypotenuse (edge view of that swinging CG plane)
of a triangle drawn on the front view, the rise of the CG is seen to be (1/2b)(1 − cos Θ)
multiplied by sin α. Thus V = 1/2mb(1 − cos Θ) sin α. Note that if α is zero, then, as it
should be, there is no potential energy. However, if α is π/2, then the gate is an ordinary
pendulum, and the potential energy has the correct value for an ordinary pendulum.
From the completed equation of motion

ω1 =
√

3g sin α

2b
.

(c) The required quantities for the Lagrange equations are

T = 1/2m[v̇2 + (L+ v)2θ̇2] + 1/2Hθ̇2 U = 1/2kv2

V = mg(L− Lcos θ − v cos θ)

and δW = F cos θ(L+ v)δθ + F sin θδv

therefore mv̈ − m(L+ v)θ̇2 + kv = mg cos θ + F sin θ

[H + m(L+ v)2]θ̈ + 2m(L+ v)v̇θ̇ + mg(L+ v) sin θ = F sin θ.
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2.6 (a) This exercise can be more easily completed by writing Newton’s second law, par-
ticularly after obtaining the energy solution. However, it is important to practice using
the Lagrange equation. The first step of the analysis, the sketch of the manometer tube
with the fluid columns displaced; that is, with one higher than the other, is provided in
the problem statement. The up or down displacement of either column is u(t). Thus
one column top is a distance 2u above the other column top. Since the entire body of
the fluid moves together, the kinetic energy is T = 1/2(ρ AL)u̇2. The potential energy of
the displaced configuration can best be understood by visualizing what masses have to
be moved within the gravitational field to reach the displaced configuration from the
static equilibrium configuration, which is the datum configuration. Picture altering the
static equilibrium configuration by removing the mercury at the top of one of the two
equal-height columns to a depth u, without (somehow) allowing the remainder of the
fluid to move. Place this removed mercury on top of the other column. Now the static
equilibrium configuration has become the displaced configuration, and this change
has been achieved by moving a weight ρgAu upward a distance u. Hence V = ρgAu2.
Therefore

ρ ALü + 2ρgAu = 0 so ω1 =
√

2g
L

.

(b) No.

2.8 (a) First of all, the mass moment of inertia of the thin rod about its own center of
mass about an axis perpendicular to the plane of the paper is mL2/12. The key to the
geometry of the problem is realizing that the distance along the rod from the center of
mass to the point of contact between the rod and the cylinder is Rθ . Then it is relatively
simple to conclude that

� = Rθ cos θ and h = Rθ sin θ

u = Rsin θ − � and v = h + Rcos θ − R

thus u̇ = Rθ̇(cos θ − cos θ + θ sin θ)

and v̇ = Rθ̇(sin θ + θ cos θ − sin θ)

hence T = mL2θ̇2

24
+ mR2θ 2θ̇2

2
and V = mgR(θ sin θ + cos θ − 1)

therefore m
(

L2

12
+ R 2θ 2

)
θ̈ + mR 2θ θ̇2 + mgRθ cos θ = 0

linearizing: θ̈ + 12
(

R
L

) ( g
L

)
θ = 0 ω1 =

√
12

(
R
L

) ( g
L

)
.

(c) This is a two-DOF system. As generalized coordinates, choose the usual θ (positive
counterclockwise) for the mass M, and u, positive to the right, which measures the
position of the mass m relative to the axis of the pendulum arm. The motion of the mass
m is a bit complicated. Therefore, it is best to go back to basics. Draw a large diagram
of the displaced system and then calculate the horizontal and vertical deflections of the
mass m:

ver. displ. = L(1 − cos θ) + u sin θ and hor.displ. = Lsin θ + u cos θ

∴ vertical vel. = Lθ̇ sin θ + uθ̇ cos θ + u̇ sin θ

∴ horizon. vel. = Lθ̇ cos θ − uθ̇ sin θ + u̇ cos θ

vel.2 = (L2 + u2)θ̇2 + u̇2 + 2Lθ̇ u̇ = (Lθ̇ + u̇)2 + u2θ̇2.
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Then the energy expressions are

T = 1/2M�2θ̇2 + 1/2Hθ̇2 + 1/2m(vel.2) + 1/2hθ̇2 and U = ku2

and V = Mg�(1 − cos θ) + mgL(1 − cos θ) + mgu sin θ.

Now it is just a matter of substitution into the Lagrange equations of motion. That
result, after some algebra, is

[H + h + M�2 + m(L2 + u2)]θ̈ + 2muu̇θ̇ + mLü + (M� + mL)g sin θ + mgu cos θ = 0

mLθ̈ − muθ̇ 2 + mü + mg sin θ + 2ku = 0.

Linearizing here begins with replacing the sine of θ by θ and the cosine of θ by 1. Lin-
earization is completed by ruthlessly eliminating all products of the small displacements
and their derivatives. Then the matrix form of the linearized equations of motion is[

(H + h + M�2 + mL2) mL
mL m

] {
θ̈

ü

}
+

[
(M� + mL)g mg

mg 2k

] {
θ

u

}
=

{
0
0

}
.

(d) With infinitely stiff springs, the two masses become one rigidly connected mass, and
thus the system becomes one simple pendulum with just one DOF. An analysis of the
new system would require the location of the combined center of mass of the previously
distinct two masses and, using the parallel axis theorem, their combined mass moment
of inertia about the combined center of mass.

(e) In the zero stiffness case, the springs disappear. Then, in the absence of friction,
there would be no forces (just small moments) acting on the smaller mass. Therefore,
the smaller mass would travel back and forth within the pendulum bob, but it would not
translate relative to an outside observer. The straight track for the smaller mass would
cause the smaller mass to rock back and forth through the angle θ as the pendulum
swings through that same angle. If the track were a circular curve with radius L, then
the smaller mass would not move at all.

2.9 It is not immediately apparent which of the possibilities is the best choice for the single
generalized coordinate necessary to describe the instantaneous position of the trapeze
bar as it twists about its axis of symmetry. In a situation like this, the best course of
action is usually to first write the expressions for the kinetic and potential energies in
terms of whatever (perhaps) temporary variables most simplify those expressions and
then to relate those various variables. Last, select whichever generalized coordinate(s)
offer the greater simplicity in the final differential equation of motion.

The kinetic energy, as per usual, has two parts: the kinetic energy of translation and
that of rotation:

T = 1/2mv̇2 + 1/2

(
mL2

12

)
θ̇2 and V = mgv.

To work with the deflected trapeze geometry, introduce the angle φ, which is the angle
between the support wire in its static equilibrium vertical position and the same wire
in its deflected position. The slightly rotated plane in which this angle resides can be
seen in (top) edge view in Fig. 2.19(c) by augmenting that drawing as follows. Redraw
the right half of that top view where the undeflected trapeze bar is projected on the
plane of the deflected trapeze bar. By means of a straight line, connect the two wire
connection points of the deflected and projected bars to form an isosceles triangle in
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the plane of the deflected bar. The angle θ as the smaller, unequal angle. Then bisecting
the angle θ leads to the relationship

sin
(

θ

2

)
=

1/2h sin φ

1/2�
=

(
h
�

)
sin φ.

From Fig. 2.19(b), the angle φ can also be related to v as

v = h − h cos φ.

Thus θ is related to v via φ, but in a complicated fashion. However, because this analysis
is to be limited to small deflections, it is quite convenient to choose φ as the single
generalized coordinate with the following geometric approximations, where the latter
is based on the series expansion for the cosine

θ ≈
(

2
h
�

)
φ

and v ≈ h
φ2

2

∴ T = 1/2mh2φ2φ̇2 +
(

mL2

24

) (
2

h
�

)2

φ̇2

and V = 1/2mghφ2.

Substituting into the Lagrange equation and linearizing leads to the result

φ̈ + 3
(

g
h

) (
�2

L2

)
φ = 0

so ω1 = �

L

√
3g
h

.

2.10 (a) To understand the geometry of the motion of this horizontal pendulum, first con-
sider point B. Point B must always lie on a sphere of radius a centered at point C. Point
B must also lie on a sphere of radius h centered at point D. Therefore, point B must
move on the circular arc that is the intersection of those two spheres. The edge view
of that circular arc is obtained by first drawing a straight line from point C to point D
and beyond and then drawing the perpendicular to this line from point B. That per-
pendicular is the edge view of the circular arc followed by point B. Similarly, drawing
the perpendicular from point A to this extended line CD (call that intersection point,
point F) provides the edge view of the circular arc on which the mass m moves. In other
words, the line AC traces out a conical surface as the pendulum arm moves in and out
of the plane of the paper, where the apex is, of course, point C and the axis of the cone
is the line CF. From the geometry of the triangles ACF and BCD, the radius of the
circular arc along which the mass moves is

dist{AF} = bh√
a2 + h2

.

Since this is a case of rotation about a fixed axis, CF, the simplest approach is to use
the fixed axis version of Newton’s law for rotational motion

HFAθ̈ = MF A,

where HFA = mb2h2

a2 + h2
,

where θ is the angular DOF of the mass in the skewed plane of motion of the mass (the
plane with edge view AF). The gravitational moment in that same plane is constructed
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by combining the component acting in that plane of the vertical weight vector with the
usual pendulum moment arm. That is,(

mb2h2

a2 + h2

)
θ̈ = −

(
mga√
a2 + h2

) (
bh√

a2 + h2

)
sin θ

or θ̈ +
(

g
h

a
b

)
θ = 0

so ω1 =
√

g
h

a
b
.

(b) Looking first at the effect of the circular arc on the pendulum arm and then the
result of the rotated straight line, the vertical rise and horizontal displacement of the
pendulum bob are, respectively,

∆y = R(θ − sin θ) + (L− Rθ)(1 − cos θ)

∆x = (R − Rcos θ) + (L− Rθ) sin θ.

Multiplying the first of the above expressions by the bob weight provides the potential
energy expression. Differentiating both expressions with respect to time provides the
velocities required for the kinetic energy expression. The result is

T = 1/2m[(L− Rθ)2θ̇2sin2
θ + (L− Rθ)2θ̇2cos2θ ] = 1/2m(L− Rθ)2θ̇2.

The interesting aspect of this kinetic energy expression is that it illustrates the fact
that the total velocity is merely the tangential velocity with a moment arm measured
from the instantaneous beginning of the straight-line portion of the pendulum arm.
Since these energy expressions are nonlinear, and the system model does not include
friction, it would be better to write the constant energy equation rather than write out
the Lagrange equation.

2.12 (a) The task is to relate φ̇ to θ̇ in this one-DOF system. The strategy to be followed for
this purpose is to focus on the distance the roller moves over the supporting surface,
s(t), which is the distance from where θ has the value zero to its instantaneous point
of contact with the support surface. This distance in terms of the angle φ is simply rφ.
This same distance in terms of the angle θ is a bit more complicated. The quantity s(θ)
can be determined from integrating ds.

First note that because R is not constant, it is not true that along the arc of the
supporting surface, ds = R(θ)dθ . One way of obtaining the correct value of ds is to
introduce the quantity v(θ), which is the vertical rise of the support surface above the
point where θ is zero. Also introduce h(θ), which is the horizontal projection of the
point on the support surface at the angle θ , again measured from the point where θ is
zero. Therefore,

v(θ) = R0 − R(θ) cos θ and h(θ) = R(θ) sin θ

and ds =
√

(dv)2 + (dh)2 = dθ

√(
dv

dθ

)2

+
(

dh
dθ

)2

since
dv

dθ
= Rsin θ − R ′ cos θ

and
dh
dθ

= Rcos θ + R ′ sin θ

then ds = [R2 + (R ′)2]1/2dθ.
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Integrating over θ and differentiating with respect to time yields the result stated. There
is no differentiation of the integrand with respect to time because the θ of the integrand
is not a function of time. That is, these intermediate values of θ are just geometric values
up to the limiting generalized coordinate value of θ that appears as the upper limit.
Of course, the generalized coordinate is a function of time and, as such, has a time
derivative. This result is confirmed simply by dividing both sides of the last of the above
equations by the differential dt .

(b) The kinetic energy and potential energy expressions for the one-DOF circular
cylinder rolling on a very smooth, concave circular surface whose radius varies with the
angle θ are, where R0 = R(0) and again R ′ = dR/dθ

T = 1/2 H [d/dt of angle of rotation w.r.t. fixed axis]2

+ 1/2 m
(

ṡ + 1/2r φ̇
)2

T = 1/2 H
[
φ̇ − d

dt

(
dv

dh

)]2

+ 1/2 mθ̇2[(R ′)2 + R 2]

+ 1/2 mr θ̇ φ̇[(R ′)2 + R 2]
1/2 + 1/2 m

(
1/4 r 2φ̇2

)
V = mg{v − r [1 − cos(dv/dh)]}

V = mg[R0 − Rcos θ − r + r cos(dv/dh)].

From part (a),

dv

dh
= dv/dθ

dh/dθ
= Rsin θ − R ′ cos θ

Rcos θ + R ′ sin θ
.

Differentiating this expression with respect to θ , in route to obtaining its time derivative,
is best left undone. The general complexity of these expressions strongly suggests that
this problem is not best formulated in terms of the varying radius R. A formulation
directly in terms of v(h) also has its difficulties.

CHAPTER 3 SOLUTIONS

3.1 (a) Let the left-hand beam element be numbered 10 and the right-hand beam element
be numbered 20. With these two beam elements merely bending in the x, z plane
this is a six-DOF system. Name the six global DOF w1 = w(0), θ1 = w ′(0), w2 =
w(L/2), θ1 = w ′(L/2), w3 = w(L), and θ3 = w ′(L). Since each beam element is
of length L/2, the two element stiffness matrices with the corresponding global DOF
are

[k10]{q}(10) = EI
L3




96 24L −96 24L
24L 8L2 −24L 4L2

−96 −24L 96 −24L
24L 4L2 −24L 8L2







w1

θ1

w2

θ2
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and

[k20]{q}(20) = EI
L3




96 24L −96 24L
24L 8L2 −24L 4L2

−96 −24L 96 −24L
24L 4L2 −24L 8L2







w2

θ2

w3

θ3




.

The result of combining the two element stiffness matrices to obtain the system stiffness
matrix equation is




R
0
F
0
R
0




= EI
L3




96 24L −96 24L 0 0
24L 8L2 −24L 4L2 0 0
−96 −24L 192 0 −96 24L
24L 4L2 0 16L2 −24L 4L2

0 0 −96 −24L 96 −24L
0 0 24L 4L2 −24L 8L2







w1

θ1

w2

θ2

w3

θ3




.

Insert the boundary conditions that w1 = w3 = 0. Now note that everywhere there is
a known deflection DOF, there is an unknown external generalized force and vice
versa. Now the first and fifth rows can be set aside and the first and fifth columns
deleted. The remaining four simultaneous equations can then for solved for the
remaining DOF. However, based on the symmetry of the structure, there are impor-
tant simplifications possible. The first is to note that θ2 is zero, which deletes the
fourth of the original six columns. After deleting the fourth row, the matrix equation
is 


0
F
0


 = EI

L3


 8L2 −24L 0

−24L 192 24L
0 24L 8L2







θ1

w2

θ3


 .

From the first and third rows

θ1 = − θ3 = 3
W2

L

Substituting this result into the middle equation yields the perhaps familiar result

w2 ≡ w

(
L
2

)
= FL3

48 EI
.

(b) In the 6 × 6 system matrix equation stated above, the new boundary and symmetry
conditions are such that all system DOF are zero except w2. Therefore, deleting the
first, second, fourth, fifth, and sixth columns and setting aside the corresponding rows
leads immediately to

w2 ≡ w

(
L
2

)
= FL3

192 EI
.

These two solutions provide the stiffness factors, or flexibility factors, at the midspans
of simply supported and clamped–clamped beams.
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3.2 (a) Since this is a small problem, it is not necessary to show the intermediate steps.
(Part (b) shows intermediate steps.) Thus the matrix equation involving all seven
DOF is



R
R
0

M0

R
R
R




= EI
�3




12 6� −12 6� 0 0 0
6� 4�2 −6� 2�2 0 0 0

−12 6� 41 6� −5 −24 12�

6� 2�2 6� 12�2 0 −12� 4�2

0 0 −5 0 5 0 0
0 0 −24 −12� 0 24 −12�

0 0 12� 4�2 0 −12� 8�2







w1

θ1

w2

θ2

w3

w4

θ4




.

After the application of the boundary conditions where all the DOF but those
associated with node 2 are zero, the final FEM equation is just{

0
M0

}
= EI

�3

[
41 6�

6� 12�2

] {
w2

θ2

}
.

(b) Since this problem is a fairly large hand calculation, it is useful to show the interme-
diate steps. Start with beam 12 bending about the x axis, then the y axis, and then twisting.
After applying the clamped support boundary conditions, those element matrices are,
respectively,

EI
�3

[
3 3�

3� 4�2

] {
v2

ψ2

}
EI
�3

[
41 6�

6� 12�2

] {
w2

θ2

}
EI
�3

[
0.25�2

] {
φ2

}
.

Turning now to beam 23, where the small displacement DOF w2 is zero, the element
matrices for bending about the x axis and twisting about the y axis are, respectively,

EI
�3


 4�2 −6� 2�2

−6� 12 −6�

2�2 −6� 4�2







ψ2

w3

ψ3




EI
�3

[
0.5�2 −0.5�2

−0.5�2 0.5�2

] {
θ2

θ3

}
.

The element stiffness matrix for bending about the z axis for beam 23 is

EI
�3




12 −6� −12 −6�

−6� 4�2 6� 2�2

−12 6� 12 6�

−6� 2�2 6� 4�2







u2

φ2

u3

φ3




.

3.3 The key to this problem is understanding that, because the displacements are small, the
deflections in one direction do not disturb the symmetry of the deflections in the other
direction, and there is no significant relative twisting of any of the beam-columns.
In other words, the small deflections in the x direction are independent of those
in the y direction. Thus, because of the symmetry of the structure and the loading,
u1 = u2 and v1 = v2. Furthermore, the symmetry extends to the nodal rotations. There-
fore, θ1 = θ3, φ1 = φ2, and, as before, all the ψs are zero. Furthermore, as can be seen
from a side-view sketch of the deflection pattern, because the upper beams are inex-
tensible, all the θ DOF are the same and all the φ DOF are the same. Thus the number
of independent DOF is just 4: u, v, θ , and φ. Consider deflections in the x direction.
The two beams between nodes 1 and 3 and between 2 and 4 provide no resistance to
motion in the x direction. For each of the four beam-columns and for the two upper
beams whose ends are rotated when there are deflections in the x direction (the beams
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between nodes 1 and 2, and between nodes 3 and 4), the element matrix equations are
respectively

EI
�3

[
12 −6�

−6� 4�2

] {
u
θ

}
EI
�3

[
4�2 2�2

2� 4�2

] {
θ

θ

}
.

The latter [k]{q} product reduces to just having the equal nodal bending moments equal
to simply (EI/�3)(6�2)θ . Of course there is a similar result for y-direction deflections.
The assembly of the global stiffness matrix leads to


2F1

0
2F2

0




= EI
�3




48 −24� 0 0
−24� 28�2 0 0

0 0 48 24�

0 0 24� 28�2







u
θ

v

φ




,

which is easily solved for the four unknown DOF.

3.4 Assembling the 3 × 3 element stiffness matrices for beams 10 and 30, and the 6 × 6
element matrix for beam 20, and writing the virtual work expression leads to



F1

0
0
0

−M2

−M1




= EI
�3




18.5 −6� 1.5� −1.5� 0 1.5�

−6� 4.25�2 0 0 −0.25�2 0
1.5� 0 2.5� −1.5� 0 �2

−1.5 0 −1.5� 16.5 −6� −1.5�

0 −0.25�2 0 −6� 4.25�2 0
1.5� 0 �2 −1.5� 0 2.5�2







v2

θ2

φ2

v3

θ2

φ3




.

3.5 There are three generalized coordinates requiring solution: u1, θ1, and θ2. However, the
known displacement, u0, must also be included in the stiffness matrix equations. The
element stiffness equations are

k10u1 = EI
L3

[3]u1 [k20]{q} = EI
L3


 12 −12 6L

−12 12 −6L
6L −6L 4L2







−u0

u1

θ1




[k30]{q} = EI
L3

[
2L2 L2

L2 2L2

] {
θ1

θ2

}

[k40]{q} = EI
L3

[
24 −12L

−12L 8L2

] {
u1

θ2

}
.

The fact that the global DOF for the spring is oppositely directed relative to the spring
element DOF does not result in a sign change for any diagonal element or, for that
matter, for any element of a 2 × 2 stiffness matrix. Note that the stiffness matrix for
beam 30 reflects its length of 2L, whereas that for beam 40 reflects its larger stiffness
coefficient. Assembling the global stiffness matrix, partitioning and removing the col-
umn associated with the input, and setting aside the corresponding row lead to the
following equation to be solved for the unknown DOF:

EI
L3


 39 −6L −12L

−6L 6L2 L2

−12L L2 10L2







u1

θ1

θ2


 = EI

L3
u0




−12
6L
0


 ,

where the stiffness coefficients can be canceled. In the case of only three algebraic
simultaneous equations to be solved by hand, Cramer’s rule would be suitable. From
that perspective, each of the unknown DOF is proportional to the input u0.
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CHAPTER 4 SOLUTIONS

4.1 (a) The augmented stiffness matrix is

[k]{w} = EI0

L3




36 −6L −12 6L
−6L 12L2 −6L 2L2

3βL2 −βL2

−12 −6L 36 +6L
6L 2L2 +6L 12L2

−βL2 3βL2







w1

θ1

φ1

w2

θ2

φ2




.

(b) No and no. The mass matrix and applied load vectors are the same because the
DOF are the same, and the loads and inertial properties are also the same. Only the
stiffness matrix changes.

(c) The first change would be that there would now be three more required DOF, the
three bending slope rotations at the bases of the columns. Hence the mass and stiffness
matrices would now be 7 × 7. It likely would be appropriate to estimate mass moments
of inertia corresponding to these DOF.

4.2 (a) The free vibration matrix equation of motion is


m
H

2m
2H







ẅ1

θ̈1

ẅ2

θ̈2




+ EI0

L3




19 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 25 −6L
6L 2L2 −6L 7L2







w1

θ1

w2

θ2




=




0
0
0
0




.

(b) The only part of the above equation that needs to be altered is the previously null
applied load vector. It now must be

�Q� =
⌊

7EI0w0(t)
L3

+ M0(t) − F0(t) 0
⌋

.

(c) If Newton’s second law is used to write the equation of motion, the beam supplied
contact force is the only force to be equated to the mass multiplied by its acceleration.
For small beam tip rotations, that contact force is the beam tip shear force. This shear
force, V, can be determined from the beam element stiffness matrix in terms of the
beam tip lateral deflection u(t)in the form V = ku, where k is beam stiffness at its tip. If
the Lagrange equation is used to write the equation of motion, the simplest form for the
strain energy also involves this stiffness factor. Turning to the beam element stiffness
matrix where R entries again indicate beam support reactions without present interest
and the (relative) element deflections have been entered in terms of the quantities of
the system under discussion:


R
R
V
0




= EI
L3




12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2







0
0

u − v

θ2




.

The equation of the last row yields θ2 = 3(u − v)/2L. Substituting into the equation of
the third row provides the solution that V = 3EI(u − v)/L3. Therefore, of course, the
stiffness factor is k = 3EI/L3. Of course, there are many other ways to determine the
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stiffness factor at the beam tip. Hence, the equation of motion in terms of u(t), and
the natural frequency, are

mü(t) + 3EI
L3

u(t) = 3EI
L3

v(t) and ω =
√

3EI
mL3

.

(d) The use of the relative deflection DOF w(t) leads to the same left-hand side as
above and hence the same natural frequency. In this case, the driving force on the
right-hand side is −mv̈.

4.3 (a) Only four global DOF are required: w2, w3, θ3, w4, positive up and counterclock-
wise, at the nodes indicated by the subscripts. The two beam element stiffness matrices
and the two spring element stiffness matrices are

[k10]{q10} = EI0

L3

[
12 −6L

−6L 4L2

] {
w3

θ3

}
[k20]{q20} = EI0

L3

[
12 6L
6L 4L2

] {
w3

θ3

}

[kup]{qup} = 6EI0

L3

[
+1 −1
−1 +1

] {
w2

w3

}
[klw]{qlw} = 3EI0

L3

[
+1 −1
−1 +1

] {
w3

w4

}
.

Therefore the matrix equation of motion is


2
1

0
1







ẅ2

ẅ3

θ̈3

ẅ4




+ EI0

mL3




6 −6
−6 33 −3

8L2

−3 3







w2

w3

θ3

w4




= F(t)
m




0
0
0
1




.

It is important to note that inspection of the third of these four simultaneous equa-
tions immediately yields the result that θ3(t) equals zero. This means that with this
perfectly symmetrical structure and perfectly symmetrical force excitation, the system
can undergo only symmetric vibrations. Furthermore, this rotational DOF and its cor-
responding third equation can now be removed from the above matrix equation, thus
reducing its size to only that of 3 × 3 matrices.

(b) In this case, the DOF θ1 and θ5 have to be added to the previous four DOF for a
total of six DOF. Now the beam element stiffness matrices are

EI0

L3


 4L2 −6L 2L2

−6L 12 −6L
2L2 −6L 4L2







θ1

w3

θ3




EI0

L3


 12 6L 6L

6L 4L2 2L2

6L 2L2 4L2







w3

θ3

θ5


 .

Therefore the matrix equations of motion are


0
2

1
0

1
0







θ̈ 1

ẅ2

ẅ3

θ̈3

ẅ4

θ̈5




+ EI0

mL3




4L2 −6L 2L2

6 −6
−6L −6 33 −3 6L
2L2 8L2 2L2

−3 3
6L 2L2 4L2







θ1

w2

w3

θ3

w4

θ5




= F(t)
m




0
0
0
0
1
0




.
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Although it is still possible to guess partial solutions, such as the antisymmetrical result
θ3 = −2θ1 = −2θ5, the by-hand reduction in the size of the matrices in this case is not
easily accomplished.

(c) The hinge at the center of the structure introduces the possibility of two different
bending slopes at node 3, while the deflections on both sides of the node remain the
same. Call the bending slope at the left of the node 3 θ3 and the bending slope at the
right of the node 3 ψ3. Thus the DOF of part (a) are now augmented by the additional
DOF of ψ3 and the matrix equation of motion is




2
1

0
0

1







ẅ2

ẅ3

θ̈3

ψ̈3

ẅ4




+ EI0

mL3




6 −6
−6 33 −6L 6L −3

−6L 4L2

6L 4L2

−3 3







w2

w3

θ3

ψ3

w4




= F(t)
m




0
0
0
0
1




.

Note that the third and the fourth of the above simultaneous equations can be used
to immediately determine the values of θ3 and ψ3 in terms of w3. That is, θ3 = −ψ3 =
3w3/2L. In this case it is not difficult to reduce the size of the coefficient matrices to
be 3 × 3 and the vectors to 3 × 1. It is only a matter of using the above partial solution
and then removing the third and fourth columns and rows.

(d) The left-hand beam element stiffness matrix is now

EI0

L3


 12 −12 6L

−12 12 −6L
6L −6L 4L2







w1

w3

θ3


 .

Setting aside the first row, and separating the known applied motion function w1 from
the unknown DOF, leads to the new matrix equation of motion




2
1

0
1







ẅ2

ẅ3

θ̈3

ẅ4




+ EI0

mL3




6 −6
−6 33 −3

8L2

−3 3







w2

w3

θ3

w4




= EI0w1(t)
mL3




0
12

−6L
0




.

Note that, as would be expected, θ3 is not zero. Moreover, it is easily determined to be

θ3(t) = −3w1(t)
4L

.

4.4 (a) The only difference in the element stiffness matrices is that the stiffness matrix for
beam element 40 has to be altered so that now the bending slope, θ4 is no longer zero,
but the center line deflection is zero. Thus for the antisymmetrical vibration, the beam
element 40 stiffness matrix becomes

[k40]{q40} = EI
L3


 12 6L 6L

6L 4L2 2L2

6L 2L2 4L2







w3

θ3

θ4


 .
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Using this stiffness matrix for element 40, the assembled global stiffness matrix and
deflection vector are

[K]{q} = EI
L3




4L2 −6L 2L2 0 0 0 0 0
−6L 24 0 −12 6L 0 0 0
2L2 0 8L2 −6L 2L2 0 0 0

0 −12 −6L 24 0 −12 6L 0
0 6L 2L2 0 8L2 −6L 2L2 0
0 0 0 −12 −6L 24 0 6L
0 0 0 6L 2L2 0 8L2 2L2

0 0 0 0 0 6L 2L2 4L2







θ0

w1

θ1

w2

θ2

w3

θ3

θ4




.

(b) Yes. The mass matrix needs to be adjusted for the different acceleration vector
where now the second time derivative of w4 is zero and the second time derivative of
θ4 is not zero.

4.5 Since the beam elements have infinite axial stiffness, the only possible motions within
the plane of the frame at the nodes are rotations in the plane (i.e., rotations about the
z axis). Call these rotations, the two DOF of the system, ψ1 and ψ2. The matrix equation
of motion is

Hz

[
1 0
0 1

] {
ψ̈1

ψ̈2

}
+ 4EI0

L

[
10 1
1 10

] {
ψ1

ψ2

}
= M1(t)

{
0
1

}
.

4.6 (a) The only necessary alteration in the previous solution is the determination of a new
equivalent load vector. The equivalent load vector resulting from an enforced motion
w0(t) is

�Q� = EI0w0(t)
L3

�24 −12L 0 0 0 0�.

(b) The equivalent load vector resulting from an enforced θ0(t) is

�Q� = EI0θ0(t)
L3

�12L −4L2 0 0 0 0�.

(c) From the element stiffness matrix for the right-hand column, the new equivalent
load vector is

�Q� = EI0θ0(t)
L3

�+3L 0 0 −2L2�.

4.7 (a, b) In general terms, natural frequencies squared are proportional to the ratio of
stiffness over mass. Thus an increase in mass generally lowers the natural frequencies,
whereas an increase in stiffness generally raises the natural frequencies. More specif-
ically, the natural frequencies squared of any structure are inversely proportional to
what are called the modal masses. The modal masses, to be more fully discussed later,
are the lumped masses of the structure weighted by (multiplied by) the squares of
the values at the lumped masses of the deflection amplitudes for that vibration mode
(i.e., the amplitudes of the deflection pattern associated with that natural frequency).
Thus the addition of mass at a point of zero deflection for that natural frequency does
not decrease that natural frequency. However, because the points of zero deflection
(also called nodes) are generally different from natural frequency to natural frequency,
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it is quite likely that the addition of mass anywhere lowers most, if not all, natural
frequencies. Similarly, the stiffer a structure is made, the higher most of the natural
frequencies. Note, however, as the question is posed in part (b), increasing Iyy without
changing the cross-sectional area (i.e., without changing the mass per unit of beam
length) not always, but generally means that Izz must decrease if the same thicknesses
are maintained. Hence, the out-of-paper natural frequencies must decrease in this cir-
cumstance, whereas those for deflections in the plane of the paper increase.

4.8 (a) The fundamental natural frequency decreases. In this case where the total mass
remains the same, but is redistributed toward the regions of greater vibratory ampli-
tude, the first natural frequency squared decreases. Later, when the modal solution
method is discussed, it is mathematically shown that the square of any natural fre-
quency is equal to the modal stiffness term for that frequency divided by the modal
mass term for that frequency. These modal masses and stiffnesses are terms that not
only depend on the mass and stiffness distributions, but they weight (multiply) those
mass and stiffness distributions by the squares of the vibratory amplitudes. With a bit
of experience, an analyst generally finds it easy to roughly imagine the distribution of
vibratory amplitudes for at least the first force free vibratory frequency. In this question,
the equivalent stiffness is (unrealistically) roughly unaltered, but the effective mass, the
mass multiplied by (relative) deflection squared, is markly increased because the mass
is being moved where the associated deflections are greatest. Thus the denominator is
markly increasing, whereas the numerator is roughly stationary.

(b) This is a difficult question to respond to theoretically. However, the answer is
that the first natural frequency does decrease slightly with only half the total mass
lumped at the beam midspan. See the result listed in the first column of the table of
Endnote (1).

4.9 (a) When in doubt, always go back to basics. In this case, going back to basics means
writing the expressions for T, U, and δW. The kinetic energy is

T = 1/2H1φ̇
2
1 + 1/2H2

(
R1

R2

)2

φ̇2
1 + 1/2H3φ̇

2
2 .

The strain energy of the total structure is the sum of the strain energies of its two bar
element components. Their strain energies are

U10 = 1/2�0 φ1�2GJ 0

L

[
+1 −1
−1 +1

] {
0
φ1

}

U20 = 1/2

⌊
R1

R2
φ1 φ2

⌋
GJ 0

L

[
+1 −1
−1 +1

] 


R1

R2
φ1

φ2


 .

Thus the matrix equations of motion are


 H1+ R2

1

R2
2

H2

H3


 {

φ̈1

φ̈2

}
+ GJ 0

L




2+ R2
1

R2
2

− R1

R2

− R1

R2
1




{
φ1

φ2

}
= Mt

{
0

−1

}
.

(b) Writing the Lagrange matrix equation of motion in this case requires writing the
expression for the kinetic energy and assembling the system stiffness matrix. Since
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there are neither applied forces nor explicit damping present, a virtual work statement
is not necessary:

T = 1
2

[
mẇ2

1 + Hyθ̇
2
1 + Hxφ̇

2
1 + 2mẇ2

2 + 2Hyθ̇
2
2 + 2Hxφ̇

2
2

]
.

This leads to the following diagonal mass matrix and the acceleration vector:

[M]{q̈} =




m
Hy

Hx

2m
2Hy

2Hx







ẅ1

θ̈1

φ̈1

ẅ2

θ̈2

φ̈2




.

The challenge of this problem lies in writing and assembling the element stiffness
matrices. From the standard beam element stiffness matrix template, for beam element
number 10:

[k10]{q} = EI
L3




−12
6L
0


 w0(t) + EI

L3


 12 −6L 0

−6L 4L2 0
0 0 L2







w1

θ1

φ1




[k20]{q} = + EI
L3




1.5 0 1.5L −1.5 0 1.5L
0 0.5L2 0 0 −0.5L2 0

1.5L 0 2L2 −1.5L 0 L2

−1.5 0 −1.5L 1.5 0 −1.5L
0 −0.5L2 0 0 0.5L2 0

1.5L 0 L2 −1.5L 0 2L2







w1

θ1

φ1

w2

θ2

φ2




[k30]{q} = + EI
L3


 24 −12L 0

−12L 8L2 0
0 0 2L2







w2

θ2

φ2




with the final result that

[K]{q} = EI
L3




13.5 −6L 1.5L −1.5 0 1.5L
−6L 4.5L2 0 0 −0.5L2 0
1.5L 0 3L2 −1.5L 0 L2

−1.5 0 −1.5L 25.5 −12L −1.5L
0 −0.5L2 0 −12L 8.5L2 0

1.5L 0 L2 −1.5L 0 4L2







w1

θ1

φ1

w2

θ2

φ2




and

�Q� = EI
L3

w0(t)�12 −6L 0 0 0 0�.

(c) All DOF are needed but u2. Hence the stiffness matrix will be 5 × 5 as follows:

[K]{q} = EI0

L3




24 −12L 0 0 0
−12L 8L2 0 0 0

0 0 36 −18L 0
0 0 −18L 12L2 0
0 0 0 0 L2







v2

ψ2

w2

θ2

φ2




.
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{Q}t is obtained from the stiffness matrix as follows

{Q} = EI0h(t)
L3

�0 0 36 −18L 0�t.

Note that there is no coupling in the stiffness matrix between bending in the y plane and
bending in the z plane and no coupling between torsion and bending in either plane.
Thus, in the case of a static loading, the beam will respond only with deflections in the
direction of the tip forces.

(d) The writing of the mass matrix begins with writing the kinetic energy expression
and ends with factoring that expression into matrix form. Using the right-hand rule

T = 1/2m1
[
v̇2

2 + ẇ2
2

] + 1/2m2
[
(ezθ̇2)2 + (v̇2 − ezφ̇2)2 + ẇ2

2

]
+ 1/2m3

[
(eyψ̇2)2 + (v̇2 + exψ̇2)2 + (ẇ2 + ex θ̇2 − eyφ̇)2] .

Now assemble the mass matrix in the same fashion that the stiffness matrix is assembled
to get

[M]{q̈}

=




m1+m2+m3 m3ex 0 0 −m2ez

m3ex m3
(
e2

x + e2
y

)
0 0 0

0 0 m1+m2+m3 m3ex −m3ey

0 0 m3ex m2e2
z + m3e2

x −m3exey

−m2ez 0 −m3ey −m3exey m2e2
z + m3e2

y







v̈2

ψ̈2

ẅ2

θ̈ 2

φ̈2




.

Note that all DOF are coupled because of nonzero, off-diagonal terms in the mass
matrix. This means that, although the beam is excited only in the z direction, it will
nevertheless also undergo bending vibrations in the y direction and twist about the
x axis.

4.10 (a) In this motion, and the other two motions, the roof mass remains horizontal. Thus
the kinetic energy is simply T = 1/2mu̇

2. The ends of each bent beam-column are con-
strained against a bending slope rotation, and the lower deflection is zero and the upper
deflection is u. Thus, taking the value 12 from the general beam element stiffness matrix,
for each of the eight beams, Ue= 1/2(EI0/L3)(12)u2. Multiplying the latter quantity by
8 and substituting into the Lagrange equation of motion leads to the result

ωu = ω1 = 4

√
6EI0

mL3
.

(b) The procedure is as above, noting the greater beam bending stiffness coefficient
for motion in the y direction. The result is

ωv = ω2 = 8

√
3EI0

mL3
.

(c) Since this motion is a bit more complicated, it is worthwhile to draw a top view figure
showing the location of the tops of the eight columns relative to the axis of rotation.
As above, kinetic energy expression is a single term. The strain energy expression
also can be created as above, by (i) calculating the separate x- and y-direction lateral
deflections at the tops of the beam-columns because of the rotation about the z axis
and (ii) using the general strain energy expression for beam-bending 1/2qtkq. Another,
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and wholly equivalent, way to do this exercise is to anticipate the approach stressed in
the next chapter and do the following: determine the torsional stiffness factor of this
structure, K, by (imagining) twisting it through the small but arbitrary angle φ, and then
calculating the elastic, resisting torque, Mt= Kφ. Then, as is true for any torsional spring,
rotary mass system, regardless of what it looks like, the torsional natural frequency is
the square root of the ratio of the torsional stiffness factor divided by the value of
the rotary mass moment of inertia. The details of the calculation are as follows. First,
for convenience of discussion, divide the eight beam-columns into two groups: the
outboard (end) four and the inboard (middle) four. In response to a rotation about the
z axis through an angle φ, the tops of the inboard columns move a distance 1/2 Lφ in
both the x and the y directions. At each column top, these motions produce a resisting
x-direction force of magnitude (EI0/L3)(12)(1/2 Lφ) and twice that for the y-direction
resisting force. Similarly, the outboard column tops move the distances 3Lφ/2 in the y
direction, and 1/2 Lφ in the x direction. These deflections create a resisting x-direction
force of magnitude (EI0/L3)(12)(1/2 Lφ) and a resisting beam top y-direction force of
magnitude (EI0/L3)(12)(3Lφ/2). Now it is just a matter of summing the moments
about the z axis produced by these 16 force components.

Mt = 4
[

L
2

(
6EI0

L2

)
φ + L

2

(
12 EI0

L2

)
φ + L

2

(
6EI0

L2

)
φ + 3L

2

(
36EI0

L2

)
φ

]
= 264

EI0

L
φ

so ωφ = ω3 = 2

√
66El0

H2 L
.

Note the three natural frequencies are always numbered and subscripted so that the
lowest frequency value is the first (or fundamental) natural frequency, and the second
lowest value is the second natural frequency, and so on. As will be seen, only three
natural frequencies are possible for a structural system such as this which has only
three DOF.

(d) No. There is only one mass with three possible independent motions.

4.11 (a) Take the mass of each half beam and lump it at its nearest joint. Then the discrete
masses at the corners have the magnitudes 1.5mL, whereas those at the first level joints
have the magnitudes 2.5mL.

(b) Taking into account the positive directions assigned to the selected DOF in
Fig. 3.13(b), the expression for the kinetic energy is

T = 1/2(1.5mL+ 1.5mL)u̇2
1 + 1/2(5mL)u̇2

2

+ 1/2(2.5mL)(u̇1 − eθ̇ 1)2 + 1/2(2.5mL)(u̇1 − eθ̇ 3)2.

Upon arranging the kinetic energy in the matrix form T = 1/2�q�[M]{q}, the mass matrix
and acceleration vector are seen to be

mL




8 −2.5e −2.5e
−2.5e 2.5e2

5
0

−2.5e 2.5e2

0







ü1

θ̈ 1

ü2

θ̈ 2

θ̈ 3

θ̈ 4




.
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(c) The assembled stiffness matrix, for a deflection vector having the same DOF order-
ing as the acceleration vector, is

[K] = EI
L3




24 6L −24 6L 6L 6L
6L 6L2 −6L 2L2 L2 0
−24 −6L 72 6L −6L 6L
6L 2L2 6L 14L2 0 L2

6L L2 −6L 0 6L2 2L2

6L 0 6L L2 2L2 14L2




.

(d) �Q� = �2(F1 + F2) 0 (F1 + F2) 0 0 0�.

4.12 (a) The motion of the single mass is described entirely by the four DOF at node 2.
Since there are no products of inertia included in the mathematical model, the kinetic
energy expression is

T = 1/2m(v̇2 + ex θ̇2)2 + 1/2m(eyθ̇2)2 + 1/2m(eyφ̇2 − exψ̇2)2 + 1/2Hxφ̇
2
2 + 1/2Hyψ̇

2
2 + 1/2Hzθ̇

2
2.

Therefore the mass and acceleration vector are

[M]{q̈} =




m mex 0 0
mex

[
Hz + m

(
e2

x + e2
y

)]
0 0

0 0 Hx + me2
y −mexey

0 0 −meyex Hy + me2
x







v̈2

θ̈ 2

φ̈2

ψ̈2




.

(b) It is suggested that the individual beam stiffness matrices be written out so as to
make later assembly a simple matter. Starting with beam element 10, accounting for
the different bending stiffness coefficients and the element length 2L, the stiffness
matrix is

[k10]{q} = EI0

L3




4.5 −4.5L 0 0
−4.5L 6L2 0 0

0 0 0.5L2 0
0 0 0 10L2







v2

θ2

φ2

ψ2




.

The stiffness matrix for beam 20 needs to include the two base motion components so
that the equivalent generalized force vector can be identified. The result is

[k20]




q
u3

v3




= EI0

L3




12 0 6L 0 0 −12
0 L2 0 0 0 0

6L 0 4L2 0 0 −6L
0 0 0 8L2 −12L 0
0 0 0 −12L 24 0

−12 0 −6L 0 0 12







v2

θ2

φ2

ψ2

u3

v3




.

Therefore the assembled stiffness matrix and generalized force vectors are

[K]{q} = EI0

L3




16.5 −4.5L 6L 0
−4.5L 7L2 0 0

6L 0 4.5L2 0
0 0 0 18L2







v2

θ2

φ2

ψ2




.
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and

{Q} = EI0

L3




0
0
0

12L




u3(t) + EI0

L3




12
0

6L
0




v3(t).

Of course, the complete equations of motion are

[M]{q̈} + [K]{q} = {Q}.
Inspection of this matrix equation of motion makes clear that all the DOF are coupled
by either the mass matrix or the stiffness matrix. That is, none of there DOF can be
separated from the other DOF.

4.13 Since there are no mass moments of inertia specified, the kinetic energy is simply one-
half the mass multiplied by the total velocity squared. The total velocity squared is
simply the sum of the squares of each of the three orthogonal velocity components.
Each of the rotations, in combination with the offsets, produces a velocity component
in two orthogonal directions. Thus the kinetic energy is

T = 1/2m
[
(−ezθ̇ − eyψ̇)2 + (v̇ − ezφ̇ + exψ̇)2 + (ẇ + ex θ̇ + eyφ̇)2] .

After substituting the above kinetic energy expression into the Lagrange equation and
factoring into matrix form, the mass matrix and acceleration vector becomes

[m]{q̈} = m




1 0 0 −ez ex

0 1 ex ey 0
0 ex

(
e2

x + e2
z

)
exey eyez

−ez ey exey
(
e2

y + e2
z

) −exez

ex 0 eyez −exez
(
e2

x + e2
y

)







v̈

ẅ

θ̈

φ̈

ψ̈




.

4.14. There are only two nonzero DOF, u4 and v4. The element stiffness matrices, and then
the global stiffness matrix equation, are as follows:

[k14] =
√

3EA
2h

[
1/4

√
3/4√

3/4 3/4

]
= EA

h

[
0.2165 0.3750
0.3750 0.6495

]

[k24] =
√

3EA
2h

[
1/4 −√

3/4
−√

3/4 3/4

]
= EA

h

[
0.2165 −0.3750

−0.3750 0.6495

]

[k34] = 2EA√
2h

[
1/2 −1/2

−1/2 1/2

]
= EA

h

[
0.7071 −0.7071

−0.7071 0.7071

]

∴
{

F
0

}
= EA

h

[
1.140 −0.7071

−0.7071 2.006

] {
u4

v4

}
.

4.15 Using the three DOF shown in the sketch, the kinetic energy of the system is

T = 1/2m(ẇ − eφ̇)2 + 1/2Hyθ̇
2 + 1/2Hxφ̇

2.

This leads to the following mass and acceleration vector for the Lagrange matrix
equation:

[M]{q̈} =


 m 0 −me

0 Hy 0
−me 0 Hx + me2







ẅ

θ̈

φ̈


 .
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Again, writing the expression for the strain energy amounts to assembling the sys-
tem stiffness matrix from the two element stiffness matrices. The element stiffness
matrices and corresponding deflection vectors for the near and far beam elements,
respectively, are

[knear]{q} = EI
L3


 12 6L 0

6L 4L2 0
0 0 L2







w

θ

φ




[kfar]{q} = EI
L3


 12 6L 0

6L 4L2 0
0 0 L2







w − 2eφ
θ

φ


 .

Recall that the strain energy has the form 1/2�q�[k]{q}. Multiplying out the latter matrix
product as a triple product and regrouping terms leads to the following stiffness matrix
for the far beam

[kfar]{q} = EI
L3


 12 6L −24e

6L 4L2 −12Le
−24e −12Le (L2 + 48e2)







w

θ

φ


 .

Thus the second part of the free vibration equation [M]{q} + [K]{q} = {0} is

[K]{q} = EI
L3


 24 12L −24e

12L 8L2 −12Le
−24e −12Le (2L2 + 48e2)







w

θ

φ


 .

4.16 Since the original partial derivative equation is linear, the separation of the total
equation into static and dynamic parts proceeds exactly as it did for the linear
matrix equations of motion. That is, again start with F = Fstat + Fdyn, w = wstat + wdyn.
Complete the process by subtracting the static equation load-deflection equation,
P[wstat(x)] = Lstat(x), from the original partial derivative equation to obtain the desired
result because H[wstat] = 0.

4.17 (a) Equation (1.17), which applies to a single lumped mass (call it the jth mass), can
be rewritten as

2Tj = �u̇ v̇ ẇ θ̇ x θ̇ y θ̇ z�( j)




m
m

m
Hxx Hxy Hxz

Hxy Hyy Hyz

Hxz Hyz Hzz




( j)


u̇
v̇

ẇ

θ̇ x

θ̇ y

θ̇ z




( j)

,

where u through θz are the generalized coordinates of this particular lumped mass. In
the same style that the FEM elastic element DOF for the jth element are related to
the FEM global DOF, that is, through a constant transformation matrix [Ξ j ], these
mass element DOF can be related to the global DOF. Thus the kinetic energy of this
particular mass element can be written in terms of the global DOF, {q}, as

Tj = 1/2�q�[Ξ j ]t[mj ][Ξ j ]{q}.

The triple product [Ξ j ]t[mj ][Ξ j ] is the jth mass contribution to the global mass matrix
[M]. This typical triple product is a symmetric square matrix because [mj ] is a symmetric



P1: JZP
0521865743apx1 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 3:49

Answers to Exercises 4.17–5.2 509

square matrix. Since the sum of symmetric matrices is a symmetric matrix, the global
mass matrix [M] is symmetric.
(b) The global mass matrix is positive definite because (i) the kinetic energy T is always
a positive value whenever there are any velocities, positive or negative, associated with
the mass of the system (i.e., there is no such thing as negative kinetic energy) and
(ii) the very definition of positive definiteness that says a matrix [m] is positive definite
whenever

�v�[m ]{v} > 0

for all nonnull vectors {v}, combined with the standard global kinetic energy expression

2T = �q̇�[M]{q̇}.

4.18 The “proof” breaks down at the point where it is claimed that because the velocity
vector is arbitrary, the central square matrix of the triple product is zero. If the two
velocity vectors were different arbitrary vectors, then that conclusion would be valid.
However, they are the same arbitrary vector, and thus all that can be concluded is that
the central square matrix is skew-symmetric (i.e., mi j = −mji ). Test this idea with a
2 × 2 square matrix with arbitrary entries.

CHAPTER 5 SOLUTIONS

5.1 Write

C1 = ±C0 sin χ and C2 = C0 cos χ

then u(t) = C0e−ζωt cos(ωdt ± χ).

5.2 (a,b) With either approach, the result is[
m 0
0 H

] {
ü
θ̈

}
+

[
(c1 + c2 + c3) (−ac1 + bc2)
(−ac1 + bc2) (a2c1 + b2c2)

] {
u̇
θ̇

}

+
[

(k1 + k2) (−ak1 + bk2)
(−ak1 + bk2) (a2k1 + b2k2)

] {
u
θ

}
=

{
F
M

}
.

(c) The use of the Lagrange equations produces the result[
m ma

ma H + ma2

] {
v̈

θ̈

}
+

[
(c1 + c2 + c3) (Lc2 + ac3)
(Lc2 + ac3) (L2c2 + a2c3)

] {
v̇

θ̇

}

+
[

k1 + k2 Lk2

Lk2 L2k2

] {
v

θ

}
=

{
F

M + aF

}
.

(d) The use of Newton’s second law with this particular set of generalized coordinates
produces the (highly undesirable) nonsymmetrical matrix equations of motion[

m ma
0 H

] {
v̈

θ̈

}
+

[
(c1 + c2 + c3) (Lc2 + ac3)
(bc2 − ac1) Lbc2

] {
v̇

θ̇

}

+
[

k1 + k2 Lk2

bk2 − ak1 Lbk2

] {
v

θ

}
=

{
F
M

}
.
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5.3 (a) The tedious approach to this problem is to write the Coulomb differential equation
for a one-DOF system subjected to a harmonic applied force with any frequency other
than the system natural frequency and obtain its solution for a quarter or half cycle;
that is, write and obtain

mü + ku = F0 sin ω f t − µmg

u(t) = C1 sin ωt + C2 cos ωt + (F0/k)
1 − (ω f /ω)2

sin ω f t − µ(mg/k)

and then apply BCs. (Note that the response can grow very large as the forcing fre-
quency approaches the natural frequency; see Exercises 4.8 and 4.9 for consideration
of the situation where the forcing frequency equals the natural frequency.) A far sim-
pler approach is to realize that because the Coulomb damping force is a constant, the
work done by this force over a quarter cycle is simply −µmg A, where A is the ampli-
tude of the vibration. Thus the work done over a full cycle is four times that amount.
Therefore,

ceq = 4µmg
πω1 A

.

There are some problems with this solution. From the solution to the differential equa-
tion of motion, there is no steady-state response if the frequency of the applied force
is equal to the natural frequency of the oscillator, and the solution may be beyond
the bounds of linearity if the frequency of the applied force is near to the value of
the natural frequency. (In the first case, more energy is being put into the system per
cycle by the applied force than can be removed by the friction force.) The solution
for the equivalent damping coefficient itself is unsettling at first glance because the
amplitude term is in the denominator. However, this is not unreasonable in itself. If
the damping coefficient is small, then the amplitude should be large and vice versa.
Nevertheless, the concept of equivalent viscous damping simply doesn’t work very well
in this case of Coulomb damping.

5.4 (a) Let θ be the counterclockwise rotation of the bar and u(t) be the upward deflection
of the right-hand mass. Then

T = 1/2Hθ̇ 2 + 1/2mu̇2, U = 1/2k(Lθ)2 + 1/2k(Lθ − u)2,

and δW = −(cLθ̇)(Lδθ) − cu̇δu.

Therefore the matrix equations of motion are

[
m 0
0 H

] {
ü
θ̈

}
+

[
c 0
0 cL2

] {
u̇
θ̇

}
+

[
k −kL

−kL 2kL2

] {
u
θ

}
=

{
0
0

}
.

(b) Since the rotations are small, the displacement of the smaller mass is just u − Lθ .

The strain energy for the right-hand spring is 1/2(2k)(u + Lθ − v)
2
, and so on. The matrix

equation is

m

[
3 −1

−1 1.5

] {
ü

Lθ̈

}
+ c

[
3 −2

−2 4

] {
u̇

Lθ̇

}
+ k

[
3 1
1 3

] {
u

Lθ

}
= 2kv(t)

{
1
1

}
,
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where all the elements of the coefficient matrices have been reduced to plain numbers
by factoring and dividing the second equation (second row) by L. Note that this is not
a case of proportional damping regardless of the positive values of k and c.

(c) This system is so straightforward that Newton’s second law and the Lagrange equa-
tions are equally convenient. Assuming that u2 > u1, or u1 > u2, either resulting matrix
equation is[

m1 0
0 m2

] {
ü1

ü2

}
+

[
(c1 + c2) −c2

−c2 (c2 + c3)

] {
u̇1

u̇2

}
+

[
(k1 + k2) −k2

−k2 k2

] {
u1

u2

}
=

{
0

F(t)

}
.

(e) The tangential velocity of the left bar center of mass is merely 1/2Lθ̇ . The right bar
center of mass has an upward deflection equal to 1/2Lsin θ and a leftward deflection
equal to 2L(1 − cos θ) − 1/2 L(1 − cos θ). This latter expression can be understood by
moving the right bar center of mass along the following path. Momentarily detach
the two bars at their common hinge before they both rotate through the angle θ . The
right bar center of mass moves upward the 1/2Lsin θ mentioned above and rightward
1/2L(1 − cos θ). Now translate the right bar leftward through the gap 2L(1 − cos θ) that
opened when the two bars were momentarily detached, until the two bars are again
in a position where they can be reattached. Thus the horizontal component of the
right bar center of mass velocity is (3Lθ̇/2) sin θ . Furthermore, the rotational spring is
deflected through the relative rotation angle 2θ. The rightward force in the dashpot is
c(d/dt)2L[1 − cos θ ]. The leftward movement of this equivalent viscous damping force
during the virtual displacement δθ is 2L[1 − cos(θ + δθ)] − 2L(1 − cos θ) = 2Lδθ sin θ .
Thus the kinetic energy, strain energy, and virtual work are

T = 2(1/2)
(

mL2

12

)
θ̇2 + 1/2m

(
L
2

θ̇

)2

+ 1/2m
(

1/4L2θ̇2 + 2L2θ̇2sin2
θ
)

so T = 1/3mL2θ̇2 + mL2θ̇2sin2
θ U = 1/2K(2θ)2

and δW = +M(t)δθ − 2Lcθ̇ sin θ(2Lδθ sin θ).

Substituting into the Lagrange equations of motion the nonlinear and linear equations
of motion and natural frequency are respectively

2mL2(1/3 + sin2
θ)θ̈ + mL2θ̇2 sin 2θ + 4cL2θ̇sin2

θ + 4Kθ = M(t)

for θ 2 � 1, θ̈ +
(

6K
mL2

)
θ = M(t)

so ω =
√

6K
mL2

.

The effect of the dashpot disappears in the linearization.

(h) Let the two DOF be the indicated θ and u(t). Using the parallel axis theorem to
get the mass moment of inertia of the rigid rod about its base, the expressions for the
kinetic energy, strain energy, virtural work, and the resulting Lagrange equation are

T = 1
2

mu̇2 + 1
2

(
2
3

mL2 + 2mL2

)
θ̇2

U = 1
2

k(u − 2Lθ)2

δW = −cu̇δu − cLθ̇(Lδθ) + M(t)δθ
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m


 1 0

0
8
3


 {

ü
Lθ̈

}
+ c

[
1 0
0 1

] {
u̇

Lθ̇

}
+ k

[
1 −2

−2 4

] {
u

Lθ

}
=

{
0

M(t)/L

}
.

This is another case where the damping is not proportional regardless of the values of
m, c, and k.

5.5 Using Eq. (4.5), with A1/A11 = 3, the result rounds off to ζ equal to 0.02.

5.6 (a) Since the beam-columns are fixed at both ends, it is convenient to use the FEM beam
element stiffness matrix because all but one of the element DOF are zero. Specifically,
with the beam element DOF being w1= u, θ1 = w2= θ2 = 0, the shear force acting on
the mass from just one beam-column is, from the (1, 1) element of the stiffness matrix,
(12EI/L3)u. For three beam-columns, the stiffness factor is three times the above
quantity in parantheses. With the damping factor being 0.2, the factor that converts
the undamped natural frequency to the damped natural frequency, the

√
1 − ζ 2, has a

value of the
√

0.96. Hence the damped natural frequency is

ωd =
√

(36)(0.96)EI
mL3

= 5.88

√
EI

mL3
.

(b) The stiffness at the mass for a single beam-column of this structure can be deter-
mined using the beam element stiffness matrix in the following way. First note that what
is being sought is again the relation between the shear force at the top of the beam
and the lateral deflection at that same beam end. Call the top of the beam-column
the 1 end of the beam element. Then with w1 = u, w2= θ2 = M1 = 0, from writing the
first two rows of the beam element stiffness matrix and solving the second of those
two equations for θ in terms of u and substituting in the first of those two equations
leads to

VL3

EI
= 12u + 6Lθ and 0 = 6Lu + 4L2θ

or V =
(

3EI
L3

)
u.

Alternately, the unit load method or the differential equaton method could be used to
directly obtain the same result. Either of these latter two approaches would start by
placing an arbitrary force V at the free end of the cantilevered beam-column. Then
the free end deflection, u, is calculated in terms of V. After the arrangement of this
solution in the form V = (k)u, the stiffness coefficient for the cantilevered beam-column
at its free end is evident. Taking into account that there are three beam-columns, the
(equivalent viscous) damped natural frequency of the system is

ωd =
√

(3)(3)(0.96)EI
mL3

= 2.94

√
EI

mL3
.

(c) This is exactly the same stiffness and mass situation as the previous case, so the
undamped and damped natural frequencies are also the same.

(d) This is exactly the same situation as those of the above parts (b), and (c), except
here there are four beams rather than three. Thus the damped natural frequency is

ωd =
√

(4)(3)(0.96)EI
mL3

= 3.4

√
EI

mL3
.
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(e) This is exactly like part (a) except that here there are four beams. That is, because
all other DOF but the first (or third) lateral deflection are zero, from the 1, 1 (i.e., row
1, column 1) entry of the beam element stiffness matrix

ωd =
√

(4)(12)(0.96)EI
mL3

= 6.8

√
EI

mL3
.

(f) In this case T = 1/2Hzψ̇
2
. Since the beams also have fixed end conditions at the mass,

as a first approximation, the elastic resisting torque acting on the mass is a result of
the bending of the beam ends at the mass in such a manner that they do not deflect
laterally but do undergo a bending slope. This is an approximation because when the
mass rotates through the angle ψ , there is a tip deflection equal to this angle multiplied
by the radius from the center of the mass to the point of connection between the mass
and the beam. Hence, using the approximation of zero radius and zero deflection, from

the 2,2 entry of the beam element stiffness matrix, U = 1/2(4)(EI/L
3
)(4L2)ψ2. Thus

ωd =
√

(4)(4)(0.96)EI
HzL

= 3.9

√
EI

HzL
.

A more accurate linear deflection answer incorporating the nonzero radius of the
mass can be made using the beam element stiffness matrix. With w1 = θ1 = 0, w2 =
−rψ, θ2 = +ψ , and with the total resisting torque on the mass being Mtot = M2 + Vr,
from the last two rows of the stiffness matrix

V2 L3

EI
= +12rψ + 6Lψ

and
M2 L3

EI
= +6Lrψ + 4L2ψ

so Mtot = 4EI
L3

(L2 + 3rL+ 3r 2)ψ

and ωd = 4.0

√
(L2 + 3rL+ 3r 2)EI(0.96)

HL3
.

It is clear that only if , L > 50r , is the first approximation sufficiently accurate for
engineering purposes. As a check, note that when r = 0, this answer reduces to the
previous answer.

(g) Here the elastic resisting moment comes from the twisting of two of the beams
to the extent of 2GJφ/L = 2αEIφ/L, and the bending of the other two beams to the
extent of 2(EI/L3)(4L2φ) for r = 0. Thus the resisting moment is 2(4 + α)EIφ/Land

ωd = 1.39

√
(4 + α)EI

Hx L
.

(h) To answer this question, consider dividing the angular rotation vector into two
perpendicular components where each component is aligned with a beam axis. Then
the resisting moment for each component, 0.707 of the total angular deflection, is 0.707
of the answer to part (g), and the total vector form of the moment is the same as that
of part (g). Thus the damped natural frequency is the same.

5.7 (a) For use in Newton’s second law, the free body diagram for, say, the middle mass
consists of the middle mass deflected to the left a distance u2(t) with a positive (right-
ward) horizontal shearing force acting on its top, and a negative shearing force act-
ing on its bottom. For example, the shearing force resulting from the deformation of
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each of the three upper beam columns is, from the beam element stiffness matrix,
+12EI/L3(u3 − u2). Since none of the masses rotate, the matrix equation of motion is

 1
1

α







ü1

ü2

ü3


 + 12ζ

√
EI

mL3


 2 −1 0

−1 2 −1
0 −1 1







u̇1

u̇2

u̇3




+ 36EI

mL3


 2 −1 0

−1 2 −1
0 −1 1







u1

u2

u3


 = F(t)

m




1
2
2


 .

Here is a case of proportional damping.
(b) With the mass parameter α having the value 2, the matrix equation of motion in
terms of DOF referenced to the fixed vertical axis, is

 1
1

2







ü1

ü2

ü3


 + c

m


 2 −1 0

−1 2 −1
0 −1 1







u̇1

u̇2

u̇3




+ 36EI

mL3


 2 −1 0

−1 2 −1
0 −1 1







u1

u2

u3


 = 36EI

mL3




1
0
0


 h(t) + c

m




1
0
0


 ḣ(t).

(c) In terms of the relative DOF, the matrix equation of motion is
 4 3 2

3 3 2
2 2 2







ü1

ü2

ü3


+ c

m


 1

1
1







u̇1

u̇2

u̇3


+ 36EI

mL3


 1

1
1







u1

u2

u3


=




4
3
2


 ḧ(t).

This too is a case of proportional damping.

5.8 (d) Since the one possible solution for the time when the velocity is zero, w1t =
2µmg/F0 > π . the factor sin ωt must supply the first occuring stopping point. Thus
the time duration of the first half period is π/ω, and the distance traveled over the first
half cycle is

u
(π

ω

)
= πustat

2
− 2µug = π F0

2k
− 2µ

mg
k

.

(e) Yes. The amplitude reduction per half cycle is 2µug.

5.9 (a) The solution for the motion for the first half cycle is

u(t) = 1/2

(
F0

k

)
ω1t sin ω1t + k� − µmg

k
(1 − cos ω1t).

(b) The transcendental equation to be solved for the time at which the motion
stops is

ω1t = −
(

1 − 2µmg
F0

)
tan ω1t = −0.5 tan ω1t.

A quick sketch of the functions y = ωt , y = −0.5 tan ωt shows that the two curves cross
somewhere between ω = 0 and π/2.
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5.10 (a) Let u(t) be the motion of the block to the left after time zero. The initial conditions
are those of zero initial deflection and zero initial velocity. After time zero, the stretch
in the spring is such that Newton’s second law is

mü = +k(V0t + d0 − u) − mgµd

or ü + ω2
1u = (

ω2
1V0

)
t + (

ω2
1d0 − gµd

)
The complete solution to this differential equation is

u(t) = Asin ω1t + Bcos ω1t + V0t + d0 − µdg
ω2

1

.

Applying the initial conditions leads to

B = µdg
ω2

1

− d0 A= − V0

ω1

so that the solution for the first part of the motion can be written as

u(t) = V0

ω1
[ω1t − sin ω1t] −

(
µdg
ω2

1

− d0

)
[1 − cos ω1t].

(b) Therefore the velocity of the block mass is

u̇(t) = V0[1 − cos ω1t] −
(

µdg
ω1

− ω1d0

)
sin ω1t.

The time, if any, at which the block comes to a stop is determined by setting the velocity
equal to zero and solving explicitly for the corresponding time

ω1V0

µdg − ω2
1d0

= sin ω1t
1 − cos ω1t

= 2 sin ω1t
2 cos ω1t

2

2sin2 ω1t
2

= cot
ω1t
2

or tan
ω1t
2

= µdg − ω2
1d0

ω1V0
.

The constant numerator of the right-hand fraction is not zero unless the dynamic friction
coefficient is equal to the static friction coefficient, which is not the case. Since the
dynamic friction coefficient is less than the static friction coefficient, the numerator
is less than zero, making the left-hand side a negative quantity. Specifically, from the
given relationship that here the dynamic Coulomb friction coefficient is −4kd0/(5mg),
so that

ω1tstop = 2 arctan
(−ω1d0

5V0

)
.

Thus a sketch of the tangent function shows that the nondimensional time (natural
frequency multiplied by time) at which the block first comes to a stop must lie between
π and 2π , even if the vehicle velocity is very small (yet is large enough to reach the
distance d0 in a finite time) and it increases with the speed of the vehicle asymtopically
to the value of 2π .

(c) For the given choice of parameters, the nondimensional time that the block stops
is 3π/2. Now the question concerns the force in the spring. Is the spring compressed
sufficiently at this time to overcome the static friction and send the mass moving to the
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right? For this selection of parameters, after evaluation of the block displacement and
some other algebra, the spring force is

Fspring = k
(

d0 − 2V0

ω1

)
= µdmg.

Since this is a tensile force, the mass will not be traveling to the right. On the contrary,
it is three-quarters of the way toward restarting its motion to the left.

CHAPTER 6 SOLUTIONS

6.1 (a) Recall the Newton–Raphson iterative (tangent) method which provides a second
approximation from a first guess according to r2 = r1 − f (r1)/ f (r1). Start with λ equal
to 0.25 and get a second approximation of 0.30. Use 0.30 to get a third approximation
0.299. The solution to four digits is 0.2991. Using this value for λ in the first and third
equations yields the result that the first mode shape is �0.3417 0.7009 1.0�t, whereas
the first frequency is ω1= 1.73

√
(EI/mL3).

6.4 (a) The first eigenvalue is 17.433, and the first eigenvector is �0.09377 0.5411 1.000�.
(b) The equation of constraint is 0.04689q1 + 0.05411q2 + q3 = 0. Dividing by the
largest coefficient for better accuracy, then the product of the dynamic matrix [D]
and the sweeping matrix [S1] is

 1 1 1
2 6 6
2 6 14





 1 0 0

0 1 0
−0.04689 −0.5411 0


 =


 0.95311 0.4589 0

1.71866 2.7534 0
1.34354 −1.5754 0


 .

Iterating this second dynamic matrix leads to an eigenvalue of 3.117 and an eigenvector
�0.212 1.00 −0.414�.

(c) The initial dynamic matrix, [K]−1[M], is [(1, 1, 2), (1, 2, 4), (1, 2, 6)]. The eigen-
values are 7.89167, 0.785825, and 0.322504. Hence, for example, the second natural
frequency is 6.77(EI/mL3)1/2. The first, second, and third mode shapes arranged in
rows for amplitudes A1, A2, and A3 (bottom to top) are

0.398534 0.746568 1.000
1.000 0.727455 −0.470814

−0.908484 1.000 −0.192253

(d) Here the dynamic matrix coincides with the mass matrix. The eigenvalues, and
hence the natural frequencies, are the same because they are characteristics of the
physical system and thus unaffected by the analyst’s choice for DOF. However, the
mode shapes are dependent on the choice of the DOF. In this case of relative coordi-
nates, the mode shapes as above are

1.000 0.873282 0.635910
−0.834540 0.227452 1.000
−0.476022 1.000 −0.624711

6.6 The eigenvalue is 2.04396, which relates to the inverse of the first natural frequency.
Thus, again, the first natural frequency is 0.70

√
k/m.
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6.7 (d) With [K] = [Rt][R], which is the same as [L][L]t, working with the elementary
rules of matrix multiplication only leads to the right triangular matrix result

[R] = 1√
3

[
3 −1
0

√
5

]
.

As a check, the product [Rt][R] returns [K].

(e) From, for example, the characteristic determinant |U − λI| = 0, expand the deter-
minant using the rule of minors by using the first column, then second, and so on, to
obtain the equation

(u11 − λ)(u22 − λ) . . . (unn − λ) = 0

from whence the proposed conclusion.

(f) The inverse of the given matrix is

[L]−1 =




1
3

0 0 0

−1
6

1
4

0 0

1
18

− 5
36

1
9

0

−1
9

5
18

−2
9

1
3




.

6.8 (a) Applying the equation of constraint that �A(1)�[M]{q}c = 0 and, as before, solving
for the first DOF (solving for the third DOF would have been a better choice for numer-
ical accuracy) leads to the following transformation matrix equation {q}c = [S1]{q}nc

and the dynamic matrix

[S1] =


 0 −3.869 −10.468

0 1.00 0
0 0 1.00




and [D2] =


 0 −1.869 −6.468

0 0.131 −2.468
0 0.131 1.532


 .

Notice the additional loss of accuracy in [D2] because of entries such as 0.131 being the
small difference of two larger numbers. The second eigenvalue and mode shape from
this calculation are, respectively, 1.24 and �0.838 1.00 −0.450�.

(b) With (k/m) = 1.0, the modified dynamic matrix is formed from the premultiplica-
tion of [M] by the inverse of [1.0K − 0.81M]. The new, shifted dynamic matrix is

[Dshift] =




6.56242 4.70409 −1.21141 −3.18792
7.05614 6.49165 −1.67174 −4.39933

−3.63423 −3.34349 0.345978 0.910469
−19.1275 −17.5873 1.82094 10.0551


 .

The first and largest eigenvalue is 1/(ω2−ω2
s ) = 23.4226. The corresponding mode shape

is as follows:

�−0.312564 − 0.404647 0.147306 1.00000�.
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Since this mode shape evidences a single node, it is expected that it is the second mode
shape. This is confirmed when the software results for all the modes are inspected.

6.9 To test for linear independence, form the sum and equality

c1e1 + c2e2 + c3e3 + · · · + cnen = 0

and test whether any of the coefficients ci can be other than zero. This is accomplished
by multiplying both sides of the equality by any one of the orthogonal vectors, say e j .
As a result of their orthogonality, the sum becomes the single term c j (e j ·e j ) = c j = 0.
Thus this coefficient and all like it must be zero. Hence the orthogonal vectors are
linearly independent.

6.10 (a) In the author’s opinion, when the matrix size is 4 × 4 or less, it is clearly better to
invert the stiffness matrix by hand than calculate the flexibility matrix by hand in that it
is both less work and less likelihood of arithmetic error. At larger sizes, either approach
by hand is too lengthy, but the direct calculation of the symmetric flexibility matrix is
a somewhat more rewarding experience. The complete flexibility matrix is



w2

θ2 L
φ2 L
w3

θ3 L
φ3 L




= L3

12EI




2 3 0 2 3 0
3 6 0 3 6 0
0 0 12 −12 0 12
2 3 −12 18 3 −18
3 6 0 3 30 0
0 0 12 −18 0 24







F2

M2/L
T2/L

F3

M3/L
T3/L




The above calculation was done using the virtual load method, which again is essentially
the same as the unit load method or the dummy load method or Castiglianp’s second
theorem. The setup for this calculation is

δW ∗
ex =

L∫
0

M(x)δM(x)
2EI

dx +
L∫

0

M(y)δM(y)
EI

dy +
L∫

0

T(x)δT(x)
EI

dx +
L∫

0

2T(y)δT(y)
EI

dy

Note that because the virtual load method is a force or flexibility method, as opposed
to the deflection or stiffness finite element method used everywhere else in this text-
book, the varied quantities here are forces and moments, while the actual quantities
are displacements, bending slopes, and twists. Furthermore, the above equation is an
application of the principle of complementary virtual work which states that the com-
plementary virtual work of the external loads is equal to the complementary strain
energy. To use the principle to calculate, say, the entry in the second row and first col-
umn, using this approach, it is necessary to first apply the real force F2 at node two
in the positive direction of w2, and then apply a virtual moment δM2 in the positive
direction of θ2. Then the external complementary virtual work done on the beam grid is
the virtual moment multiplied by the real rotation, δM2 θ2. Then it is simply a matter of
calculating the actual bending and twisting moments due to F2, and the virtual bending
and twisting moments due to δM2. Note that the arbitrary valued δM2 will also appear
in all terms on the right-hand side of the above equation, and thus be cancelled. The
result of the calculation is θ2 = F2 L2/(4EI).

(b) The flexibility matrix must be a symmetric matrix. In this case where the beam is
cantilevered, the flexibility coefficients for w2, θ2, and φ2 must by larger than the same
quantities with subscript 1. Finally, the product of the flexibility matrix and stiffness
matrix, in either order, must be the 6 × 6 identity matrix.
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6.11 The first and second pairs of repeated natural frequencies in units of radians per
second are

(a) 1.36 and 6.08

(b) 0.97 and 5.60

(c) 1.22 and 5.87

(d) 1.03 and 5.66

(e) 0.82 and 5.49.

Notice that with increasing tip mass and constant stiffness, both the first and second
pairs of natural frequencies drop in magnitude.

6.12 First consider sufficiency; that is, given the vector {v} is orthogonal to the first mode
shape, show that c1 is zero. By way of contradiction, presume c1 is not zero in the
expansion of Eq. (5.8) for {v}. Then �v�[M]{A(1)} = 0 requires that c1 is zero. Hence,
the contradiction and the conclusion that {v} does not contain the first mode. Now for
necessity; that is, given that c1 = 0, show that {v} is orthogonal to the first mode shape.
This is a simple matter of considering the matrix product �v�[M]{A(1)} and seeing that
this must be zero.

CHAPTER 7 SOLUTIONS

7.1 (a) As the lunar lander approaches the surface, its massless springs are unstretched.
Therefore, at the instant of contact, the initial deflection of this single-DOF system is
+mg/k (the static deflection of the mass weight acting on the springs), and the initial
velocity is −V. From the second chapter, the formula for free vibration is

u(t) = u(0) cos ω1t + u̇(0)
ω1

sin ω1t , where ω1 =
√

k
m

.

Applying the above initial conditions leads to

u(t) = mg
k

cos ω1t − V
ω1

sin ω1t.

(b) Let the bullet and the single-DOF system together constitute the dynamic system
under study relative to Newton’s laws. Since at no time are there forces external to this
two part system acting on this system, the total momentum of this system is conserved
(i.e., constant), despite the fact that the energy of the system is far from conserved.
Thus, with V being the velocity of the bullet lodged in the target and the target itself,
writing the expressions for the momentum before and after impact, and equating them,
leads to

mv = (M + m)V or V = m
(M + m)

v.

At time zero plus, after the impact of the bullet, the target and the bullet begin an
undamped harmonic motion with initial conditions that are a zero initial deflection
and an initial velocity V. Therefore, the motion of the target and bullet is simply
u(t) = U sin ω1t , where ω2

1 = K/(M + m), U = (V/ω1). Thus the muzzle velocity of the
bullet is v = (M + m)ω1U/m.
(c) The solution for the free vibration motion of this pendulum system is stated as
Eq. (6.1), where n = 3. Thus it is necessary only to calculate the three coefficients a j
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and the three phase angles ψ j . To this end, note that the mass matrix is simply m
multiplying the 3 × 3 identity matrix. Since the initial velocities are all zero

Vj = �A( j)�[m]{q̇(0)} = 0.

Therefore all the phase angles ψ j= arctan ω j Dj/Vj are 90◦. Hence, in Eq. (6.1), the
sines with 90◦ phase angles can be replaced by cosines with 0◦ phase angles. The solutions
for the coefficients a j now simplify to Dj/Mj . The numerators and denominators of
these ratios are

D1 = m�1 1 1�




0
0

0.1


 = 0.1m M1 = m�1 1 1�




1
1
1


 = 3m

D2 = m�−1 0 1�




0
0

0.1


 = 0.1m M2 = m�−1 0 1�




−1
0
1


 = 2m

D3 = m�−0.5 1.0 −0.5�




0
0

0.1


 = −0.05m

M3 = m�−0.5 1.0 −0.5�




−0.5
1.0

−0.5


 = 1.5m.

Therefore

q1(t) = θ1(t) = 1
30

cos
√

βt − 1
20

cos
√

2βt + 1
60

cos 2
√

βt

q2(t) = θ2(t) = 1
30

cos
√

βt − 1
30

cos 2
√

βt

q3(t) = θ3(t) = 1
30

cos
√

βt + 1
20

cos
√

2βt + 1
60

cos 2
√

βt.

These answers check at time zero.

(d) As always for matrix equations of motion, the BCs enter the problem in the stiffness
matrix.

7.2 (a) T = 1/2mq̇
2, U = 1/2(3EI/L

3)(q − u)2, and δW = −(damping force)δq. Substituting
into the Lagrange equation of motion and dividing by the mass term m leads to the
equation of motion

q̈ + 2ζω1q̇ + ω2
1q = ω2

1U0 sin ω f t → ω2
1U0eiω f t ,

where the real harmonic function has again been replaced by its complex equiva-
lent so that the solution may be written as q(t) = q0eiωt . Substituting this solution and
simplifying

q0

U0
= 1(

1 − Ω2
1

) + 2iζΩ1
or

|q0|
U0

= 1√(
1 − Ω2

1

)2 + (2ζΩ1)2
.
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This, of course, is the same form of solution as that obtained for the modal equation of
motion.

(b) With the damping force depending on the relative motion of the mass and base, the
simplified equation of motion is, after writing the base velocity in terms of its deflection,

q̈ + 2ζω1q̇ + ω2
1q = ω2

1U0eiω f t + 2ζω1ω f U0eiω f t .

Again, writing and substituting the solution for the mass motion in complex form as
q(t) = q0eiωt , the result is

q0

U0
= 1 + 2iζΩ1(

1 − Ω2
1

) + 2iζΩ1
or

|q0|
U0

=
√

1 + (2ζΩ1)2√(
1 − Ω2

1

)2 + (2ζΩ1)2
.

The ratio of the absolute value (amplitude) of the mass deflection to the amplitude of
the base motion is called the transmissibility. It is, of course, a measure of the amount of
steady-state base motion transmitted to the mass. Examination of this function shows
two facts of importance. The first is that there is a resonance phenomenon at Ω1 = 1.0,
and the second is that the value of this amplitude ratio is increasingly less than 1 as
Ω1 increases beyond the value

√
2. Furthermore, the less the damping, the less the

transmissibility after Ω1 exceeds
√

2.

(c) In the case of zero support motion, the equation of motion of the rigid mass and
its solution for the mass motion are

mq̈ + cq̇ + kq = F0eiω f t

or q̈ + 2ζω1q̇ + ω2
1q(t) = (F0/m)(k/k)eiω f t = ω2

1 F0

k
eiω f t

so q(t) = q0eiω f t

and q0 = F0/k(
1 − Ω2

1

) + 2iζΩ1
.

The force resultant transmitted to the structure is the force in the spring plus the force
in the dashpot, which is

Ftr = kq + cq̇ or
Ftr

k
= q + 2ζ

ω1
q̇ = [1 + 2iζΩ1]q0eiω f t .

Using the above two results to form the ratio Ftr/F0 yields

Ftr

F0
= 1 + 2iζΩ1(

1 − Ω2
1

) + 2iζΩ1
or

|Ftr |
F0

=
√

1 + 2ζΩ1√(
1 − Ω2

1

)2 + (2ζΩ1)2
,

which is the same transmissibility factor defined in the previous part of this exercise.

7.3 If v(t) is the horizontal ground motion, then the equation of motion for the building is

mü = −k(u − v) − c(u̇ − v̇)

or ü + 2iζω1u̇ + ω2
1u = (

ω2
1 + 2iζω1ω f

)
Υ0eiω f t .

Introducing the solution form u(t) = u0exp(iω f t), obtain the complex form of the
transmissibility

u0

Υ0
= 1 + 2iζΩ1

1 − Ω2
1 + 2iζΩ1

.
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Taking absolute values provides the real form of the transmissibility

|u0|
Υ0

=
√

1 + (2ζΩ1)2√(
1 − Ω2

1

)2 + (2ζΩ1)2
.

7.5 (a) zero
(b) 4
(c) 1/2 4 = 2
(d) 4
(e) zero
(f) 1
(g) Write the coordinate transformation t − τ = η. The desired form of the integrand
is immediately achieved. As for the differential, because τ, η are the variables of inte-
gration, whereas t is only a parameter, d(t − τ ) = dη ⇒ dτ = −dη. Now use the trans-
formation to determine the limits of integration with respect to η. When τ = 0, η = t .
When τ = t , η = 0. Reversing the limits cancels the negative sign, and the desired result
is achieved.

7.6 This is a single-DOF system with the sole generalized coordinate u(t) measuring the
lateral displacement of the mass m with respect to a fixed coordinate axis. Since the
system is so uncomplicated, Newton’s second law is easy to apply, and the Lagrange
equation is no more complicated. Using the Lagrange equation

d
dt

∂T
∂u̇

+ ∂U
∂u

= 0

where T = 1
2

mu̇2 U = 1
2

(2k)(u − h)2

∴ mü(t) + 2ku(t) = 2kh(t)

or ü(t) + ω2
1u(t) = ω2

1h(t).

The cantilevered beam tip stiffness factor k, if not remembered, can be deduced as
follows. Consider the beam element stiffness matrix equation for just one of the two
beam columns when the left-hand DOF (here the DOF at the bottom of a column)
are zero (fixed end), and there is no bending moment, M, at the top of the column
where a hinge is located. Then V, which is the shear force that acts at the top of the
beam-column, is the restoring spring force for the mass. Then the bottom two rows of
this beam element FEM equation reduce to{

V
M = 0

}
= EI

L3

[
12 −6L

−6L 4L2

] {
u
θ

}
→ θ = 3u

2L
→ V = 3EI

L3
u = ku.

Hence, the total stiffness factor for the mass is (6EI/L3), and the system natural fre-
quency squared is equal to 2k/m = 6EI/mL3. Therefore the solution for the above
equation of motion for the mass is

0 ≤ t ≤ t0 : u(t) = ω1h0

t0

t∫
0

τ sin ω1(t − τ )dτ

and for t ≥ t0 : u(t) = ω1h0

t0

t0∫
0

τ sin ω1(t − τ )dτ + ω1h0

t∫
t0

sin ω1(t − τ )dτ.
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7.8 (a) Since the applied modal acceleration time history can be described in terms of a
step function and a (negative) ramp function, then the modal deflection response of this
linear system can be described in terms of the individual responses to these components
of the loading. Therefore the modal deflection response can be written immediately
as

for t ≤ 0 pj (t) = 0 (as per usual)

0 ≤ t ≤ t1 pj (t) = P 0
j g j (t) − P 0

j

t1
r j (t)

t1 ≤ t pj (t) = P 0
j g j (t) − P 0

j

t1
[r j (t) − r j (t − t1)].

(b) The sine response function, as defined in Example 6.4, needs to be adapted to
the modal case. This is simply done by replacing the first natural frequency by the jth
natural frequency and the base acceleration amplitude coefficient of the original sine
response function by the modal acceleration amplitude. Then the complete solution in
terms of the sine response function

s j (t) = 1
(π/t0)2 − ω2

j

(
π

ω j t0
sin ω j t − sin

π t
t0

)

is

t ≤ 0 : pj (t) = 0; 0 ≤ t ≤ t0 : pj (t) = P 0
j s j (t);

and for

t0 ≤ t : pj (t) = P 0
j [s j (t) + s j (t − t0)].

7.9 (a) First calculate the velocity of the base motion, and thereby form the expression for
the equivalent input acceleration term of the convolution integral

u̇ = 4Υ0

t2
0

(t0 − 2t)

thus P(t) = 4Υ

t2
0

[
ω2

1(t t0 − t2) + 2ζω1(t0 − 2t)
]
.

Then for the time interval (0, t0), the deflection solution is, in integral form,

q(t) = 1
ωd

t∫
0

{
4Υ

t2
0

[
ω2

1(τ t0 − τ 2) + 2ζω1(t0 − 2τ )
]

exp[−ζω1(t − τ )] sin ωd(t − τ )
}

dτ.

(b) The deflection solution here is as in part (a) but for the single change that is replacing
the upper limit t of the integral by t0.

7.10 The object is to describe this system using only two DOF, the vertical deflections at
the lumped masses, which are here labeled w1 and w2. To accomplish this time-saving
approach, either the 2 × 2 flexibility matrix must be determined and inverted or the
4 × 4 stiffness matrix, which also includes the two bending slope DOF, must be par-
titioned so as to eliminate the bending slope DOF. Since the cantilevered beam is
statically determinate, the former approach is reasonable. However, to continue the
focus on the finite element method, the latter approach is used here. Rearranging rows
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and columns, and partitioning the mass, stiffness, and applied force vector, the original
4 × 4 matrix equation of motion becomes the following two sets of 2 × 2 equations:

m

[
2 0
0 1

] {
ẅ1

ẅ2

}
+ 8EI

L3

[
24 −12

−12 12

] {
w1

w2

}
+ 8EI

L3

[
0 3L

−3L −3L

] {
θ1

θ2

}
=

{
0
F

}

8EI
L3

[
0 −3L

3L −3L

] {
w1

w2

}
+ 8EI

L3

[
2L2 1/2L2

1/2L2 L2

] {
θ1

θ2

}
=

{
0
0

}
.

In the latter of the above two equations, multiplying through by the inverse of the 2 × 2
matrix that multiplies the bending slope vector (easily done), allows for a quick solution
for the bending slope vector in terms of the lateral deflection vector. When that result
for the bending slope vector is substituted into the previous equation, and the matrices
multiplying the lateral deflection vector are combined, the result is

m

[
2 0
0 1

] {
ẅ1

ẅ2

}
+ 48EI

7L3

[
16 −5
−5 2

] {
w1

w2

}
=

{
0
F

}
.

For this 2 × 2 matrix equation, the solution for the modal frequencies and mode shapes
can easily be done using the determinant method or the iteration method. The results
are

ω2
1 = 2.4905

(
EI

mL2

)
�A(1)� = �0.32736 1.0�

ω2
2 = 66.08

(
EI

mL3

)
�A(2)� = �1.0 −0.6547�.

Now write and substitute the modal transformation {w} = [Φ]{p} to obtain the uncou-
pled matrix equations, where each row is the corresponding modal equation

m

[
1.214 0

0 2.429

] {
p̈1

p̈2

}
+ 48EI

7L3

[
0.4411 0

0 23.41

] {
p1

p2

}
=

{
F

−0.6547F

}
.

The ratios of the generalized stiffness entries to the generalized mass entries are the
squares of the natural frequencies as they should be. Therefore, the first and second
modal equations reduce to

p̈1 + ω2
1 p1 = F(t)

m
= P1(t)

and p̈2 + ω2
2 p2 = −0.6547

F(t)
m

= P2(t).

Now it is just a matter of substituting into the superposition integral.

p1(t) = 1
ω1m

t∫
0

F(τ ) sin ω1(t − τ )dτ

and p2(t) = −0.6547
ω2m

t∫
0

F(τ ) sin ω2(t − τ )dτ.

7.12 (a) After the nondimensional time value of 2π , the response is evermore zero.

(b) After the nondimensional time value of π , the response is a continuous harmonic
vibration of amplitude 2Υ .
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7.13 The first four terms of the Caughey damping matrix series are

[c] = a0[m] + a1[k] + a2[km−1k] + a3[km−1km−1k].

Note that forming the inverse of the mass matrix is often not costly. Now that the
modified modal vector normalization process for the mass matrix produces the identity
matrix, the following conclusions can be drawn. That is, because

[Φ]t[m][Φ] = [I] → [m] = [Φ]−t[Φ]−1 → [m]−1 = [Φ][Φ]t.

Substituting for the inverse of the mass matrix in the damping matrix series above
yields

[c] = a0[m] + a1[k] + a2[kΦΦtk] + a3[kΦΦtkΦΦtk].

Premultiplying and postmultiplying, respectively, by the transpose of the modal matrix
and the modal matrix leads to

[ΦtcΦ] = a0[\I\] + a1[\ω2\] + a2[\ω4\] + a3[\ω6\],

where, of course, the sum of diagonal matrices is a diagonal matrix. This clever idea has
had no impact on engineering practice. Reference [6.5] says that the calculation of the
a j coefficients often leads to ill-conditioning, and the inclusion of more than two terms
in the series is not useful.

CHAPTER 8 SOLUTIONS

8.3 Although not strictly necessary for this uniform geometry and set of simple support
boundary conditions that have already been examined in three example problems, it is
nevertheless suggested that the first step toward a solution is that of writing the equation
of motion. The governing partial differential equation for the time period (0, t1) is

EIw ′′′′(x, t) + ρ Aẅ(x, t) = f0 sin
πx
L

sin
π t
t1

.

Seeking the solution in terms of the mode shapes, write

w(x, t) =
N∑

n=1

pn(t) sin
nπx

L

so that w ′′′′(x, t) =
N∑

n=1

(nπ

L

)4
pn(t) sin

nπx
L

and ẅ(x, t) =
N∑

n=1

p̈n(t) sin
nπx

L
.

Substituting the above into the equation of motion yields

N∑
n=1

[
p̈n(t) +

(nπ

L

)4
(

EI
ρ A

)
pn(t)

]
sin

nπx
L

= f0

ρ A
sin

π t
t1

sin
πx
L

.

Note that the coefficient of pn(t) is the nth natural frequency squared. The N unknown
functions pn(t) in the above single equation can now be uncoupled by applying to both
sides the following modal multiplication and integration

2
L

L∫
0

[. . .] sin
mπx

L
dx.
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From the orthogonality of the mode shapes, or from the orthogonality of the sine
functions in this simple case

for m 
= 1 : p̈m(t) + ω2
m pm(t) = 0

for m = 1 : p̈1(t) + ω2
1 p1(t) = f0

ρ A
sin

π t
t1

.

Since the initial conditions are zero deflection and zero velocity, the solution for the
first of the above two equations is simply pm(t) = 0 for all m 
= 1. For the case where
m = 1, the total solution could be obtained using the convolution integral. However,
it is simpler to just use the method of undetermined coefficients to obtain a particular
solution and then (i) combine the particular solution with the familiar complementary
solution and (ii) apply the initial conditions. Write the trial solution as

p1(t) = B1 sin
π t
t1

so that p̈1(t) = −π2

t2
1

B1 sin
π t
t1

.

Substituting the above into the m = 1 equation and solving for the constant B1 yields

B1 = f0 L4t2
1

π4 EIt2
1 − π 2ρaL4

= f0t2
1

ρ A [(ω1t1)2 − π 2]
.

Hence, the solution for p1(t) is

p1(t) = C1 sin ω1t + C2 cos ω1t + f0t2
1

ρ A [(ω1t1)2 − π 2]
sin

π t
t1

.

Since the factor sin(πx/L) is nowhere zero on the interior of the beam span, the ini-
tial conditions w(x, 0) = ẇ(x, 0) = 0, lead to the conclusion that p1(0) = ṗ1(0) = 0.
Therefore, the above constants of integration have the values

C2 = 0 and C1 = − πω1t1 f0

Aω2
1[(ω1t1)2 − π 2]

.

Therefore, the complete deflection solution for 0 ≤ t ≤ t1 is

w(x, t) = f0ω1t1

ρ Aω2
1[(ω1t1)2 − π 2]

(
ω1t1 sin

π t
t1

− π sin ω1t
)

sin
πx
L

.

Thus when the beam is excited by a loading that is only proportional to the first mode
shape, it vibrates only in the first mode shape. Furthermore, there is a resonance effect
when t1 = π/ω1. Also note the similarity of this result to that of the half wave sine
response function developed in the previous chapter. The above solution can be used
to define the simply supported beam sine response function.

The response for t1 ≤ t can be constructed from that for 0≤ t ≤ t1 by viewing the
time history of the applied force in this second time interval as the superposition of
the original applied force onto itself, starting at time t1. In this way the now descending
portion of the first sine function is canceled by the ascending portion of the second
sine function, resulting in the specified zero applied force after time t1. In other words,
adding w(x, t − t1) to the above response yields for t1≤ t

w(x, t) = −π f0ω1t1

ρ Aω2
1[(ω1t1)2 − π 2]

[sin ω1t + sin ω1(t − t1)] sin
πx
L

.



P1: JZP
0521865743apx1 CUFX001/Donaldson 0 521 86574 3 September 13, 2006 3:49

Answers to Exercise 8.4 527

8.4 (a) The governing differential equation and BCs for 0 < t < t0 are

w ′′′′(x, t) + ρ A
EI

ẅ(x, t) = 0

w(0, t) = w0 sin
(

π t
t0

)
w ′′(0, t) = w(L, t) = w ′′(L, t) = 0.

Introduce the transformation suggested in Endnote (4). Let

w(x, t) = v(x, t) + h(x) sin
π t
t0

so that w(0, t) = v(0, t) + h(0) sin
π t
t0

= w0 sin
π t
t0

.

To make v(0, t) = 0, let h(0) = w0. When the above transformation involving h(x) is
substituted into the above governing differential equation, it will be differentiated four
times. Therefore, it is best to select a smooth, as well as simple, function for h(x). Let
h(x) = w0(1 − x/L). Then substitution of the above transformation leads to the new
governing differential equation in terms of v(x, t) and an equivalent loading per unit
length. This result is

v ′′′′(x, t) + ρ A
EI

v̈(x, t) = π2ρ Aw0

EIt2
0

(
1 − x

L

)
sin

π t
t0

.

Since the homogeneous form of the above equation is not different from the corre-
sponding, and previously solved, equation in w(x, t), then it can be concluded that the
natural frequencies and mode shapes are the same as before, which is not a surprise.
Therefore, write the modal expansion for the particular solution to the above equation
as

v(x, t) =
N∑

n=1

pn(t) sin
nπx

L
.

Substituting into the governing differential equation yields[
p̈n(t) + EI

ρ A

(nπ

L

)4
pn(t)

]
sin

nπx
L

= π2w0

t2
0

(
1 − x

L

)
sin

π t
t0

.

Employing the orthogonality of the mode shapes over the beam length; that is, multi-
plying both sides by (2/L) sin(mπx/L)dx and integrating from 0 to L, yields

p̈n(t) + EI
ρ A

(nπ

L

)4
pn(t) = 2πw0

mt2
0

sin
π t
t0

.

This equation can be easily solved using the method of undetermined coefficients. The
result is

pm(t) = 2πw0

m
[(mπ

L

)4 EIt2
0

ρ A
− mπ 2

] sin
(

π t
t0

)
.

Thus the particular solution for this simply supported beam is

w(x, t) = w0

(
1 − x

L

)
sin

π t
t0

+
N∑

n=1

2πw0

n
[(nπ

L

)4 EIt2
0

ρ A
− nπ 2

] sin
π t
t0

sin
nπx

L
,
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whenever the denominator in the above sum is not zero. Actually, because damping,
which severely limits a resonance response, was ignored in this analysis, the above
solution will be inaccurate when the denominator is just close to zero. The complete
solution consists of the homogeneous solution

w(x, t) =
N∑

n=1

Cn sin
nπx

L
sin ωnt

and the above particular solution. Note, that the complete solution satisfies all BCs and
the zero initial deflection condition. The zero initial velocity condition determines the
values of the constants of integration Cn, which, as per usual, are calculated using the
orthogonality of the mode shapes.

(b) Since this is a small deflection problem, one described by linear equations, super-
impose the result from the second support motion upon the above result for the first
support motion.

8.6 (b) To verify the proposed solution, substitute into given partial differential equation.
Carry out the required differentiations using the chain rule. For example, for the func-
tion F(x − ct) these differentiations are as follows

∂ F
∂x

= ∂ F
∂(x − ct)

∂(x − ct)
∂x

= ∂ F
∂(x − ct)

= F ′

∂2 F
∂x2

= ∂ F ′

∂x
= ∂ F ′

∂(x − ct)
∂(x − ct)

∂x
= ∂ F ′

∂(x − ct)
= F ′′

∂ F
∂t

= ∂ F
∂(x − ct)

∂(x − ct)
∂t

= −c
∂ F

∂(x − ct)
= −cF ′

∂2 F
∂t2

= −c
∂ F ′

∂t
= −c

∂ F ′

∂(x − ct)
∂(x − ct)

∂t
= +c2 ∂ F ′

∂(x − ct)
= c2 F ′′.

Substitution of the above results show that the wave equation is identically satisfied
and thus this part of the proposed solution is indeed one half of the general solution.

(c) This solution path is the one emphasized in this chapter, which is that of obtaining
a complete rather than a general solution. Substitution of the proposed solution form
immediately yields

W ′′(x) + λ2W(x) = 0,

where λ2 = ρ Aω2

N

Application of the BCs W(0) = W(L) = 0 to the sine and cosine solutions to the above
differential equation quickly show that the natural frequencies and mode shapes for
the wire are

ωn = nπ

L

√
N
ρ A

and Φn(x) = sin
nπx

L
.

Therefore, write the complete solution in modal terms as

w(x, t) =
∑

n

pn sin
nπx

L
sin(ωnt + φn),
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where the pn is an unknown constant associated with the nth mode that is to be deter-
mined by use of the initial conditions. Respectively, the initial deflection and velocity
condition equations reduce to

for 0 ≤ x ≤ L/2 : ∑
n

pn sin
nπx

L
sin φn = 2w0x/L

∑
n

ωn pn sin
nπx

L
cos φn = 0

and a similar pair of equations for the right half of the wire. Multiplying both sides of
each equation by (2/L) sin(mπx/L) and taking into account the even and odd characters
of both the initial deflection function and these sine functions yields pm = 0 for all even
values of m. For odd values of m,

pm = 8w0

m2π2
(−1)

m−1
2 and φm = π

2
.

Insertion of these values into the modal solution form completes the undamped free
vibration solution as

w(x, t) = 8w0

π2

∑
m=1,odd

(−1)
m−1

2

m2
sin

mπx
L

cos(ωmt).

8.7 The kinetic and strain energy expressions are as follows:

T = 1
2

m0[ẇ(v0t , t)]2 + 1
2

L∫
0

ρ A[ẇ(x, t)]2dx

and U = 1
2

L∫
0

EI[w ′′(x, t)]2dx.

Again write and substitute the modal transformation

w(x, t) =
∑

pn(t) sin
nπx

L

and w(v0t , t) =
∑

pn(t) sin
nπv0t

L

Then the use of the orthogonality of the sine functions produces the requested differ-
ential equation in terms of the modal coordinate.

CHAPTER 9 SOLUTIONS

9.1 (a) First add Eqs. (8.1) and then add Eqs. (8.4) to obtain

pj−1 − 2pj + pj+1 = (∆t)2 pj
′′ + 1

12
(δt)4 pj

′′′′ + O[∆t6]

pj−2 − 2pj + pj+2 = 4(∆t)2 pj
′′ + 16

12
(∆t)4 pj

′′′′ + O[∆t6].

Multiply the first of these equations by 16 and then subtract the second to obtain

pj
′′ = −pj−2 + 16pj−1 − 30pj + 16pj+1 − pj+2

12∆t2
+ O[∆t4].
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9.4 The single piecewise linear equation of motion of this single-DOF system can be written
by combining the equations for the two linear portions of motion, which are

for q < q0 q̈(t) + ω2
1q(t) = ω2

1Y0 sin 2t

for q > q0 q̈(t) + 2ω2
1q(t) = 2ω2

1Y0 sin 2t.

Combined as a single equation for convenience, the result is

q̈(t) + q(t) + q(t)stp(q − q0) = Y0 sin 2t + Y0 stp(q − q0) sin 2t.

Now it is a matter of setting up a spreadsheet solution.

9.8 (a) To obtain the square root of a matrix, just as finding any function of that matrix,
first solve the eigenvalue problem associated with that matrix. Then

[A] = [Φ][\Λ\][Φ]t = [Φ][\
√

λ\][\
√

λ\][Φ]t

= [Φ][\
√

λ\][Φ]t[Φ][\
√

λ\][Φ]t = [A]1/2[A]1/2.

This procedure, because of the need for an eigenvalue solution, is usually not as efficient
as a Cholesky decompositon, unless, of course, the eigenvalue solution is to be obtained
for other purposes.

(b) The eigenvalues and eigenvectors of this matrix are such that the original matrix
can be expanded as

 6 2 0
2 8 1
0 1 8


 =


 −0.423085 0.379706 0.822692

−0.778758 0.311752 −0.544377
−0.463179 −0.870996 −0.163801




∗


 9.68133 0 0

0 7.64207 0
0 0 4.67660





 −0.423085 −0.778758 −0.463179

0.379706 0.311752 −0.870996
0.822692 −0.544377 −0.163801


 .

Then, replacing the eigenvalues by their square roots, the square root matrix is
 2.41918 0.383906 −0.01310

0.383906 2.79654 0.178853
−0.01310 0.178853 2.82274


 =


−0.423085 0.379706 0.822692

−0.778758 0.311752 −0.544377
−0.463179 −0.870996 −0.163801




∗

 3.11148 0 0

0 2.76443 0
0 0 2.16254





−0.423085 −0.778758 −0.463179

0.379706 0.311752 −0.870996
0.822692 −0.544377 −0.163801


 .
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APPENDIX II

Fourier Transform Pairs

II.1 Introduction to Fourier1 Transforms

Consider a function f (t) that is periodic with period2 T. Let the function f (t) satisfy the
Dirichlet3 conditions. From Ref. [II.1], these conditions are that, in addition to being
periodic, f (t) is a bounded function that in any one period has at most a finite number of
local maxima and local minima and a finite number of points of discontinuity. Then the fol-
lowing trigonometric series for f (t) converges to that function at all points where the function
f (t) is continuous and converges to the average of the right- and left-hand limits of f (t) at
each point where f (t) is discontinuous:

f (t) = a0 +
∞∑

n=1

an cos
(

2nπ t
T

)
+ bn sin

(
2nπ t

T

)
. (AII.1)

On the basis of the orthogonality of these sine and cosine functions over any t-interval of
length T, the series coefficients of the sine and cosine functions, a0, an, bn, for all n, can be
determined from the relations

a0 = 1
T

+T/2∫
−T/2

f (t) dt an = 2
T

+T/2∫
−T/2

f (t) cos
(

2nπ t
T

)
dt

bn = 2
T

+T/2∫
−T/2

f (t) sin
(

2nπ t
T

)
dt. (AII.2)

In the above integrations, the intervals of integration can be any time interval of total duration
T, such as (0, T).

The above Fourier series can also be written in terms of spatial variables, that is, with x and
L, respectively, replacing t and T. Although their importance per se has faded in the digital
age, such Fourier series can have many uses. For example, a Fourier series can be used with
a differential equation to describe a periodic loading and/or the unknown response over a

1 From Ref. [II.1], Jean Fourier (1768–1830), a confidant of Napoleon, first undertook the systematic
study of the expansions that bear his name in “Theorie analytique de la chaleur” in 1822. The use of
such series dates back to the time of Daniel Bernoulli (1700–1782), Swiss physicist and mathematician.

2 A function f (t) has a period T if and only if f (t + T) = f (t) for all t .
3 Peter Dirichlet (1805–1859), German mathematician.
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fixed interval. For present purposes, rewrite Eq. (AII.1) using complex algebra. Recall the
result

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ.

Solving simultaneously for the values of the sine and cosine functions leads to

cos θ = (eiθ + e−iθ )
2

and sin θ = (eiθ − e−iθ )
2i

= −i
(eiθ − e−iθ )

2
.

Substituting these complex forms for the cosine and sine functions into the original form for
the Fourier series, Eq. (AII.1), leads to

f (t) = a0 +
∞∑

n=1

(an − ibn)
2

e+i2nπ t/T + (an + ibn)
2

e−i2nπ t/T . (AII.3)

At this point, for n = 0, 1, 2, 3, . . . , define b0 = 0, b−n = −bn, and a−n = +an. Then define the
complex coefficients

cn ≡ (an − ibn)
2

so that c−n = (an + ibn)
2

.

Further define c0 ≡ a0. After these definitions, the series can be rewritten as

f (t) =
∞∑

n=0

cne(in2π t/T) +
+∞∑

n=+1

c−ne(−in2π t/T) =
∞∑

n=0

cne(in2π t/T) +
−1∑

n=−∞
c+ne(+in2π t/T).

Note that if in the first group of terms in the exponential form of the above sum, the index n is
replaced by −n, then this first part of the sum becomes the second part and vice versa, except
for the term c0, which can be transferred back and forth between sums because its exponential
factor is simply the value exp(0) = 1.0. The above two parts of the sum to be combined into a
single sum as

f (t) =
∞∑

n=−∞
cnei(2nπ t/T). (AII.4)

This is the complex form for the Fourier series for f (t). From Eq. (AII.2), for any positive or
negative or zero value of n, the complex coefficients can be evaluated as

cn = 1
T

+T/2∫
−T/2

f (t)
[

cos
(

2nπ t
T

)
− i sin

(
2nπ t

T

)]
dt

or cn = 1
T

+T/2∫
−T/2

f (t) e−i(2nπ t/T)dt. (AII.5)

To progress from the complex algebra forms for a Fourier series, Eqs. (AII.4) and (AII.5), to
the Fourier transform equations, it is necessary to resort to the idea of frequency as introduced
in the second chapter. Again, the circular frequency ω is defined as 2π/T. Also define nω ≡
ωn = 2nπ/T and ωn+1 − ωn = ∆ωn for all values of n, positive and negative. Further, define
the following function of those now-introduced discrete values of frequency ωn that cover the
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range of frequencies from −∞ to + ∞. Let F(ωn) ≡ (T/2π)cn so that cn = F(ωn)∆ωn. These
definitions allow Eqs. (AII.4) and (AII.5) to be rewritten as

f (t) = 2π

T

+∞∑
−∞

F(ωn) e+iωnt =
+∞∑
−∞

F(ωn) e+iωnt∆ωn

and F(ωn) = 1
2π

+T/2∫
−T/2

f (t) e−iωnt dt.

Each of the infinite number of ωns can be regarded as a discrete value of a continuous fre-
quency variable ω, that is, a continuous frequency variable that covers the interval from
ω = −∞ to ω = +∞, an interval called the frequency spectrum. The second of the above
sums has the exact appearance of that sum (local ordinate multiplied by an increment in the
abscissa) used to evaluate a Riemann4 definite integral in terms of the continuous variable ω

over the interval between −∞ and +∞. Thus, if at this juncture it is required that T → ∞,
which implies ∆ωn = 2π/T → dωn = dω, then the differences between adjacent values of the
discrete variable ωn become infinitesimal, allowing the replacement of the discrete variable
by the continuous variable ω. The same process allows, as above, the replacement of ∆ωn by
dω, and the replacement of the sum over n by an integration over the continuous variable ω.
Thus, under these limiting conditions, the joint expressions for f (t) and F(ω) become

f (t) =
+∞∫

−∞

F(ω) eiωt dω

F(ω) = 1
2π

+∞∫
−∞

f (t) e−iωt dt. (AII.6)

Equations (AII.6) are known as the Fourier transform pair for the time domain function f (t)
and the frequency domain function F(ω). For further explanation, consider the second of
these two integrals. This is an integral over the dummy variable t. It is also an integral that
contains the parameter ω. Thus the second of these two integrals represents a transformation
of a time function into a frequency function. This is sometimes described as a transformation
from the time domain to the frequency domain. The first of the Fourier transform pair integrals
does exactly the opposite. The first integral expression is often viewed as a summing of all the
frequency components of f (t). From Ref. [II.2], only two conditions are sufficient for the
existence of the Fourier transform of a function f (x). These conditions are that (i) f (x) must
be piecewise continuous on every finite interval and (ii) f (x) must be absolutely integrable
on (−∞,+∞).

The near symmetry of the above pair of transformations is unmistakable. That symmetry
can be further strengthened by defining a new F(ω) that is equal to the old F(ω) multiplied
by the factor

√
2π. Then the result is

f (t) = 1√
2π

+∞∫
−∞

F(ω) eiωt dω

F(ω) = 1√
2π

+∞∫
−∞

f (t) e−iωt dt. (AII.7)

4 Georg Riemann (1826–1866), German mathematician [1].
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Further note that letting T → ∞ has the effect of making the period of the originally periodic
function f (t) infinite. Since any nonperiodic function can be viewed as periodic with an infinite
period, imposing the limit T → ∞ has the effect of eliminating the requirement that f (t) be
periodic.

To show that the two primary response functions of structural dynamics, the frequency
response function and the impulse response function, are essentially a Fourier transform pair,
consider a damped single-DOF system subjected to an applied force F(t). Let the displace-
ment response of the mass be u(t). Then, from Chapter 6, using the superposition/Duhamel/
convolution integral, the output response can be expressed in terms of the force input as

u(t) =
t∫

0

F(τ )h(t − τ ) dτ. (AII.8)

Since this solution is predicated on zero initial conditions, let the input force be zero before
time zero. Since the input force is zero from time equals minus infinity to time equals zero,
the lower limit of the integral can be changed to minus infinity without altering the deflection
response. Now let the original input force F(t) be replaced by a new input force with the same
symbol that is everywhere equal to the original input force from time equals minus infinity to
time t , but differs from the original input after the arbitrary time t stated in F(t) in that the new
force is zero thereafter. This change also does not affect the above equality. Moreover, it allows
the upper limit to be increased to plus infinity without altering the equality. Hence Eq. (AII.8)
can be written as

u(t) =
+∞∫

−∞

F(τ )h(t − τ ) dτ.

Now, to move in the direction of the frequency response function, let the input force be
harmonic. That is, let

F(t) = F0 sin ω f t → F0eiω f t .

Substituting this special case into the previous general response formulation for the output
deflection yields

uh(t) =
+∞∫

−∞

F0eiω f τ h(t − τ ) dτ, (AII.9)

where uh(t) is specifically the response to the harmonic input. Recall that the harmonic
response for this same single-DOF (m, c, k) system can be written in terms of the frequency
response function. In review, the differential equation of motion of this one-DOF system
subjected to this same harmonic force, where, again, ω2

1 = k/m and 2ζω1 = c/m, is

üh(t) + 2ζω1u̇h(t) + ω2
1uh(t) =

(
F0

m

)
eiω f t = ω2

1

(
F0

k

)
eiω f t .

As demonstrated in Chapter 6, the solution for the harmonic deflection output can be written as
uh(t) = u0 exp(iω f t), where u0 is a complex number depending on the frequency and damping
factor. Substituting this form of the solution yields

u0 = F0/k(
1 − ω2

f /ω
2
1

) + 2iζω f /ω1
or uh(t) = F0 H(ω f )eiω f t ,
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where, for the sake of convenience, the stiffness factor has been combined with the other
elements of the frequency response function. Combining the above result with Eq. (AII.9)
yields

F0 H(ω f ) eiω f t =
+∞∫

−∞

F0 eiω f τ h(t − τ ) dτ.

After canceling the force amplitude constant, introduce the following transformation from
τ to θ . Let θ = t − τ . Then the above equation can be written as

H(ω f ) eiω f t = −
−∞∫

+∞

eiω f (t−θ) h(θ) dθ =
+∞∫

−∞

eiω f (t−θ) h(θ) dθ.

Since the integration is over θ , the exponential term exp(iω f t) can be factored out of the
integral and canceled. Since t no longer appears in the result, make the cosmetic change from
θ to t with the result

H(ω f ) =
−∞∫

+∞

e−iω f t h(t) dt.

Except for the factor of 1/(2π), this is identical with the second of Eqs. (AII.6). This difference
of a constant factor explains the previous reference to the impulse response function and
the frequency response function as being “essentially” a Fourier transform pair. Of course,
this slight discrepancy could easily be removed by simply redefining the frequency response
function, which will not be done here. Simply for reference, the reverse transformation is

h(t) = 2π

+∞∫
−∞

H(ω f ) eiω f t dω f .
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Adams-Bashforth method, 475
aeroelasticity, 373
airloads, quasisteady, 381
airloads, unsteady, 383
amplitude, vibratory, 68
area moment of inertia, 28

basic strip theory, 385, 399
beam boundary conditions derivation, 444
beam equation derivation, 442
beams

beam frames, 172
beam frames, standard approximations, 111
beam grids, 172

boundary conditions, application to stiffness
matrices, 109

Butcher’s method, 474

Caughey damping matrix, 396
center of mass, 3, 4
characteristic equation, matrix, 268
Cholesky decomposition, 307, 324
circular frequency, 70–71
complementary virtual work, 150
complex stiffness, 241
conservation of (mechanical) energy, 73
continuous mass models, 402. See also distributed

mass models
convolution integral, 352
Coulomb friction, 217
coupling of the DOF, 337

d’Alembert’s principle, 19
damping

Coulomb, 217
material or solid, 215
types, 215
viscous, 220

damping factor
material, 241, 384

modal, 340
viscous, 222

damping matrix, 229
damping measurements, 242
degrees of freedom, 12. See also generalized

coordinates
delta operator, 18. See also variational operator
dependent quantities or dependent variables, 18
Dirac delta function, 343, 415
dissipation function, Rayleigh’s, 244
dissipative energy, 215
distributed mass models, 402
divergence (a static instability), 85, 94, 375, 377
double amplitude, 70
drag coefficient, 220
Duhamel integral, 352
dynamic instability, 85. See also flutter
dynamic load factor, 350
dynamic matrix, 289

earthquake excitation, 364
eigenvalue problem

differential equation, 409
matrix, 289

eigenvector expansion theorem, 292
eliminating degrees of freedom, 171, 285
Euler or Euler-Cauchy method, 463

flexibility matrices, 147, 323
fluids, enclosed, 374
flutter (a dynamic instability), 85–94, 378
forces

body or field, xi, 4
contact, 4
damping, 213, 217, 220, 222
drag, 220
elastic, 157
external and internal, 4
impulsive, 343
inertial, 157
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Fourier series, 531
Dirichlet conditions, 531

frequency, 70
fundamental, 268
shift, 304
ratio, 232, 342

frequency response function, 233, 342, 534
functions of matrices, 475

generalized coordinates, 12
elastic beam segments, 100
global, oppositely directed from element,

116
generalized force,

in general, 16
vector, 110
modal, 340

generalized mass, 335
generalized velocities, 22
Givens method, 309
Gram–Schmidt process, 332

Hamilton’s principle, 21, 403
harmonic motion, 407
harmonic response amplitude, 232, 237, 247
harmonic response lag angle, 233, 237
Heaviside step function, 346
Householder method, 309
Huen’s method, 465
hystereses loops or hystereses damping, 217

impact problems, 391
impulse response function, 233, 346, 534
independent variables, 18
inertia forces, inertia loads, xi, xii, 409
initial conditions

continuous models, 412
N-DOF systems, 335

instabilities, dynamic, 375
instabilities, static, 375

Jacobi’s method, 307, 329

kinetic energy, 20, 25, 166
as a point function, 62

Lagrange equations, 25
matrix form proved, 210

Lanczo’s method, 310
Laplace transforms, 351
linear acceleration method, 460
linear independence, 323
linearizing ordinary differential equations, 71
logarithmic decrement, 242

magnification factor, 235
mass matrix, 170
mass matrix, consistent, 170, 210

mass modeling, continuous or distributed, 159
mass modeling, discrete, 160
mass moment of inertia, 27, 187
mass moment of inertia, experimental

determination of, 86
mass product of inertia, 28, 187
matrices

othogonal or unitary, 309–310
triangular, 308, 322
tridiagonal, 309

matrix eigenvalue problem, 289
modal acceleration, 370
modal mass, 335, 338
modal matrix, 338
modal transformation and coordinates, 337,

416
modal tuning, 315
mode shape, 264, 273, 274
moment about a point, 5
moment about axes, 5
momentum, angular, 6
momentum, rectilinear, 2
moving force problem, 415
moving mass problem, 439

natural frequency, 70, 264
natural frequency calculations

determinant method, 273, 411
higher mode iteration, 300
matrix iteration, 289

natural frequency, damped, 226
Newmark’s beta method, 460
Newton’s laws, 2
Newton’s laws, polar coordinate form, 485
nonlinear vibrations, 400, 451
numerical integration, finite difference method,

452

offset elastic elements, 193
offset lumped masses, 187
orthogonal functions, 414, 531
orthogonal vectors, 290–291, 332, 413
oscillator, 218

parallel axes theorem, 11
participation factors, 369
particle, 2
pendulum, definition, 47
pendulum, large deflection solution, 93
period, vibratory, 70
phase angle, vibratory, 68
planetary motion, 42
plastic deformations, a use thereof, 41
plate vibrations, 432
point function, 17
position vector, 4
potential energy for internal elastic forces. See

strain energy
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potential function for external forces, 23
product of inertia, nonzero, 124
pulse loading, 357

QR method, 309

ramp response function, 357
random vibrations, 364
Rayleigh analysis, 358, 398
Rayleigh quotient, 206
repeated natural frequencies, 279
repeated pulses, 395
resonance, 235, 237, 342
response function summary, 372
response spectrum, 388
rigid body modeling, 74, 163
rigid body motion, 313, 326
rigid structural components, 180
Runge-Kutta method, 468

selection of modal data, 366
separation of variables, 407
shear center, 375
shift frequency, 304
shock, 357
shock response spectrum, 388
sinusoid response function, 360
springs

hardening, 457
softening, 457

St. Venant constant for uniform torsion, 28
stability of vibratory systems, 83–94
static equilibrium position, 46, 164
static instability, 85, 94. See also divergence
steady state response, 234
step response function, 349

stiffness matrices
bar in planar truss, 129
bar in space truss, 130
beam bending, 104
beam extension, 114
beam shearing, 127
beam twisting, 114
curved beam, 146
global, 107
linear spring, 114
plane stress or membrane element,

139
strain energy, 23, 123
structural updating, or validation, or

identification, 316
Sturm-Liouville problems, 445
superposition integral, 352
support motions, 120, 172

Taylor’s series, 37
transient response, 234
transmissibility, 392, 521
trivial solution, 267

unit step function, 346. See also Heaviside step
function

valid coordinate systems, 2
variational operator, 18, 39, 403

commutativity with respect to derivatives and
integrals, 40

vector bases, 291
vehicle dynamics, simplified, 361
virtual displacements, 15
virtual work, 16, 404
virtual work, principle of, 123
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